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Abstract 
In this paper, we propose a novel neighbor-preferential growth (NPG) net-
work model. Theoretical analysis and numerical simulations indicate the new 
model can reproduce not only a scale-free degree distribution and its power 
exponent is related to the edge-adding number m, but also a small-world ef-
fect which has large clustering coefficient and small average path length. Inte-
restingly, the clustering coefficient of the model is close to that of globally 
coupled network, and the average path length is close to that of star coupled 
network. Meanwhile, the synchronizability of the NPG model is much stron- 
ger than that of BA scale-free network, even stronger than that of synchroni-
zation-optimal growth network. 
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1. Introduction 

In the past two decades, complex networks have been extensively studied and 
have gained rich research results. In particular, discoveries of the small world ef-
fect [1] and the scale-free feature [2] of complex networks have promoted the 
research of network structure [3]-[11]. And it has been known that the topology 
of a network often plays an important role in the feature of dynamical network. 

Since Barabási and Albert have addressed that two key mechanisms-growth 
and preferential attachment. BA scale-free network model [2] was proposed to 
promote the understanding of the real network. Subsequently, an increasing 
number of studies have been devoted to creating a new model [12]-[19]. Bollo-
bas and Riordan proposed another version of the scale-free model, which is 
called the linearized chord diagram (LCD) model [14], in the model mul-
tiple-edges and self-loops can be allowed. Xiang Li et al. proposed a local-world 
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evolving network model [15], which represents a transition between power-law 
and exponential scaling. Y.J. Cao et al. proposed a neighbourhood evolving 
model [16], which also yields a transition between power-law and exponential. 
In order to enhance the synchronizability of the growth network, X.F. Wang et 
al. have constructed the synchronization-optimal growing network [12], it is 
easier to achieve synchronization than BA scale-free networks, however, it is 
more particularly fragile with respect to deliberate attacks. Hence, for improving 
the synchronization robustness against the selective removal of vertices in com-
plex networks, X.F. Wang et al. have also proposed the synchronous preference 
of complex dynamical networks [13], and its synchronizability is investigated 
and found to be robust against both random and specific removal of nodes. 
There are many scale-free growth network models [17] [19], all of which are ob-
tained by changing the preferential attachment mechanism. 

In the real-world networks, there is another priority connection mechanism, 
“neighbor” effect. For example, when you enter a strange city to visit your 
friends, you will just make friends with the friends of your present friends. Based 
on the growth and neighbor preferential principles, we propose a dynamical 
networks model, which is called the NPG model in this paper. To further clarify 
the topology of the NPG network, we confirm the statistical properties of the 
new network in three aspects-the degree probability distribution, the clustering 
coefficient and the average path length. In fact, the three concepts play an im-
portant role in the development of complex network theory [20] [21]. Theoreti-
cal analysis and numerical simulations indicate the new network is not only a 
scale-free network whose degree distribution obeys the power-law and its power 
exponent is related to the edge-adding number m, but also a small-world net-
work which has large clustering coefficient and small average path distance. 
Meanwhile, its synchronizability is much stronger than that of BA scale-free 
network [2], even stronger than that of synchronization-optimal network [12]. 
And the NPG network is robust with respect to random attacks and is fragile to 
specific removal of a small fraction of nodes. 

2. The Construction of the NPG Model 

Our model is defined as follows: 
1) Initial network: Starting with a globally coupled network with 0m  nodes. 
2) Growth: At every time step a new vertex is added and is connected to m 

( 0m m≤ ) nodes that already-existing in the system. 
3) Preferential attachment: 
a) The new node is connected to an existing node i only for one edge. The 

connection probability iΠ  depends on the degree of the existing node: 

j

i
i

j

k
k

Π =
∑

                          (1) 

b) Select the first 1m −  nodes successively in the order of descending degree 
(when the degree of the nodes is the same, first select the older node) from all 
the neighbor nodes of the node i which is connected to the new node. Add 
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1m −  edges between the new node and the 1m −  nodes. 
After 0t m  time steps, we obtain a neighbor-preferential growth network 

with 0N m t= +  vertices. 

3. Statistical Characteristics of the NPG Model 
3.1. Degree Distribution 
The degree distribution as one of the most important statistical features of com-
plex networks. We calculate the degree probability distribution ( )P k , using the 
mean-field approach [22]. By the connection mechanism of the algorithm of the 
model, we know that the model has 1m −  “hubs” which are connected to all 
nodes and a big node which is connected to most nodes, as shown in Figure 1(a) 
(in the later simulation we also see the phenomenon ). For convenience, the big 
node is also called the “hub”. And there is no doubt that the m “hubs” are con-
nected to each other. 

Suppose the initial network has 0m  nodes and the degree of the node i is 
( )ik t  at time t. When t is large enough, we can ignore the number of edges in 

the initial network and 0m t t+ ≈ . Divided the nodes into two categories: the m 
“hubs” and the common nodes. When a new node is added to the network, the 
probability of the new node is connected to the node i is ( )iΠ . If node i belongs 
to the “hubs”, the ( ) 1iΠ = , but we will ignore the node i in the degree proba-
bility distribution, due to the number of the “hubs” is much smaller than the to-
tal number of nodes in the network ( m t ). Then we only need to consider 
when the node i belongs to the common nodes, the probability of the new node 
is connected to the node i is iΠ  in the preferential attachment (i), if the new 
node is not connected to node i, the preferential attachment (ii) will work, but 
the new node is also not connected to node i, because it will be connected to the 
“hubs”. So when the node i belongs to the common nodes, only the preferential 
attachment (i) works. In a word, the connection probability of node i is 

 

  
(a)                                                               (b) 

Figure 1. The simplified diagram of the NPG model with 3m = . 
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                     (2) 

Assume the degree of the node i is continuous, and thus the connection 
probability ( )iΠ  can be interpreted as the rate of change of the ith node’s de-
gree, we can write 

( ) ( )
2
ii k tk

i
t mt

∂
= Π =

∂
                         (3) 

The solution of this equation, with the initial condition that node i was added 
to the system at time it  with connectivity ( )ik t m= , is 

( )
1

2m

i
i

tk t m
t

 
=  

 
                          (4) 

the probability that a node has a connectivity ( )ik t  smaller than k,  
( )( )iP k t k< , can be written as 

( )( )
2

2

m

i i m

m tP k t k P t
k

  
< = >     

                    (5) 

Suppose we add nodes at equal time intervals to the network, the probability 
density of it  is 

( )
0

1
iP t

m t
=

+
                           (6) 

By (5) and (6), then the probability density for ( )P k  can be obtained  

( )
( )( ) 2 2 1 2 1 2 1

0 0

2 2i m m m mP k t k t tP k m m k m k
k m t m t

− − + − −∂ <
= = =

∂ + +
    (7) 

That means, ( ) 2 1~ mP k k − − , the degree probability distribution of the NPG 
model follows power-law distribution, and the power exponent is 2 1m− − , not 
fixed. When m is larger, the smaller the power exponent, the steeper the corres-
ponding graph. In Figure 2(a) we can see that when 3,5,7m = , the lines will 
become more and more steep, supporting the analytical result. In particular, 
there is a limiting case-when 1m = , the preferential attachment (ii) is not effec-
tive in the NPG model. Namely, in this limiting case the NPG model is the same 
as BA model, and Eq. (7) is valid for the limiting case. In Figure 2(b), we can 
also see when 1m = , the graphs of BA and the NPG are almost coincident, 
supporting the analytical result. 

3.2. Average Path Length 

The average path length is also an important statistical characteristics for study-
ing complex networks, especially when describing the synchronizability of net-
works. The shorter the average distance length, the stronger the synchronizabil-
ity [23] [24] [25], Generally. For the NPG network, the nodes are divided into 
three sets. Set one: the 1m −  “hubs” which are connected to all nodes; Set two: 
a big node which is connected to most nodes; Set three: the common nodes. As 
shown in Figure 1(a). The path length can be expressed mathematically as fol-
lows: 
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Figure 2. The degree probability distribution of the network ( 5000N = ) in the log-log scale. (a) the NPG network with 

3,5,7m = , respectively. (b) the NPG and BA network with 1,3m = , respectively. 

 
2
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where ijS  is the sum of the shortest path lengths of all nodes in set i to all nodes 
in set j, where xk  is the degree of the big node. So the average path length of 
the NPG network is S 

1 3
2

ij
i j

N

S
S

C
≤ ≤ ≤=
∑

                          (14) 

When N is large enough, the average length is two. From Figure 3(b), we can 
get that the numerical results are consistent with the theoretical predictions. In 
Figure 3(b), we also show that the comparison results of the average path length 
for the NPG model and BA model. We find the average path length of the NPG 
network is significantly shorter than that of the BA network. 

3.3. The Clustering Coefficient 

The small-world characteristic consists of two properties: large clustering coeffi-
cient and small average path length. We have demonstrated that the NPG net-
work has a small average path length. The clustering coefficient is C 

1

N
i

i

C
C

N=

= ∑                               (15) 

where iC  is the local clustering coefficient for node i. 
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Figure 3. (a) the comparison of clustering coefficient for the NPG and BA model with 3,5,7m = , respectively. (b) the 
comparison of the average path length for the NPG model and BA model with 3,5,7m = , respectively. 

 
( )
2
i

i
k

E i
C

C
=                                (16) 

where ( )E i  is the number of edges in the neighbor set of the node i, and ik  is 
the degree of node i. First of all, we simply analyze the structure of the NPG 
network (see Figure 1): 

1) When the degree of node i is equal to the edge-adding number m ( ik m= ), 
the clustering coefficient of node i is one. 

2) Get rid of the “hubs” from the neighbor set of any node i which exist in Set 
2 and Set 3 to form a new neighbor set in which edges is not exists between 
nodes. 

Simply prove ii), if there is a connection between node i and j in this new 
neighbor set, then node i or node j with 1m +  edges into the network system, 
which is impossible. Namely, conclusion ii) is established. The local clustering 
coefficients of the nodes in Set 2 and Set 3 are iC  

2 2
1

2 ,i i

i

k k m
i i

k

C C
C k m

C
− +−

= ≠                      (17) 

The local clustering coefficients of the nodes in Set 1 are iC′ , according to the 
degree of the nodes in the network, it is easy to prove the following equation 

2

1

i

i
k

mN NC
C
− +′ =                         (18) 

The degree ik  of the “hubs” satisfies 1ik N+ = , so 
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namely, i iC C′ ≈ . Finally, for the NPG network, the clustering coefficient of 
node i is 

2 2
1

2       

1                       

i i

i

k k m
i

i k

i

C C
k m

C C

k m

− + −
≠

= 
 =

                   (21) 

by (21),it can be seen when the degree of the node becomes larger, the local  

clustering scales as ( ) 1~C k o
k

 
 
 

, where ( )C k  denotes the average clustering 

values of nodes with degree k. In Figure 4, this phenomenon is also seen. When 
calculating the clustering coefficient C, we only consider the common nodes. We 
have 

( ) ( )
2 2

1
2

1

l
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k m k
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C P k P k m

C
− +

= +
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∑                (22) 

l  is a constant and l N ，since the degree distribution is  
( ) 2 1mP k Ak − −= ，where , 1, ,k m m l= + 

. And 2 1 1
l

m

k m
Ak − −

=

=∑ , the average 
clustering coefficient C can be rewritten as 
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The numerical results are demonstrated in Figure 3(a), we can get that a little 

fluctuations between the numerical results and analysis results, which may  
 

 
Figure 4. The average clustering coefficient of nodes with degree k when 3,5,7m = , res- 
pectively. The data are averaged over 20 independent runs of network size of 5000N = . 
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attribute to the fluctuations of the power-law exponent of degree distribution. 
But it does not affect the network with a large clustering coefficient. In Figure 
3(a), we show the comparison result of the clustering coefficient for BA model 
and the NPG model. We find that the clustering coefficient of the proposed 
model is larger than that of BA model obviously. And the clustering coefficient 
of the new model will increase as m increases. 

The above simulation results show that the new network is a scale-free net-
work and its power exponent is related to the edge-adding number m. What’s 
more, it has a large clustering coefficient and a short average path length, which 
represent a small-world effect. So the model has the characterization of both 
scale-free and small-world networks. 

4. Synchronization in Complex Dynamical Networks 
4.1. Synchronization Stability Criterion of Complex Dynamical 

Networks 

Consider a complex dynamical network consisting of N identical linearly and 
diffusively coupled vertices, with each vertex being an n-dimensional dynamical 
oscillator. The state equation of the network can be written as [25] [26] [27]: 

( )
1

, 1, 2, , ,
N

i ij j
j

x f x c a x i N
=

= + Γ =∑
                  (24) 

where ( )1 2, , , n
i i i inx x x x R= ∈  are the state variables of vertex i and the con-

stant coupling strength c is assumed positive. Furthermore, n nR ×Γ∈  is a con-
stant 0 1−  diagonal matrix denoted as ( )1 2, , , n n

ndiag r r r R ×Γ = ∈  [27]. If 
there is a connection between vertex i and vertex j ( )i j≠ , then 1ij jia a= = ; 
otherwise, 0ij jia a= =  ( )i j≠ . We take 

1
, 1, 2, , ,

N

ii ij i
j
j i

a a k i N
=
≠

= − = − =∑                    (25) 

where the degree ik  of vertex i is defined to be the number of its outreaching 
connections. Defined that dynamical network (24) is (asymptotically) synchro-
nized if 

( ) ( ) ( ) ( )1 2 Nx t x t x t s t= = = =  as t →∞                (26) 

where ( )s t  is a solution of an isolated vertex [28]. Suppose that the network is 
connected in the sense that there are no isolated clusters. Then, ( )ij N N

A a
×

=  is 
a symmetric and irreducible matrix, whose eigenvalues are  

1 2 30 Nλ λ λ λ= > ≥ ≥ ≥  [28]. It has been proved that under certain assump-
tions the synchronized state (26) is exponentially stable if 

2c d λ≥                           (27) 

where d is a constant, which was further specified to be maxh , the maximal Lya-
punov exponent of an individual n-dimensional chaotic dynamical system [27]. 

Given the dynamics of an isolated vertex, the synchronizability of network 
(24) with respect to a specific coupling configuration A is said to be strong if the 
network can synchronize with a small coupling strength c. Inequality (27) im-
plies that the synchronizability of network (24) can be characterized by the 
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second-largest eigenvalue of its coupling matrix, i.e., the smaller the second- 
largest eigenvalue, the stronger the synchronizability of a network. 

4.2. Synchronizability of the NPG Network 

For clarity, we take 0m m m= =  in the construction of a NPG or BA network, 
and denote by ( ),npA m N  and ( ),baA m N  the coupling matrices of the dy-
namical network (24) with NPG and BA topologies, respectively, which has N 
nodes and ( )m N m−  edges. In all numerical simulation, the second-largest ei-
genvalue of ( ),npA m N  and ( ),baA m N  are denoted by ( )2 ,np m Nλ  and  

( )2 ,ba m Nλ , respectively. 
The eigenvalues are obtained by averaging the results of 10 groups of net-

works. Figure 5 show the value of ( )2 ,ba m Nλ  and ( )2 ,np m Nλ  as function of 
N, and find ( )2 ,ba m Nλ  and ( )2 ,np m Nλ  decreases to a negative constant 

( )2ba mλ  and ( )2np mλ  as N increases, with 3,5,7m = , respectively. In par-
ticular, as shown in Figure 5, for BA scale-free model, we get  

( )2 1.2329, 2.8758, 4.6110ba mλ ≈ − − −  for 3,5,7m = , respectively. And in Fig-
ure 5 we have ( )2 2, 4,6np mλ ≈  of the NPG network for 3,5,7m = , respec-
tively. That implies the synchronizability of the NPG network is much stronger 
than that of the BA scale-free network. 

Recently, X. F. Wang et al. proposed a model of synchronization-optimal 
growing network [12]. In their model, when a new node is added to the network, 
the criterion for choosing the m vertices to which the new vertice connects is to  

 

 
Figure 5. The second-largest eigenvalue of the coupling matrix of the BA (green) and the 
NPG(red) network for 0 3,5,7m m= = , respectively. 
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optimize the synchronizability of the obtained network, namely, in order to al-
low the second-largest eigenvalue of the corresponding coupling matrix to be 
minimized. After 0t m  time steps, a synchronization-optimal growing net-
work is obtained with 0N m t= +  vertices. Its second-largest eigenvalue  

( )2 1.9898, 3.9635, 5.8710so mλ = − − −  for 3,5,7m =  respectively [12]. This in-
dicates that the synchronizability of the NPG network is stronger than that of 
the synchronization-optimal growing network. What’s more, the time complex-
ity of the algorithm of the NPG network model is much lower than that of syn-
chronization-optimal growing network model. 

We find the second-largest eigenvalue 2npλ  of the NPG network is closer to 
the second-largest eigenvalue 2mcλ  ( 2 3, 5, 7mcλ = − − − , for 3,5,7m = ) of the 
multi-center growth model [12]. Because the topology of the NPG network is so 
similar to that of the multi-center network, both of them have several “hubs”. 

The second-largest eigenvalues of dynamical network with BA scale-free to-
pology, synchronization-optimal growth topology, NPG topology and multi- 
center topology are shown in the Table 1. 

 
Table 1. A comparision of the second-largest eigenvalues of different model. 

 m0 = 3 m0 =5 m0 =7 

BA −1.23 −2.87 −4.61 

Synchronization-optimal −1.98 −3.96 −5.87 

NPG −2 −4 −6 

Multi-center −3 −5 −7 

 

 
Figure 6. The new second-largest eigenvalue of the BA scale-free networks (red solid line 
with circle), the NPG networks(blue solid line with stars)when a fraction f of vertices are 
removed. (a) randomly selected vertices. (b) the most connected vertices. 
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4.3. Robustness and Fragility 

Clearly, when we remove some nodes in a network will change its coupling ma-
trix. If the second-largest eigenvalue of the coupling matrix remains unchanged, 
namely, the synchronizability of the network will remain unchanged after the 
removal of a small fraction of nodes, which indicates the robustness of the syn-
chronizability of the network. If the second-largest eigenvalue of the coupling 
matrix changes greatly after the removal of some its nodes, which implies the 
fragility of the synchronizability of the network. Now we have two ways to re-
move a small fraction f  ( 0 1f<  ) of nodes in the work: random or specific. 

We let N NA R ×∈  and ( ) ( )N fN N fNA R − × −      ∈  be the coupling matrices of the 
original network with N nodes and the new network after removal of fN    
nodes, respectively. The second-largest eigenvalues of A  and A  are denoted 
by 2λ  and 2λ , respectively. 

In the simulation, we take 1000N =  and 0 3m m= = . It has been shown 
that even when as many as 5% of randomly chosen nodes are removed from a 
BA scale-free network, the new second-largest eigenvalue 2baλ  will not be 
changed too much (Figure 6(a)). And the new second-largest eigenvalue 2npλ  
of the NPG network remains unchanged when 5% of vertices are randomly re-
moved. This indicates that both the BA scale-free model and the NPG model are 
robust against random attacks, the robustness of the NPG model is stronger, es-
pecially. However, the NPG model is more fragile to specific removal of a small 
fraction of nodes than a BA network (Figure 6(b)), due to the topology of the 
NPG network is very similar to that of the multi-center network, and the whole 
network is broken into isolate when several “biggest” vertices are removed. 

5. Conclusion 

In this paper, we have proposed the neighbor preferential mechanism and con-
struct the neighbor-preferential growth network model. Theoretical analysis and 
numerical simulations show the NPG model is a scale-free small-world network 
model. What’s more, its power exponent will increase drastically as the edge- 
adding number m increases. And the NPG model can reproduce star coupled 
network feature and globally coupled network property, for its average path 
length is close to two and its clustering coefficient of is close to one. Moreover, 
the synchronizability of the NPG network model is much stronger than that of 
BA scale-free network [2], even stronger than that of synchronization-optimal 
network [12]. Due to the topology of the NPG network is so similar to that of the 
multi-center network, the NPG model is robust against random attacks and is 
more fragile to specific failures. Perhaps this model helps to future understand 
the real-world networks. However, there are still many problems need to be fur-
ther studied, for example, how to adjust the number of the “hubs”? How does 
the clustering coefficient change with the number of the “hubs”? How many the 
“hubs” in the model are more in line with the real-world networks? And so on. 
There questions are waiting for us to investigate. 
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