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ABSTRACT 

Multiple Input Multiple Output (MIMO) technology is of great significance in high data rate wireless communication. 
The K-Best Sphere Decoding (K-Best SD) algorithm was proposed as a powerful method for MIMO detection that can 
approach near-optimal performance. However, some extra computational complexity is contained in K-Best SD. In this 
paper, we propose an improved K-Best SD to reduce the complexity of conventional K-Best SD by assigning K for 
each level dynamically following some rules. Simulation proves that the performance degradation of the improved 
K-Best SD is very little and the complexity is significantly reduced. 
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1. Introduction 

Multiple-input multiple-output (MIMO) system, which 
utilizes the spatial diversity, has been extensively studied 
during the past decade, because it has high spectral effi- 
ciency [1]. The optimal performance of MIMO system 
detection can be achieved by maximum likelihood (ML) 
detection algorithm based on exhaustive search. However, 
the computational complexity is significantly affected by 
the size of modulation constellations and the antenna 
numbers. It increases exponentially with them. In order 
to decrease the computational complexity and apply in 
hardware, an improved algorithm, called the sphere de- 
tection algorithm (SD), is studied in [2,3]. The SD can 
offer a performance near maximum-likelihood algorithm 
with an acceptable complexity.   

In the SD, detection is transformed into a depth-first 
tree search problem. This leads to a disadvantage that the 
computational complexity varies so obviously with dif- 
ferent signals and channels that implementations of SD 
will be inconvenient. Hence the K-Best algorithm based 
on the breadth-first tree search strategy is put forward 
[4-5]. In the K-Best algorithm, only the best K candidates 
at each level of tree are reserved for further search in 
next level. This eliminates the disadvantage above. The 
fixed computational complexity makes implementation 
easily. However, comparing with ML algorithm, the K- 
best algorithm suffers performance degradation espe- 
cially when K is small. It is because a larger value of K 
makes it less possible that the K-Best solution is not 
equal to the ML solution. The existing K-Best algorithm 

cannot meet the increasing need for low computational 
complexity and high data rate of MIMO system. 

In view of above, we proposed a new dynamic K-Best 
algorithm in this paper. In conventional K-best algorithm, 
a set consisted of K candidates, which have the smallest 
Euclidean distances, is kept for search in the next level. 
The difference between the smallest Euclidean distance 
and second smallest Euclidean distance is related to the 
possibility that the K-best solution is near to the ML so- 
lution. In the proposed algorithm, the value of K can be 
adjusted according to the difference so that the computa- 
tional complexity is significantly reduced with small, 
even negligible, performance degradation.  

The remainder of this paper is organized as follows. In 
section 2, the fundamental model of MIMO system is 
introduced. And we will review several basic decoding 
algorithms. In section 3, we will introduce the main ideas 
of sphere decoding (SD) algorithms. In section 4, we will 
describe our dynamic K-best algorithms in detail. In sec- 
tion 5, we will present our simulation results to demon- 
strate its complexity decrease. In section 6, the conclu- 
sion will be drawn.  

2. Background Review 

2.1. MIMO System Model 

Consider a MIMO system with NT transmit antennas and 
NR receive antennas and assume that channel of this sys- 
tem is a Rayleigh fading channel. The relationship be- 
tween the transmitted signal and received signal can be 
described as follows:  
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                (1) 

in which  denotes the  dimen- 
sional received signal vector and  
denotes the NT dimensional transmitted signal vector. 
And the noise vector  is a complex 
zero-mean additive Gaussian noise vector with variance 

 per dimension. Its powers of real parts and imaginary 
parts are equal. The flat fading channel is described by a 
complex  matrix .  

      (2) 

The element  of channel matrix stand for the path 
gain from the  transmit antenna to the  receive 
antenna. It is supposed that channel matrix is fully 
known by receiver. Meanwhile, in order to simplify the 
calculation, we assume that  =  = . 

The complex channel matrix, transmit vector, receive 
vector, and noise vector can be transformed into its real 
representation. 

         (3) 

  (4) 

where  stands for the real part and  stands for 
the imaginary part. 

Utilizing these real representations, (1) is transformed 
into 

              (5) 

2.2. ZF Decoding 

The Zero-Forcing (ZF) Decoding result is given by 

         (6) 

where  is the Moore-Penrose in- 
verse of the channel matrix H [6]. ZF decoding trans- 
forms the joint decoding into  single stream decod- 
ing so as to reduce the complexity significantly. However, 
the reduction comes at the expense of large noise ampli- 
fication leading to a much worse performance. 

2.3. ML Decoding 

The ML performance is optimal. For the receiver, the 
conditional probability destiny function  in 
the case of a Gaussian channel is given by 

  (7) 

with  [7]. Therefore, maximizing the 

conditional pdf amounts is equal to minimizing 

 because the other terms are constant 

factors. So the mathematical model of ML detection is 

       (8) 

where  is the set of all transmitted vectors .  
For MIMO systems with N transmit antennas and the 

modulation order of m,  contains  elements, and 
obviously ML Decoding using exhaustive search must 
search the whole set  to find the optimal solution . 
Hence the complexity of ML Decoding increases expo-
nentially with the product of m and N , so for large con-
stellations and large N ML Decoding is impractical. 

3. Sphere Decoding 

3.1. Sphere Decoding 

As is mentioned above, the ML detection based on ex-
haustive search is difficult in practice. Therefore a re-
striction of searching space is necessary. The SD is ef-
fective in reducing the complexity of ML detection by 
means of enumerating the lattice points within a distance 
lower than a given maximum  named sphere radius. 
So the mathematical description of SD is 

       (9) 

Here  is a subset of the searching space of ML. 
But unfortunately, this kind of SD is not stable enough in 
that it cannot reduce much complexity if  is too large, 
and on the other hand, it easily discards the ML solution 
at early stages of searching if  is too small [8]. 

In order to simplify the searching, a decoding tree is 
usually employed. To create such a tree, an upper train- 
gular structure R of the channel matrix H obtained by 
QR decomposition is required. Using QR decomposition, 
the MIMO channel model can be rewritten as below:  

          (10) 
or 

             (11) 

Since Q is a unitary matrix, it can maintain the statis- 
tical characteristics of noise vector n. Thus the new sys-
tem is equivalent to the former one. In this way, the re- 
newed expression of SD is 

 

 

                  (12) 
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Here j is the level number of the tree and N is the 
number of antennas of the transmitter and the receiver. 
The nodes of the tree store the information of the partial 
solutions in order to find the optimal solution. The square 
of the Euclidean distance, namely , is cal- 
culated by computing partial Euclidean distance (PED) 

 for each level j, i.e.  

               (13) 

Obviously 
             (14) 

3.2. Depth-First SD 

The Depth-First Sphere Decoding algorithms contain 
forward and backward directions of searching the tree. It 
is carried out as below: 

1) Set a large number as optdist (distance of the opti-
mal solution); 

2) Go forward to the first leaf of the tree; 
3) Calculate the lowest distance of the nodes expanded 

by the same node with the leaf to update the optdist; 
4) Go back to the former level and try the next node; if 

the end of nodes is reached, continue this step until there 
is a node available; if no such node exists, go to step 7. 

5) If the PED of the node is larger than optdist, then go 
to step 4; else expand the node and go to step 6; 

6) If the leaf is reached, go to step 3; else go to step 5. 
7) Choose the solution whose PED is optist as the op-

timal solution. 

3.3. Fixed K-Best SD 

Compared with exhaustive search, K-Best SD uses 
Breadth-First Search (BFS). BFS only allows forward 
direction and the information of nodes at current level 
will be kept before the nodes are expanded. K-Best algo- 
rithm keeps only K nodes at each level. Let j be the level 
number. The procedure of the algorithm is: 

1. Let j = N; 
2. Calculate the PEDs of all nodes at level j expanded 

by the former level and choose  smallest 
ones, where  is the number of nodes at level j; 

3. Expand the chosen nodes, and ; 
4. If , go to step 2; else go to step 5; 
5. Choose the smallest PED as the optimal solution. 

4. Dynamic K-Best Algorithm 

The fixed K-Best SD may bring extra complexity because 
for some cases the PEDs are more likely to be near the 
ML solution while for other cases they are low. So a 
method able to adjust the value of K according to how 
likely it is for the partial solution to be identical to the 

ML solution is proposed. It is called Dynamic K-Best 
algorithm. 

If the noise of the optimal solution is small, the PEDs 
of the solutions keeps unchanged, the PED difference 
between the optimal solution and the other solutions will 
be larger. A method adjusting the number K according to 
the difference between the PEDs of the optimal solution 
and the suboptimal solution is feasible.  

For some cases where the differences are large, in oth-
er words, the partial solution is more likely to ap- proach 
the ML solution, the value of K will be decreased in or-
der to reduce the number of visiting nodes. Similarly, for 
other cases when the difference is small, the value of K 
will be increased to ensure the accuracy. The mathe- 
matical description of the algorithm is: 

1. Give a set of thresholds [a, b, c] (a < b < c) to each 
level; 

2. Calculate the PEDs of the optimal and suboptimal 
solutions  and . 

3. Let K =  if   [0, a];  

else K =  if   (a, b];  
else K =  if   (b, c];  
else K = ; 
go to step 3; 
4. Keep K survivor nodes with the smallest K dis-

tances and expand them and ;  
5. If , go to step 2;  
else go to step 5; 
6. Find the solution with the smallest distance as the 

optimal solution . 

5. Simulation Result 

In this section, the BER performance and complexity of 
the Dynamic K-Best SD, compared with the conventional 
K-Best SD (K=16), are assessed. It is assumed that our 
simulation is based on a 4×4 MIMO system with 
16QAM or 64QAM through a flat Rayleigh fading 
channel, and [ , , , ] is assigned [8,4,12, 16].  

Figures 1 and 2 are drawn when 16QAM is applied. 
Figure 1 shows the BER performance of the Dynamic 
K-Best SD as well as the conventional K-Best SD. It is 
obvious that in Figure 1 the interval between the two 
curves is almost negligible. By selecting appropriate 
threshold values of each level, the rates of BER increased 
approximately are 8.94%, 8.06%, 6.44%, 9.09%, 8.96% 
and 6.25% when SNR (dB) equals 0, 2, 4, 6, 8 and 10 
respectively. All of the rates of BER increased by Dy- 
namic K-Best SD are less than 10%, which means prac- 
tically the deterioration of BER can be ignored. 

The computational complexity is characterized by the 
average number of nodes visited in searching tree in this 
paper. In Figure 2, it is concluded that compared with 
404 nodes when using the conventional K-best SD, the 
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computational complexity is reduced to less than 165 
nodes when using Dynamic K-Best SD. To be explicit, 
the average number of visited nodes is 145.2, 164.3, 
149.5, 142.4, 131.0 or 128.2 respectively as SNR (dB) 
rises from 0 to 10 equidistantly. It implies that on condi- 
tion of the same BER, the computational complexity of 
Dynamic K-Best SD is 40% of that of conventional 
K-Best SD.  

Figures 3 and 4 are drawn in 4×4 MIMO system with 
64QAM. Correspond with Figures 1 and 2, Figures 3 
and 4 show the BER performance and computational 
complexity separately. And the rates of BER increased  
 

 

Figure 1. BER Performance Results of conventional KSD 
and Dynamic KSD in 4x4 MIMO System with 16QAM. 
 

 

Figure 2. Computation Complexity of conventional KSD 
and Dynamic KSD in 4x4 MIMO System with 16QAM. 
 

 

Figure 3. BER Performance Results of conventional KSD 
and Dynamic KSD in 4x4 MIMO System with 64QAM. 

 

Figure 4. Computation Complexity of conventional KSD 
and Dynamic KSD in 4x4 MIMO System with 64QAM. 
 
are 6.47%, 15.44%, 21.70%, 17.75%, 8.13%, 2.82% and 
2.71% when SNR (dB) equals 0, 2, 4, 6, 8, 10, 12. 
Meanwhile the average number of visited nodes is re-
duced to 312.6, 280.3, 284.4, 278.9, 274.8, 267.3 and 
250.7. This result proves that our algorithm still works 
well under 64QAM. A considerable reduction of compu-
tational complexity, around 64% on average, is accom-
plished. 

6. Conclusions 

In this paper, we have introduced a dynamic K-best algo-
rithm, where the value of K is adjusted based on the dif-
ference between the PEDs of the optimal solution and the 
suboptimal solution. The simulation results above show 
that by using this Dynamic K-best SD algorithm, com-
putational complexity is significantly reduced at a cost of 
negligible performance degradation. 
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