
Communications and Network, 2011, 3, 168-183
doi:10.4236/cn.2011.33021 Published Online August 2011 (http://www.SciRP.org/journal/cn)

Copyright © 2011 SciRes. CN

Maximizing Resilient Throughput in Peer-to-Peer Network

Bo Liu1, Fan Qiu2, Yanchuan Cao2, Bin Chang3, Yi Cui2, Yuan Xue2
1 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

2Department of Electrical Engineering and Computer Science at Vanderbilt University, Nashville, USA
3YouTube, LLC, San Francisco, USA

E-mail: bo.liu@hust.edu.cn, {fan.qiu, yanchuan.cao}vanderbilt.edu, binchang@google.com,
{yi.cui, yuan.xue}Vanderbilt.edu

Received May 29, 2011; revised July 5, 2011; accepted July 12, 2011

Abstract

A unique challenge in P2P network is that the peer dynamics (departure or failure) cause unavoidable disrup-
tion to the downstream peers. While many works have been dedicated to consider fault resilience in peer se-
lection, little understanding is achieved regarding the solvability and solution complexity of this problem
from the optimization perspective. To this end, we propose an optimization framework based on the general-
ized flow theory. Key concepts introduced by this framework include resilience factor, resilience index, and
generalized throughput, which collectively model the peer resilience in a probabilistic measure. Under this
framework, we divide the domain of optimal peer selection along several dimensions including network to-
pology, overlay organization, and the definition of resilience factor and generalized flow. Within each sub-
problem, we focus on studying the problem complexity and finding optimal solutions. Simulation study is
also performed to evaluate the effectiveness of our model and performance of the proposed algorithms.

Keywords: Peer-to-Peer, Resilient, Throughput, Maximizing

1. Introduction

Peer-to-peer (P2P) has been proved a highly cost-effec-
tive content distribution solution, where peers self-or-
ganize themselves into an overlay network and relay data
to each other, thus reducing server load. A central prob-
lem in the overlay network construction is peer selection,
the strategy a peer employs to select other peer(s) as its
parent(s) to receive data from. Peer selections aggregate
into multicast tree(s) spanning from the server, the
source of the data, to all peers. Given the data intensive
nature of P2P applications (e.g., video streaming or bulk
data distribution), a common objective is to maximize
the data throughput to all peers.

Already challenging in its static setup, the optimal
peer selection problem is further aggravated by the high
Volatility of the P2P network. Due to various reasons
such as user leaving or machine/network failure, un-
scheduled peer departure constantly happens, which re-
sults in service disruptions or outages on all the down-
stream peers. Therefore, we argue that when designing
peer selection solutions, fault resilience deserves the
same level of attention as first-class performance metrics,
e.g. throughput, delay, etc.

A significant amount of research has been conducted
on this topic with different emphasis. While important
heuristics have been proposed such as minimizing depth
[1,2], multiple trees [3,4], bandwidth-first, age-first [5],
or a hybrid of the two [6], some analytical works have
tried to analyze and compare their performances under
stochastic framework [7,8] or real-system traces. How-
ever, this domain has been rarely examined from the
optimization perspective. If we are able to model the
fault-resilient peer selection problem under an optimiza-
tion framework which combines fault resilience with key
performance metrics such as throughput, standard opti-
mization techniques can be practiced to evaluate key
questions such as the solvability of the problem and the
complexity of its optimal solutions, if any. Also existing
heuristics could be quantitatively evaluated under the
same framework.

In this paper, we report our initial research towards
this direction. Our optimization framework is based on
the generalized flow theory [9]. It generalizes the classi-
cal network flow problem by specifying a gain factor to
each link in the network. As such, the objective is to op-
timize the throughput of the generalized flow as the
product of raw flow and the gain factor on each link,

B. LIU ET AL. 169


while the traditional capacity and flow conservation con-
straints still apply to the raw flow. Widely employed in
operation research to model the loss, theft, or interest rate
in commodity transportation [10-12], we find it a good
match to the P2P domain. If we assign each peer a resil-
ience factor as the probabilistic measure of its chance of
survival within a given time horizon, this resilience fac-
tor could be considered as the gain factor in the general-
ized flow setting. Under this framework, the problem of
fault resilient peer selection becomes to maximize the
aggregation of generalized flow received by each peer,
which is the product of the raw flow and resilience fac-
tors of peers it passes along.

We study this problem under a multitude of problem
settings. Specifically,
 Regarding network model, we consider two types of

topologies: the general topology which models the
underlying physical network as a graph, and the star
topology which assumes the bottleneck does not exist
in the physical network, but on only on peer’s access
link.

 Regarding overlay organization, we consider cases
where the number of trees interconnecting peers is
unlimited or upper-bounded, e.g., single tree.

 Along the dimension of generalized flow definition,
we consider concatenation model where the general-
ized flow delivered to a peer depends on the resil-
ience of all its ancestors, and non-concatenation
model which only considers the resilience of its im-
mediate parent.

Along these dimensions, we explore the entire spec-
trum of this domain, and focus on studying problem
complexity and finding the optimal solutions within each
subproblem.

The rest of this paper is organized as follows. In Sec. 2,
we introduce our optimization framework and formally
define key concepts such as generalized flow and resil-
ience index. In Sec. 3, we study the optimal peer selec-
tion problem under the general topology, and propose
two algorithms employing linear programming tech-
niques. In Sec. 4, we study the same problem under the
star topology, and propose two algorithms based on
combinatorial optimization techniques. Sec. 5 presents
evaluation results. Finally, we discuss related works in
Sec. 6 and conclude in Sec. 7.

2. Framework Overview

2.1. Network Model

We consider two kinds of network models: star model
and general model.

2.2.1. General Network
We model the network as a graph , with
capacity ce on each physical edge

 ,G N E
e E . On top of G,

an overlay network  , ,s V LG exists, where s is the
server, and peers belong to the set . Each over-
lay edge

 V v
l L connects two peers in V, and corre-

sponds to the uni-cast route at the physical network G.

2.2.2. Star Network
Many works [13] have implicitly assumed that the bot-
tleneck of a uni-cast path only happens at either access
link of its two end hosts. In this way, we can simplify the
general model into a star model. The central node of the
star represents the Internet cloud, which reaches out to
every peer. In this model, we denote the outbound band-
width of peer v V as cv.

2.2. Overlay Organization

To transfer data among peers, the simplest and most
straight forward strategy is a single multicast tree span-
ning from the server s to all peers in V. Although simple
to manage, this solution has clear drawback since a peer
departure can cause complete disruption to all its de-
scendants.

An alternative solution is the recently popular multi-
tree or mesh solution, where each peer schedules to re-
ceive data from multiple parents. Since the mesh struc-
ture can be usually decomposed as the sum of multiple
spanning trees, therefore will be categorized as multi-tree
solution1. We denote the tree set as , where each
tree

 T t
t T covers all peers and has a single rate f(t).

2.3. Resilience Factor and Generalized Flow

We assign a resilience factor to each peer 0y yr r  1
v V . Our model makes no assumption on how yr is
defined. For the purpose of illustration, we introduce one
way to define yr . Suppose v follows certain lifetime
distribution with c.d.f. F(τ), and T is a random variable
denoting the time of departure, then the survival function
of v is    1 Pr TF     , the probability that its time
of departure is later than time τ. If we denote

 *TPryr   , where τ∗ is a fixed time point in the
future, then it represents the chance of survival for v until
τ∗.

Given the resilience factor of v, we consider two mod-
els to compute the rate of generalized flow.

2.3.1. Concatenation Model
For each peer v in tree t, there is a path from the server s
1We note that such categorization does not apply to the management of
P2P network, but only suits the purpose of calculating throughput to
each peer, which is the main focus of this paper.

Copyright © 2011 SciRes. CN

B. LIU ET AL.

Copyright © 2011 SciRes. CN

170

k

to v, denoted as: tion. Of the eight sub-problems, we find four of them
polynomially solvable and present the optimal solutions.
Of the four NP-hard problems, we are able to find a
O(logε)-approximation algorithm, and only find heuris-
tics to the other three. We also summarize notations ap-
peared in this paper in Table 2.

  1 2P :t s        

ir

Given t’s flow rate f(t), the dependency model com-
putes the generalized flow delivered to v as f(t) timed by
the concatenate product of rv1 through rvk. We define
such product as the resilience index of v in t:

3. General Topology Model
 

1

k

t
i

R 


 (1)
In this section, we present our study on optimal general-
ized throughput under the general topology model, as
shown in Figure 1.

Based on this definition, f(t)Rt (v) is the generalized
flow rate delivered to v in tree t. We can further define
the resilience index of tree t as:

3.1. Multiple Tress    t
V

R t R





  (2)

We start with the most basic setting, where an unlimited
number of trees can be constructed for the purpose of
maximizing generalized throughput. With notions intro-
duced in Sec. 2, we formulate it into the following linear
programming (LP) problem.

Since Rt(v) ≤ 1, it is obvious that R(t) ≤|V|. Now we
are able to define generalized throughput of t, which is
the sum of generalized flow rates to all peers.

     gf t f t R t (3)

   maximze
t T

f t R t

 (5) This model computes a peer’s generalized flow by fac-

toring in the resilience factors of all its ancestors. It fits
the live P2P streaming scenario where a peer failure can
cause disruptions on all its descendants. Also an implicit
assumption in the definition of Rt(v) is that the resilience
factor of server s is 1, i.e., s will not departure.

   

 

subject to ,

 0,

e e
t T

n t f t c e

f t t T




  

 


 (6)

The objective of problem (5) is to maximize the gen-
eralized throughput (defined in Equation (3)) of all trees.
Inequality (6) refers to the capacity constraint, i.e., the
aggregate raw flow of all trees cannot exceed any physi-
cal link e∈E. ne(t) is an integer variable indicating the
number of times tree t has passed through e. Note since t
is an overlay tree, ne(t) can be greater than 1.

2.3.2. Non-concatenation Model
In this model, we define the generalized flow to a peer to
be only dependent on its immediate parent. Formally, in
the same sample context of concatenation model, we
define the resilience index of peer v in tree t as follows.

 tR r k  (4) The central difficulty of problem (5) is that its number
of variables is exponential to the size of the P2P network.
Based on Cayley’s theorem [14], the number of different
spanning trees contained in T is |T|= (|V|+ 1)(|V|−1), |V|
being the number of peers in V.

This model fits better to P2P applications with no real
time constraints. For example, in some on-demand
streaming and downloading applications, the parent peer
serves its children from its local cache. This gives its
children buffering time to find new parent(s) upon its
own departure or failure, thus absorbing the impact of
cascading disruption.

On the other hand, the dimensionality of this problem,
i.e., the number of constraints, is |E|, the number of
physical links. This gives us a chance to solve this prob-
lem via its dual presented as follows, which contains |T|
variables but exponential constraints.

Finally, in Table 1, we summarize findings when ex-
ploring along the three dimensions outlined in this sec-

Table 1. Summary of findings.

 General Topology Star Topology

Multiple Trees (Concatenation) NP-hard (reduction to 3-SAT) Multiple Trees-Star, O(n)

Multiple Trees (Non-Concatenation) Multiple Trees-General,
2

log mstO U T
 

 
 

 Multiple Trees-Star, O(n)

Single Tree (Concatenation) NP-hard (reduction to MPSP [13]) NP-hard (reduction to Hamilton Path [9])

Single Tree (Non-Concatenation) NP-hard (linear-programming-relaxation is NP-hard) Single Tree-Star, O(n3)

B. LIU ET AL.

Copyright © 2011 SciRes. CN

171

Table 2. Notations table.

Notation Definition

G = (N, ) Physical Network

G = (V,L) Overlay Network

s Server node

 = {e} Physical layer edges

L = {l} Overlay layer links

V = {v} Overlay nodes

r,R Resilience index e.g. rv, R(t), Rt(v)

T = {t} Overlay multicast trees

f(t) Data flow over tree t

fg(t) Generalized flow over tree t

c Bandwidth constraint e.g. cv, ce, cs

de Price of edge e

Pt(v) Overlay routing path between s and v in overlay tree
t

Physical Network

Overlay Graph

Router
Overlay Edge

V4

Peer

V5

V6

V3

V2

V1

(s, V1)

s

Figure 1. General topology model.

maximze e e
e

c d

 (7)

   subject to ,

 0,

e e
e

e

n t d R t t T

d e





  

 


 (8)

Problem (7) refers to assigning each link e a length de,
and minimize the sum of de multiplied by the capacity ce,
subject to inequality (8), which states that the length of
any spanning tree must be greater than its own resilience
index R(t), defined in Equation (2).

Although there exists exponential number of trees in T,
if we can find a separation oracle able to check whether
constraint (8) is met in polynomial time, then the dual
problem (7) is solvable in polynomial time, hence the
primal problem.

To find if such an oracle exists, we first adapt the
definition of R(t) from peer-based to link-based, to be
consistent with the left side of constraint (8). This can be

easily achieved as follows. We assign a resilience factor
re to each link e  , and define it as:

 if exits from

0 otherwisee

r e
r  
 


 (9)

As articulated in Sec. 2.3, we have different defini-
tions on R(t) for concatenation and non-concatenation
models. We start with the non-concatenation model first.

Based on the definition on resilience index Rt(v)
shown in Equation (4), we can easily observe that R(t) in
this case is the sum of resilience factors of all non-leaf
peers in tree t. Translated into the link-based definition, it
is the sum of resilience factors of all links in t, i.e., R(t) =
Σe∈t ne(t)re. This allows us to reformulate Inequality (8)
into the following.

    ,e e e e
e e

n t d n t r t T
  

   

It is now clear that the separation oracle is a minimum
spanning tree algorithm that sees the cost on each link e
as (de − re). Constraint (8) will be satisfied if the cost of
the found minimum spanning tree is still greater than 0.

To this end, we present a fully polynomial time ap-
proximation scheme (FPTAS). FPTAS is a family of
algorithms which finds a  -approximate solution re-
turning a result at least (1 − ) times the maximum
value, for arbitrary error parameter  > 0.

Table 3 shows the MultiTrees-General algorithm. It
solves the primal and dual problems in an iterative fash-
ion. It sets initial length to β all links in E. In each itera-
tion, it finds the minimum spanning tree t∗ based on the
cost (de − re), and route traffic over t∗. Based on the traf-
fic increment, the length de is updated as defined in line
10. Finally, the algorithm terminates when constraint (8)
is satisfied, i.e., when the cost of the minimum spanning
tree is greater than 0. Note that since the aggregated raw
flow of all returned trees can exceed the capacity of cer-
tain physical links, we introduce the index le to record the
congestion ratio on each link e. By scaling the rate of
each tree with the maximum congestion noted by lmax,
the algorithm is guaranteed to return a feasible solution.
We summarize the property of this algorithm in Theorem
1.

Theorem 1: Under the non-concatenation model,

when
 
 

1 1

1

1 V

V U









    , the MultiTrees-General

algorithm returns the solution at least (1 − 2 ) times the
optimal result of problem (5), with running time

log 2log
2 mst

E
O U V T




    
 


 . U is the length of the

longest uni-cast route and Tmst is the running time of the
minimum spanning tree algorithm.

B. LIU ET AL. 172

Table 3. Finding multiple trees under general topology
model.

MultiTrees-General(E,T)

1 , ,e ee E d l    0

2   0,f t t T

e

3 loop

4 minimum overlay spanning tree in T using (de – re) *t 

5 minlen   *e e
e E

n t d r


 

6 if minlen ≥ 0

7 return

8
 *min e

e t

e

c
c

n t

9    * *f t f t  c

10
   

, 1 ,e e

e e e e

e e

n t c n t
e t d d l l

c c


 
      

 

11 end loop

12 max maxe t el l

13     max,t T f t f t l  

Now we turn to the concatenation model, where the

resilience index is defined in Equation (1). In this case,
each peer’s resilience index is the product of resilience
factors of all its ancestors. Although we can perform
logarithm operation on resilience factors re and solve this
problem using Dijkstra’s algorithm, it becomes ex-
tremely hard when combining with length assignment de,
which needs to be solved by a minimum spanning tree
algorithm. In the following theorem, we prove this prob-
lem to be NP-hard, by reducing its separation oracle to
the problem of 3-SAT.

Theorem 2: Under the concatenation model, the Mul-
tiTrees-General problem (5) is NP-hard.

3.2. Single Tree

A salient feature of the MultiTrees-General algorithm is
that it reveals the maximum generalized throughput a
P2P network can achieve. However, given the exponen-
tial selection space in tree set T, the algorithm often re-
turns a high number of trees, which are hardly manage-
able in practice. For practical purposes, we enforce a
limit on the number of trees we can construct. To achieve
so, we modify problem (5) into the following integer
programming problem.

     
t T

Mazimize f t R t x t

 (10)

     . . ,e e
t T

s t n t f t x t c e E


   (11)

 

     0, 0,1 ,
t T

x t k

f t x t t




  T


 (12)

Problem (10) introduces a 0 - 1 variable x(t), and k, the
upper limit on the number of trees. This constraint is
enforced by Equation (12). This problem is NP-hard
since its special case has been proved so. When k = 1 and
resilience factor of all peers are 1, this problem reduces
to maximizing the throughput of a single overlay multi-
cast tree, which was shown NP-hard in [15] under the
name MPSP (Multicast Path Set Problem).

Following the same idea of the MultiTrees-General
algorithm, we assign length to each physical link to find
minimum spanning tree, but only in an online fashion.
The algorithm runs k iterations, in each of which a tree is
returned. The details of the algorithm can be found in
Table 4.

We note that the two algorithms presented in this sec-
tion can be also applied to the concatenation model.
However, theorem 1 will not apply due to the NP-hard-
ness of separation oracle for problem (5).

4. STAR Topology Model

The algorithms presented in Sec. 3 rely on linear pro-
gramming technique, and operate on both overlay net-
work L and physical network whose measurement can be
expensive. They require complete knowledge on the
physical network, i.e., the capacity of any physical link e
ε, if it appears in the underlying routing path that con-
nects any overlay link lL.

Many P2P research works have chosen to rely on a sim-
plified assumption, which imposes outgoing bandwidth

Table 4. Finding k trees under general topology model.

k-Tree(E,T)

1 , ,e e ee E d c l 0   

2 for i = 1 to k do

3 it  minimum overlay spanning tree in T using (de – re)

4   1if t 

5
   

, 1 ,e e

e e e e

e e

n t n t
e t d d l l

c c


 
      

 

6 max maxe tl l e

7 for i = 1 to k do

8     maxi if t f t l

Copyright © 2011 SciRes. CN

B. LIU ET AL. 173

constraint on each peer and allow it to parent other peers
until its outbound bandwidth depletes. In other words,
the Internet cloud is assumed to have enough capacity
supporting all peers. This effectively transforms the
physical networkεinto a star network, whose central hub
represents the Internet cloud reaching out to all peers, as
shown in Figure 2. In this section, we study the same set
of problems under such a special topology.

4.1. Multiple Trees

We again start with the case of multiple trees. To sim-
plify the illustration, we remove notations associated
with the general network ε. Instead, we introduce nota-
tions cv to denote outbound bandwidth of peer vV, cs to
denote outbound bandwidth of the server s, and nv(t) or
ns(t) to denote the number of children v or s have in tree t.
The problem formulation is as follow s2.

   
t T

Maximize f t R t

 (13)

   . . ,v v
t T

s t n t f t c v V


  (14)

   s s
t T

n t f t c


 (15)

  0,f t t T (16)

Inequalities (14) and (15) refer to the capacity con-
straint. In fact, problem (13) is only a special case of the
problem (5), thus can be solved by algorithm Multi-
Trees-General in the same linear programming fashion.
However, given the simplified topology, we are inter-
ested to find out if this problem can be simply addressed
through combinatorial optimization techniques.

Table 5 shows the MultiTrees-Star algorithm. It con-
struct at most |V| + 1 trees in the order shown in Figure 3.

Starting from peer v1 with the maximum resilience
factor, tree t1 is constructed, which depletes the outbound
bandwidth of v1. The process continues until v|V| or the
server bandwidth cs runs out. If there is still residue of cs
after tree t|V| is finished, we construct a special tree t0 to
deplete cs. We show the optimality of this simple algo-
rithm as follows.

Theorem 3: MultiTrees-Star algorithm returns the
optimal result of problem (13).

It is easy to observe that this theorem applies to both
non-concatenation and concatenation models, since trees
t0 through tn return the same resilience index under either
definition, i.e., Equation (1) for concatenation model and

S

v2

v1

v3

Figure 2. Star topology model.

Table 5. Finding multiple trees under star topology model.

MultiTrees-Star(s,V)

1 sort V into in descending order of resilient index 1, nv v

2 for i = 1 to |V|

3 construct tree ti, where vi is the only child of s, and vj(j != i) are
children of vi

4   min ,
1

iv

i s

c
f t c

V

    
  

5 min ,
1

iv

s s s

c
c c c

V

     
  

6 if cs > 0

7 construct tree t0, where s is the parent of vi (1, ,i V )

8  0 sf t c V

S S S

V1 Vn

Vn VnVn-1 V1 V1 V2 V2V2 V3

Figure 3. Lllustration of MulTitrees-Star algorithm.

Equation (4) for non-concatenation model.

The trees found by the MultiTrees-Star algorithm
comply with many heuristics practiced by existing works.
In terms of tree structure, t0 through tn are “fat trees” or
“minimum-depth tree”. In terms of construction order,
the algorithm starts from the peer with maximum resil-
ience factor, which suggests maximum lifetime. This

2We note that unless otherwise notified, our discussion in this section
assumes that the inbound bandwidth of each peer v is unbounded, thus
removed from the problem formulation. By the end of this section, we
will introduce how our algorithms could be adapted to incorporate the
inbound bandwidth constraint.

Copyright © 2011 SciRes. CN

B. LIU ET AL. 174

complies with the “longest-first” approach that assigns
higher priority to peers with longer expected lifetime.

4.2. Single Tree

The number of trees returned by the MultiTrees-Star
algorithm scales up linearly with |V|, the size of the P2P
network. Although more scalable than the MultiTrees-
General algorithm, the number of trees can be still too
big as the P2P network grows.

To limit the number of trees, we can impose an addi-
tional integer constraint over problem (13) in the same
fashion we defined problem (10) under the general to-
pology model.

     
t T

Maximize f t R t x t

 (17)

     . . ,v
t T

vs t n t f t x t c v V


  (18)

     s s
t T

n t f t x t c


 (19)

 
t T

x t k


 (20)

     0, 0,1 ,f t x t t  T (21)

In particular, we are interested in the case when k = 1,
i.e., when only one tree is allowed.

We start with the non-concatenation model. Table 6
shows the SingleTree-Star algorithm, which further
contains two sub-algorithms. MaxRate-Star finds out
the maximum rate a single tree can possibly afford. It
works in a trial-and-error fashion by proposing a rate f
and learning the maximum outbound degree the server s
and each peer in V can support based on f. Starting from
the server outbound bandwidth cs, f keeps shrinking until
the sum of outbound degrees exceeds or equals to |V|, the
number of peers. MostResilientTree-Star is a greedy
algorithm constructing the tree with the highest resilience
index. Given rate f, it gives priority to peers with the
highest resilience factor and assign children to them up
to their maximum outbound degrees. The algorithm re-
turns the generalized throughput, which according to the
definition in Equation (3), is the product of f and the re-
turned tree’s resilient index.

With these two sub-algorithms, The SingleTree-Star
algorithm finds the optimal tree by feeding different rates
to MostResilientTree-Star and keeping track the tree
returning the maximum generalized throughput. The trial
starts from the maximum affordable rate found by
MaxRate-Star, and ends when the outbound degree of
the server s becomes |V|. In this case, we can construct
tree t0 shown in Figure 3, which has the maximum resil-
ience index |V|. Since in each iteration of Single-
Tree-Star, at least one peer’s outbound degree will in-

Table 6. Finding single tree under star topology.

MaxRate-Star (s,V)

1 sort V into 1, V
V V in descending order of bandwidth

2 sf c

3 find k such that
1k kv vc f c

 

4 do

5 0, 0i sum 

6 while sum < |V| and i < |V|

7 , 1
ivsum sum c f i i     

8 if sum < |V|

9 , 1
kvf c k k  

10 while sum < |V|

11 return f

MostResilientTree-Star(f, s, V)

1 sort V into v1,…,v|V| in descending order of resilience

2 enqueue s, v1,…,v|V| into queue P

3 enqueue v1,…,vn into queue C

4 0sum 

5 while C  

6 dequeue vparent from P

7 repeat
parentvc f   times

8 dequeue vchild from C

9 make vparent the parent of vchild

10 parentsum sum r 

11 return { f sum , resulting tree}

SingleTree-Star(s,V)

1 f  MaxRate-Star(s,V)

2 {max, tree*}  MostResilientTree-Star(f,s,V)

3 while | | sf V c 

4  1new s sf c c f   

5 for i = 1 to |V|

6 if  1
i inew v vf c c f   

7  1
i inew v vf c c f   

8 newf f

9 {r, tree}  MostResilientTree-Star(f,s,V)

10 if r > max

11 max , *r tree tree 

12 return tree*

Copyright © 2011 SciRes. CN

B. LIU ET AL. 175

crease by 1, the number of iterations is bounded by

 2
O V  . Combined with the linear running time of
MostResilientTree-Star, its overall running time is

 3
O V  . The following theorem establishes the optimal-
ity of SingleTree-Star.

Theorem 4: Under the non-concatenation model, the
SingleTree-Star algorithm returns the optimal solution
for problem (17) when k = 1, with running time

 3
O V .

When applying the same algorithm to concatenation
case, we find that the greedy approach of MostResil-
ientTree-Star does not fit the multiplicative definition of
resilience factor given in Equation (1). Essentially, al-
though finding the tree with the maximum resilience
index is solvable by a multiplicative-variant of Dijkstra’s
algorithm, it becomes hard when imposing degree con-
straints on the peers. To show NP-hardness of this prob-
lem, we consider its special case, the maximum multi-
plicative cost path problem (MMCP), then reduce it to
the Hamiltonian path problem.

Evidently, under the concatenation model, the intrinsic
conflict between outbound bandwidth and resilience fac-
tor poses great barrier to our effort to assign priority in
peer selection. On the other hand, the problem becomes
polynomially solvable under the same framework of
SingleTree-Star if all peers are identical over either of
above metrics. For example, if all peers have the same
resilience index, we only need to modify MostResil-
ientTree-Star to greedily choose peers with the highest
outbound bandwidth. If all peers have the same outbound
bandwidth, the exact algorithm in Table 6 can be reused
with no modification.

We note that algorithms listed in this section have as-
sumed the inbound bandwidth of all peers are unlimited.
Nevertheless, they can be easily modified when applying
this constraint. Since our paper studies single-rate multi-
cast, i.e., the rate of raw flow delivered to each peer is
the same, we only consider cin, the minimum inbound
bandwidth of all peers. If cin ≥ cs, then one should not be
concerned since the raw flow delivered to a peer cannot
exceed the outbound bandwidth of the server s. Other-
wise, cin replaces cs as the bottleneck. As such, we only
need to replace cs with min{cs, cin} in Tables 5 and 6.

4.3. Discussions

We finally discuss the implement-ability of algorithms
presented in this paper. Given the unlimited number of
trees the MultiTrees-General algorithm can produce, its
main purpose remains to provide the theoretical optimal
point against which other practical solutions can be
measured. The k-Tree algorithm in Table 4 avoids this
pitfall by limiting the number of trees. However, its func-

tioning requires measurement overhead of the underlying
physical network. The MultiTrees-Star and Single-
Tree-Star algorithms address both of the above issues.
However, a centralized entity, e.g., the server s, needs to
be in place. It collects uplink bandwidth information and
resilience factors from all peers, then runs the algorithm.
While it is reasonable to expect the server to keep the
up-to-date information of the peers it serves, the distrib-
uted versions of these algorithms, if possible, are often
desirable and constitutes the future direction of our re-
search.

5. Evaluations

In this section, we present our evaluation study, which
mainly carries two purposes. First, we will evaluate the
validity of the generalized flow optimization framework
at capturing the key characteristics of fault resilient peer
selection problem. Second, we will study the perform-
ance of the algorithms proposed in this paper, as well as
several well-known heuristics, at maximizing the gener-
alized throughput and maintaining fairness.

5.1. Experimental Setup

We use simulation to evaluate the performance of our
algorithm. Two experimental topologies are chosen. The
first one is a 1000-node router-level network (2000 edges)
created by the Boston BRITE topology generator using
the Waxman model. Any pair of routers are connected by
a pair of links with opposite directions. The bandwidth of
physical links between routers, as well as peers’ access
links, are normally distributed from 100 Kbps to 1000
Kbps. The second topology follows the star configura-
tion outlined in Figure 2.

Under both topologies, we create 100 peers with
unlimited inbound bandwidth. Under the general topol-
ogy, they are randomly attached to the routers in the
network.

Each simulation run lasts a finite time period. Starting
from time 0, each peer is assigned a lifetime based on
exponential and Pareto lifetime distributions with mean
lifetime varying from 1500 seconds to 3500 seconds. The
simulation run expires when the lifetime of the long-
est-lived peer expires. In our simulation, we assign resil-
ience factor to each peer based on its expected lifetime in
each particular run. Our algorithms are executed at the
beginning of each run, taking the resilience factors and
outbound bandwidths of all peers as the input, and re-
turning single or multiple trees whose combined gener-
alized throughput is maximized.

As time proceeds, peers expire one by one, which
gradually tears down the tree(s) constructed at the begin-

Copyright © 2011 SciRes. CN

B. LIU ET AL. 176

ning of the simulation. To capture this effect, we accu-
mulatively calculate the amount of data collected by each
peer until its ancestor or itself fails. We term this result
as Volume, which represents the capability of the con-
structed tree(s) at collecting data for all peers before they
demise.

5.2. Generalized Throughput vs. Volume

The objective of our algorithms is to maximize the gen-
eralized throughput, given resilience factors of all peers.
However, it merely represents the expected amount of
data the constructed tree(s) can possibly collect. There-
fore, to test the fitness of our model under simulated P2P
network with peer dynamics, we need the metric Volume,
which counts the total amount of data collected. If our
experiment can establish a proportional relationship be-
tween generalized throughput and Volume, then we can
claim with high confidence level that our optimization
framework can effectively model the dynamics of P2P
network, and the developed optimization algorithms are
able to increase the resilient throughput under such dy-
namics. Based on this consideration, our simulation does
not include repairing mechanisms, i.e., a peer is not al-
lowed to reconnect to the P2P network once discon-
nected due to the departure of either its ancestor or itself.
This way, the recorded Volume can more accurately re-
flect the resilience of the tree(s) constructed by our algo-
rithm.

In Figure 4, we run the MultiTrees-General algo-
rithm under the general topology, and contrast the gener-
alized throughput returned by the algorithm in (a), cal-
culated Volume in (b). We observe that the performance
difference under two lifetime distributions are consis-
tently obeyed in both figures when varying the mean
peer lifetime.

We then run the MultiTrees-Star under the star to-
pology, and contrast the generalized throughput and
Volume by varying the mean outbound bandwidth. We
further introduce two heuristic single-tree algorithms. In
both heuristics, we compute the mean outbound band-
width, and the mean resilience factors of all peers, then
assign rate of the tree as the ratio of the two. Heuristic A
constructs the tree by assigning priorities to peers with
higher resilience factors, and heuristic B assigns priori-
ties to the ones with higher outbound bandwidth. Our
purpose is simple: if algorithms not developed under our
optimization framework can still establish proportional
relationship between generalized throughput and Volume,
then it becomes more convincing that the generalized
flow model can effectively capture the dynamic charac-
teristics of P2P network. As shown in Figure 5, per-
formance ordering of these algorithms under different

(a)

(b)

Figure 4. Performance of multitrees-General under non-
concatenation model. (a) Volume; (b) generalized through-
put.

lifetime distributions are consistent in both figures.

5.3. Performance of Single Tree Algorithms

To evaluate the ability of single tree algorithms at maxi-
mizing the generalized throughput, we run heuristics A
and B, and SingleTree-Star algorithm under the star
topology and concatenation model, and normalize their
results with the one achieved by the optimal Multi-
Tree-Star algorithm. In Figure 6, we observe that all of
them are able to maintain the performance ratio from 0.1
to 0.6 under different mean outbound bandwidths, mean
lifetime, and lifetime distributions.

In Figure 7, 8, and 9, we display the sorted per-node
generalized throughput and Volume for MultiTrees-Star,

ingleTree-Star, and the two heuristics. S

Copyright © 2011 SciRes. CN

B. LIU ET AL.

Copyright © 2011 SciRes. CN

177

Figure 5. Performances of MultiTrees-Star and two heuristics under concaternation model (mean lifetime = 1500 s). (a) Vol-
ume; (b) generalized throughput.

Figure 6. Performances radio of heuristics to MultiTrees-Star under concaternation model. (a) Outbound bandwidth; (b)
lifetime.

Figure 7. Sorted nodes of MultiTrees-Stae (mean outbound bangwidth = 100 Kbps). (a) Volume; (b) Generalized throughput.

B. LIU ET AL. 178

Figure 8. Sorted nodes of singletree-Star under non-concatenation model (mean outbound bandwidth = 100 Kbps). (a) Vol-
ume; (b) Generalized throughput.

Figure 9. Sorted nodes of heuristics under concatenation model (mean outbound bandwidth = 100 Kbps). (a) Volume; (b)
Generalized throughput.

6. Related Work

Fault resilience has been considered in many existing
solutions in overlay and P2P networks. An important
approach is to reduce the tree depth to minimize failure
propagation and service delay. Algorithms bearing the
flavor of “minimizing depth” have been proposed in [1],
[2], etc. Several well-known works, such as Bullet [16],
SplitStream [3], and CoopNet [4], also employs the
multi-tree approach to reduce the impact of peer failure,
meanwhile increasing the aggregate throughput. In con-
trast to the depth-optimizing approach, Sripanidkulchai
et al. [5] propose the longest-first algorithm which, by
utilizing peers’ heavy tailed lifetime distribution, grants
the longest lived peer with higher priority. These algo-
rithms coincide with many findings in our paper, such as
the optimal tree structure exhibited in the multi-tree set-
ting under star network model.

Several evaluative works have been conducted to
study the impact of different overlay construction algo-
rithms on the resilience of P2P network. Bishop et al.
examines the effect of bandwidth- and age-priority heu-
ristics on multicast tree reliability using trace-based
simulation [6]. Stochastic network analysis have been
employed to study the resilience of DHT based P2P net-
work [7] and decentralized P2P network [8] under given
peer lifetime distribution. In contrast, our work does not
make a priori assumptions on peer characteristics, but
focuses on finding optimal peer selection algorithms that
can take any input.

Optimization has long been practiced in network rout-
ing, primarily based on the multi-commodity flow theory.
The basic idea is to assign weights to links to reflect their
congestion conditions, and perform traffic routing based
on the weights. In particular, the work of [17,18] pre-
sents the theoretical models for online unicast routing. In

Copyright © 2011 SciRes. CN

B. LIU ET AL. 179

the multicast domain, the work of [19] investigate the
case of receivers within a multicast session arriving in
batch, and the work in [20] presents a solution for re-
ceivers arriving separately. In the past, we have extended
the multi-commodity flow theory to maximize the
throughput of overlay multicasting [21]. This work is our
initial effort to further incorporate fault resilience by
introducing generalized flow theory.

Generalized flow has many applications [9], where the
gain factors can model physical transformations of a
commodity due to leakage, evaporation, breeding, theft,
also transformations from one commodity into another as
a result of manufacturing, scheduling, or currency ex-
change, etc. Exiting works have been focused on unicast
routing [10,11]. In particular, Wayne et al. [12] present a
Dijkstra-variant shortest path algorithm for minimum-
cost unicast-based generalized flow problem if all gain
factors are below one. It is our finding in this paper that
when applying to multicasting, the difficulty of the
problem increases rapidly due to the complexity brought
up by the exponential cardinality of multicast tree set.

7. Conclusions

In this paper, we propose an optimization framework
based on the generalized flow theory. Utilizing the con-
cept of gain factor in this theory, we introduce the resil-
ience factor of peer to model its chance of survival in a
probabilistic measure, and propose an optimization
framework targeting at maximizing generalized through-
put as the product of raw throughput and resilience fac-
tors. We report our findings in this problem domain
along several dimensions including network topology,
overlay organization, and concatenation model.

Our future work will carry along two directions. On
the theoretical front, we will study whether improvement
space exists for optimal algorithms presented in this pa-
per, such as SingleTree-Star. On the practical front, we
will design the lightweight distributed solution of our
algorithms, especially under the star topology model. We
are also interested to search for simple heuristics and
have quantitatively evaluated within our optimization
framework.

8. Acknowledgements

This work was supported by NSF award 0643488, Van-
derbilt Discovery grant, and a gift from Microsoft Re-
search.

9. References

[1] M. Guo and M. Ammar, “Scalable Livideo Streaming to
Cooperative Clients Using Time Shifting and Video

Patching,” Proceedings of the International Conference
on Computer Communications and Networks, Chicago,
11-13 October 2004.

[2] V. Padmanabhan, H. Wang and P. Chou, “Resilient
Peer-to-peer Streaming,” 11th IEEE International Con-
ference on Networking Protocols, Atlanta, 4-7 November
2003, pp. 16-27. doi:10.1109/ICNP.2003.1249753

[3] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A.
Rowstron and A. Singh, “Splitstream: High-Band Width
Multicast in Cooperative Environments,” Proceedings of
the Nineteenth ACM Symposium on Operating Systems
Principles, Vol. 37, No. 5, 2003, pp. 298-313.
doi:10.1145/945445.945474

[4] V. N. Padmanabhan, H. J. Wang, P. A. Chou and K. Sri-
panidkulchai, “Distributing Streaming Media Content
Using Cooperative Networking,” Proceedings of the 12th
International Workshop on Network and Operating Sys-
tems Support for Digital Audio And Video, New York,
2002, pp. 177-186. doi:10.1145/507670.507695

[5] K. Sripanidkulchai, A. Ganjam, B. Maggs and H. Zhang,
“The Feasibility of Supporting Large-Scale Live Stream-
ing Applications with Dynamic Application End-Points,”
ACM SIGCOMM Computer Communication Review, Vol.
34, No. 4, 2004, pp. 107-120.
doi:10.1145/1030194.1015480

[6] M. Bishop, S. Rao and K. Sripanidkulchai, “Considering
Priority in Overlay Multicast Protocols under Heteroge-
neous Environments,” Proceedings of 25th IEEE Interna-
tional Conference on Computer Communications, Barce-
lona, April 2006, pp. 1-13.
doi:10.1109/INFOCOM.2006.140

[7] G. Tan and S. Jarvis, “On the Reliability of DHT-Based
Multicast,” Proceeding of International Conference on,
Computer Communications and Networks, Honolulu, 13-
16 August 2007.

[8] D. Leonard, Z. Yao, V. Rai and D. Loguinov, “On Life-
time-Based Node Failure and Stochastic Resilience of
Decentralized Peer-to-peer Networks,” IEEE/ACM Tran-
sactions on Networking, Vol. 15, No. 3, 2007, pp.
644-656.

[9] R. Ahuja, T. Magnanti and J. Orlin, “Network Flows:
Theory, Algorithms, and Applications,” Englewood
Cliffss, Bergen, 1993.

[10] K. Wayne, “A Polynomial Combinatorial Algorithm for
Generalized Minimum Cost Flow,” Proceedings of the
31th Annual ACM Symposium on Theory of Computing,
Atlanta, 1-4 May 1999, pp. 19-28.

[11] E. Tardos and K. Wayne, “Simple Generalized Maximum
Flow Algorithm,” 7th International Integer Programming
and Combinatorial Optimization Conference, Graz, 9-11
June 1999, pp. 1-16.

[12] K. Wayne and L. Fleischer, “Faster Approximation Algo-
rithms for Generalized Flow,” Proceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
San Francisco, 1999.

[13] Y. Cui, Y. Xue and K. Nahrstedt, “Max-min Overlay
Multicast: Rate Allocation and Tree Construction,” IEEE
International Workshop on Quality of Service, Montreal,

Copyright © 2011 SciRes. CN

http://dx.doi.org/10.1109/ICNP.2003.1249753
http://dx.doi.org/10.1145/945445.945474
http://dx.doi.org/10.1145/945445.945474
http://dx.doi.org/10.1145/507670.507695
http://dx.doi.org/10.1145/1030194.1015480
http://dx.doi.org/10.1109/INFOCOM.2006.140

B. LIU ET AL.

Copyright © 2011 SciRes. CN

180

June 2004.

[14] N. Deo, “Graph Theory with Applications to Engineering
and Computer Science,” Prentice Hall Inc., Upper Saddle
River, 1994.

[15] R. Cohen and G. Kaempfer, “A Unicast-Based Approach
for Streaming Multicast,” Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications So-
cieties, Vol. 1, 2001, pp. 440-448.
doi:10.1109/INFCOM.2001.916727

[16] D. Kostic, A. Rodriguez, J. Albrecht and A. Vahdat,
“Bullet: High Bandwidth Data Dissemination Using an
Overlay Mesh,” Proceedings of the 19th ACM Sympo-
sium on Operating System Principles, Vol. 37, No. 5,
2003, pp. 282-297. doi:10.1145/1165389.945473

[17] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts,
“On-line Routing of Virtual Circuits with Applications to
Load Balancing and Machine Scheduling,” Journal of the
Association for Computing Machinery, Vol. 44, No. 3,
1997. doi:10.1145/258128.258201

[18] B. Awerbuch, Y. Azar, S. Plotkin and O. Waarts, “Com-

petitive Routing of Virtual Circuits with Unknown Dura-
tion,” Proceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, Philadelphia, 1995, pp.
321-327. doi:10.1145/314464.314508

[19] B. Awerbuch, Y. Azar and S. Plotkin, “Throughput-
Competitive Online Routing,” Proceedings of the 1993
IEEE 34th Annual Foundations of Computer Science,
Washington, 1993. doi:10.1109/SFCS.1993.366884

[20] A. Goel, M. Henzinger and S. Plotkin, “Online Through-
put-competitive Algorithm for Multicast Routing and
Admission Control,” Proceedings of the 9th ACM-SIAM
Symposium on Discrete Algorithms, Vol. 5, 1998.

[21] Y. Cui, B. Li and K. Nahrstedt, “On Achieving Opti-
mized Capacity Utilization in Application Overlahy
Networks with Multiple Competing Sessions,” 16th an-
nual ACM Symposium on Parallel Algorithms and Archi-
tectures, Barcelona, 27 - 30 June 2004, pp. 11-19.

Appendix: Proof of Theorem 1

Lemma 3: When
 
 

1 1

1

1 V

V U









    , the final flow

The proof of Theorem 1 follows the proofs of the fol-
lowing lemmas. We denote OPT as the optimal value of
the problem (5). scaled by

 
1

1
log

V






 has a value at least (1- 2 )

Lemma 1: MultiTrees-General terminates after at

most 1

1
logE 





 iterations.
times OPT. U is the length of the longest unicast route.

Proof: We make the following denotations. Regarding
a set of edge length assignments de (e ∈ε), the objective
function in problem (7) is

e E
 is the

minimum overlay spanning tree in terms of de – re. We
denote

e ed d
e eL c d  Proof: Let us consider any edge e∈ε. Initially, de = β.

The last time the length of e is updated, it is on a overlay
spanning tree t whose length is less than

t

   ed
eded

ee E
d t n t


  as the length of tde in

terms of solely de.
   eR t n t r


  ee E

, and is increased by at most a factor
of 1 +  . Since every augmentation increases the length
of some edge by a factor of at least 1 +  , and R(t) ≤|V|,
the number of possible augmentations is at most

The objective of problem (7) is to minimize , sub-
ject to the constraint that . This con-
straint can be easily satisfied if we scale the length of all
edges by

edL
e  edd t R t d

   ed dR t d t1

1
logV 



 . e . So problem (7) is equivalent

 
 

e ed dL R t
Lemma 2: Scaling the final flow by

 
1

1
log

V







yields a feasible primal solution.

 is to finding a set of edge lengths, such that
edd t

minimized. Thus the optimal value of problem (7) is

 
 

min
e e

e e

d d

d d

L R t
OPT

d t
 .

Proof: In the ith iteration of the algorithm, the total
flow on an edge e∈εincreases by a fraction 0 ≤ γ(i) ≤ 1 of
its capacity. Its length de is multiplied by 1 + γ(i). Since
(1+  γ(i)) ≥ (1+ )γ(i) when 0 ≤γ(i) ≤ 1, we have
Πi(1+ γ(i)) ≥ (1+ )Σi γ(i) . Thus, every time the flow on e
increases by its capacity, its length de increases by a fac-
tor of at least (1 + ). Since de is initialized as β, and
ends up at ost (1 +

In each iteration of the algorithm, the length of an
edge is updated. We use to denote the length of e
after the ith iteration. e

()i
ed

)(0d  is the initial weight of de.
Regarding e , we simplify the following denotations L

, t de (i) and d(t de (i)), into , and

()id
()i
ed ()iL ()it  ()id t . We

also denote f(i) as the total flow that has been routed after
the ith iteration. Then based on the edge length update

m ) |V|, its total flow cannot exceed

 
1

1
loge

V
c 





.

http://dx.doi.org/10.1145/1165389.945473
http://dx.doi.org/10.1145%2f314464.314508
http://dx.doi.org/10.1109/SFCS.1993.366884

B. LIU ET AL. 181

function (Line 10 in Table 7), we have

             
 

         
1

1 1 1

1 1 1

i

i i i i i i
e e e e

e E e t

i i i i

L d c n t d f f

L f f d t







  

 

  

  

  

  1

1j

0L

which implies that

          0 1

1

i
i j j

j

L L f f d t  



   (22)

Now let us consider the length function), i.e.,
for each edge e ∈ E, its length is , since
the length function is monotonically increasing. Thus, we
have . Since and only
differs by the constant β at each edge, and
are the same tree. In addition, the length of the tree using

) versus differs by at most β|V|U, U being
the length of the longest unicast route. Hence

   0id 

 0 0e e 

 id
   0

 id d

   0i 

it

       0i iL L  

   0id 

d
 it

 id

        
    

     
  

0 0 (0)

0

i i i

i i

L R t L L R t
OPT

d t d t V U

 




 



i

Substituting this bound on L(i) – L(0) in Equation (22)
gives

  
     

       

       

1 1

1

1 1

1

i
i

j j j

i i
j

i
j j j

j

d t V U
f f d t

OPTR t R t

V U f f d t
OPT

 



 



 



  

  





since .   1R t 
Observe that, for fixe i, this right hand side is maxi-

mized by setting
d

  jd t
i

 to its maximum possible value,
for all 0 . Let us call this maximum value j 

  jd t . Hence

  
  

  
  

       
       

  
  

       

  
  

1
1 1

1

1 1

1 1

1

1

1

1

i i

i
j j j

j

i i i

i i i i

i

i

i

R t R t

V U f f d t
OPT

V
f f d t

OPT

d t R t f f

OPTR t

d t
e

R t








 



 

 









  

 

  
  
 
 






i itd t d 

Since      0 0d t R t V U  , this implies that

  
  

*

i

f OPT

i

d t
V Ue

R t



where        1

0

i i i i

j
f R t f f 


   , the objective of

problem (7).
The algorithm stops when the value of
     id t R t i . Let f∗ be the total flow routed, we

have,
*1 f OPTV Ue

Hence,

* 1
ln

OPT

f

V U






 
  
 

By Lemma 2,  
*
1

log1

f
V







 is a feasible solu-

tion to problem (7). Then the ratio between the optimal
value of problem (7) and the result returned by our algo-
rithm is

 
 

 

 

1

1

1
log

1
log

* 1
ln

1
ln

1
ln 1 ln

V
VOPT

f

V U

V

V U






 




















 
  
 




 

   
 

 (23)

when
 
 

1 1

1

1 V

V U









    , the above inequality be-

comes

        22

1
(23)

1 ln 1 1 2 1

 
     

  
    

Now we are ready to proof Theorem 1 as follows.
Proof: By Lemma 1, the algorithm terminates after at

most 1

1
logE 





 rounds, each round containing a

minimum spanning tree construction. When

 
 

1 1

1

1 V

V U









    , the maximum number of the itera-

tions needed by the algorithm is

Copyright © 2011 SciRes. CN

B. LIU ET AL. 182

  

 
 
 

 

1 2 1

1

2

1 1

2

2

log 1

1 log log

log
1

log 1

log
2

E U V

E
U V

U VE

E E
U V

 


 





 

 




 

   

  

 
    
 

 

Therefore, the running time is

2 log 2log mst

E
O U V T


 

     
 

.

Appendix: Proof of Theorem 2

Proof: We prove that problem (7), the dual problem of (5)
is NP-complete.

The proof is by reduction from the 3-SAT problem.
Let F be a 3-SAT formula in conjunctive normal form,
where each clause consists of three literals from

 1, , Vv v and  1, , Vv v  . In Figure 10, we build an
overlay network, in which testing if constraint (8) is vio-
lated, i.e., the separation oracle of problem (5), corre-
sponds to satisfying assignment of F.

Besides server s, There are two types of peers in this
graph. The first type of peers correspond to literals i
and

v
 1, ,iv i V   . The second type of peers corre-

spond to clauses of F. All peers have the same resilience
factor. The overlay network is a complete graph, whose
edges are grouped into two subsets, where edges in each
subset carry the same length. Figure 10 only shows all
edges with smaller lengths: they direct from s to all lit-
eral nodes, between each pair of literal nodes, and from
each literal node to each clause node it appears in.

It is obvious that, in terms of the literal set size, there
exist an exponential number of minimum spanning trees
in this graph, in which all edges have the same length.
However, among these trees, we can decide if there ex-
ists a tree with the maximum resilience index only by
solving the assignment F.

Since all peers have the same resilience factor, the
greatest resilience index a peer can get is via the shortest
path from s to itself. This is straightforward for literal
nodes since s has a direct edge to each of them. A clause
node will have to connect to s either through a literal
node directly (two-edge path), or through a pair of literal
nodes (three-edge path). Only if F is satisfied can we
prove the existence of the minimum spanning tree with
the maximum resilience index, in which a two-edge path
exists for all clause nodes.

S

V1 V2 V3 1v 2v 3v

1 2 3v v v  1 2 3v v v  1 2 3v v v 

Figure 10. Proof of theorem 2.

Appendix: Proof of Theorem 3

Proof: Our proof consists of two parts. In the first part,
we show that any tree can be reorganized into the collec-
tion of a subset of the |V| + 1 trees shown in Figure 3
with higher generalized throughput. In the second part,
we prove that the tree selection priority the Multi-
Trees-Star algorithm follows at choosing among these
|V| + 1 trees guarantees optimality.

In the first part, we examine an arbitrary tree t, with
data flow rate  f t and resilient index  R t . We in-
troduce a set  R t , which consists of all non-leaf nodes
in t. It is obvious that . For each node  S R t

 v R t , we denote  y as the number of children
v has in t. Then the bandwidth contribution by v is

nc t

   ync t f t . The resilient throughput contributed by v is
the summation of generalized flow received by all its
children. Under the non-concatenation model, this value
is    y ync t f t r , the product of v’s bandwidth contribu-
tion and its resilient factor. Under the concatenation
model, this value is     y tf ttc

  snc t

 r R



y , the product of
v’s bandwidth contribution, resilient factor, and resilient
index. Under both models, the resilient throughput con-
tributed by the server s is

n v

f t , since the resil-
ience factor of s is 1. As such, t’s resilient throughput
   f t R t can be considered as the summation of resil-

ient throughput contribution by all nodes in  R t .
We now reorganize t as follows. For each peer node

v ∈ R(t), we select tree tv in Figure 3, where v is the
relaying node. The flow rate of the selected tree is

     1s fn t t Vc  , such that the bandwidth contribu-
tion of v equals to its contribution in t. In this tree, the
resilient throughput contributed by v is    y ync t f t r
under both concatenation and nonconcatenation models.
Compared to the same value in t, v’s resilient throughput
contribution in the new tree is higher in concatenation
model, and stays the same in non-concatenation model.
After conducting the above step for all peer nodes in R(t),
the total bandwidth contribution by s would have reached

      1snc tV f t V  , which is also its resilient
throughput contribution. To consume the bandwidth still

Copyright © 2011 SciRes. CN

B. LIU ET AL.

Copyright © 2011 SciRes. CN

183

left at s, we construct tree t0, the last tree in Figure 3,
with rate       1s fnc t t V 1 . Since s must have
at least one child to ensure connectivity, this value is no
smaller than 0. Then s’s bandwidth contribution, as well
as its resilient throughput contribution, adding over all
trees constructed, is    snc t f t . This value stays the
same as in t under both concatenation and non-conca-
tenation models. Now we can claim that, with the above
reorganization, the generalized throughput contribution
by each node in R(t) is greater or equal to its contribution
in tree t. Hence collectively, the aggregate generalized
throughput of these trees is greater or equal to the gener-
alized throughput of t, with the same bandwidth contri-
bution by each node in R(t).

As it is now clear that the 1V  trees shown in Fig-
ure 3 collectively achieve higher generalized throughput
than any other tree, we proceed to the second part of our
proof. Each tree tv except t0 only consumes the band-
width of s and the relaying peer v, and has its rate upper
bounded by the minimum of  1c V vi and the re-
maining bandwidth of s. t0 consumes solely the band-
width of s. As such, the bandwidth of s becomes bottle-
neck resource that all trees rely on. We introduce the
“gain ratio” for each tree, which is the ratio of its gener-
alized throughput and the bandwidth contribution by s.
For all trees except t0, such value is 1 yr V  1 , where
rv is the resilience factor of the relaying peer v. For the
last tree t0, such value is vic V . The tree selection of
MultiTrees-Star is based on the descending order of
their gain ratios. It is now clear that the algorithm fol-
lows a greedy strategy, in each round the tree with the
highest gain ratio is chosen and fed with the maximum
achievable rate, until the bandwidth of s is depleted.

Appendix: Proof of Theorem 4

Proof: Our proof consists of three parts. First, we show

that the rate returned by MaxRate-Star is feasible to
construct a tree. Second, we show that given a fixed rate,
MostResilientTree-Star constructs the tree with the
maximum generalized throughput. Third, we show that
the number of iterations by SingleTree-Star is bounded
by  2

O V .
MaxRate-Star works in a trial-and-error fashion. In

line 2, it sets the rate f to cs, the uplink bandwidth of the
server, which the maximum possible value for f. From
line 3 to 9, it finds sum, the total number of children that
the server and all peers can support. If it is smaller than
the target value V , a smaller value of f will be tried
until sum ≥ V . Since the value of m will advance by at
least 1 in each iteration, the algorithm runs in no more
than V iterations.

Next, MaxRate-Star constructs a tree by the given
streaming rate. It works in a greedy fashion by schedul-
ing the peer with the highest resilience factors to take the
maximum number of children it can, starting from the
server whose resilience factor is the maximum. Given the
definition of a tree’s generalized throughput in the
non-concatenation model, the tree constructed will return
the highest generalized throughput. The number of peers
scheduled by the algorithm is bounded by |V|.

Finally, SingleTree-Star tries different streaming
rates from the maximum rate returned by MaxRate-Star
to the minimum value sc V , since any value smaller
than that allows the server to stream to all peers, a tree
with the maximum resilience index. Since in each itera-
tion, at least one peer’s outbound degree (number of
children it can support) will increase by 1, it takes at
most V iterations to increase the server’s outbound
degree by 1. Therefore, the number of iterations by
SingleTree-Star is bounded by

2
V , which makes the

running time of MostResilientTree-Star  3
O V .

