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Abstract 
 
A unique challenge in P2P network is that the peer dynamics (departure or failure) cause unavoidable disrup-
tion to the downstream peers. While many works have been dedicated to consider fault resilience in peer se-
lection, little understanding is achieved regarding the solvability and solution complexity of this problem 
from the optimization perspective. To this end, we propose an optimization framework based on the general-
ized flow theory. Key concepts introduced by this framework include resilience factor, resilience index, and 
generalized throughput, which collectively model the peer resilience in a probabilistic measure. Under this 
framework, we divide the domain of optimal peer selection along several dimensions including network to-
pology, overlay organization, and the definition of resilience factor and generalized flow. Within each sub-
problem, we focus on studying the problem complexity and finding optimal solutions. Simulation study is 
also performed to evaluate the effectiveness of our model and performance of the proposed algorithms. 
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1. Introduction 
 
Peer-to-peer (P2P) has been proved a highly cost-effec-
tive content distribution solution, where peers self-or-
ganize themselves into an overlay network and relay data 
to each other, thus reducing server load. A central prob-
lem in the overlay network construction is peer selection, 
the strategy a peer employs to select other peer(s) as its 
parent(s) to receive data from. Peer selections aggregate 
into multicast tree(s) spanning from the server, the 
source of the data, to all peers. Given the data intensive 
nature of P2P applications (e.g., video streaming or bulk 
data distribution), a common objective is to maximize 
the data throughput to all peers. 

Already challenging in its static setup, the optimal 
peer selection problem is further aggravated by the high 
Volatility of the P2P network. Due to various reasons 
such as user leaving or machine/network failure, un-
scheduled peer departure constantly happens, which re-
sults in service disruptions or outages on all the down-
stream peers. Therefore, we argue that when designing 
peer selection solutions, fault resilience deserves the 
same level of attention as first-class performance metrics, 
e.g. throughput, delay, etc. 

A significant amount of research has been conducted 
on this topic with different emphasis. While important 
heuristics have been proposed such as minimizing depth 
[1,2], multiple trees [3,4], bandwidth-first, age-first [5], 
or a hybrid of the two [6], some analytical works have 
tried to analyze and compare their performances under 
stochastic framework [7,8] or real-system traces. How-
ever, this domain has been rarely examined from the 
optimization perspective. If we are able to model the 
fault-resilient peer selection problem under an optimiza-
tion framework which combines fault resilience with key 
performance metrics such as throughput, standard opti-
mization techniques can be practiced to evaluate key 
questions such as the solvability of the problem and the 
complexity of its optimal solutions, if any. Also existing 
heuristics could be quantitatively evaluated under the 
same framework. 

In this paper, we report our initial research towards 
this direction. Our optimization framework is based on 
the generalized flow theory [9]. It generalizes the classi-
cal network flow problem by specifying a gain factor to 
each link in the network. As such, the objective is to op-
timize the throughput of the generalized flow as the 
product of raw flow and the gain factor on each link, 
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
while the traditional capacity and flow conservation con-
straints still apply to the raw flow. Widely employed in 
operation research to model the loss, theft, or interest rate 
in commodity transportation [10-12], we find it a good 
match to the P2P domain. If we assign each peer a resil-
ience factor as the probabilistic measure of its chance of 
survival within a given time horizon, this resilience fac-
tor could be considered as the gain factor in the general-
ized flow setting. Under this framework, the problem of 
fault resilient peer selection becomes to maximize the 
aggregation of generalized flow received by each peer, 
which is the product of the raw flow and resilience fac-
tors of peers it passes along. 

We study this problem under a multitude of problem 
settings. Specifically, 
 Regarding network model, we consider two types of 

topologies: the general topology which models the 
underlying physical network as a graph, and the star 
topology which assumes the bottleneck does not exist 
in the physical network, but on only on peer’s access 
link. 

 Regarding overlay organization, we consider cases 
where the number of trees interconnecting peers is 
unlimited or upper-bounded, e.g., single tree. 

 Along the dimension of generalized flow definition, 
we consider concatenation model where the general-
ized flow delivered to a peer depends on the resil-
ience of all its ancestors, and non-concatenation 
model which only considers the resilience of its im-
mediate parent. 

Along these dimensions, we explore the entire spec-
trum of this domain, and focus on studying problem 
complexity and finding the optimal solutions within each 
subproblem. 

The rest of this paper is organized as follows. In Sec. 2, 
we introduce our optimization framework and formally 
define key concepts such as generalized flow and resil-
ience index. In Sec. 3, we study the optimal peer selec-
tion problem under the general topology, and propose 
two algorithms employing linear programming tech-
niques. In Sec. 4, we study the same problem under the 
star topology, and propose two algorithms based on 
combinatorial optimization techniques. Sec. 5 presents 
evaluation results. Finally, we discuss related works in 
Sec. 6 and conclude in Sec. 7. 

2. Framework Overview 

2.1. Network Model 

We consider two kinds of network models: star model 
and general model. 

2.2.1. General Network 
We model the network as a graph , with 
capacity ce on each physical edge 

 ,G N E
e E . On top of G, 

an overlay network  , ,s V LG  exists, where s is the 
server, and peers belong to the set . Each over-
lay edge 

 V v
l L  connects two peers in V, and corre-

sponds to the uni-cast route at the physical network G. 

2.2.2. Star Network 
Many works [13] have implicitly assumed that the bot-
tleneck of a uni-cast path only happens at either access 
link of its two end hosts. In this way, we can simplify the 
general model into a star model. The central node of the 
star represents the Internet cloud, which reaches out to 
every peer. In this model, we denote the outbound band-
width of peer v V  as cv. 

2.2. Overlay Organization 

To transfer data among peers, the simplest and most 
straight forward strategy is a single multicast tree span-
ning from the server s to all peers in V. Although simple 
to manage, this solution has clear drawback since a peer 
departure can cause complete disruption to all its de-
scendants. 

An alternative solution is the recently popular multi- 
tree or mesh solution, where each peer schedules to re-
ceive data from multiple parents. Since the mesh struc-
ture can be usually decomposed as the sum of multiple 
spanning trees, therefore will be categorized as multi-tree 
solution1. We denote the tree set as , where each 
tree 

 T t
t T  covers all peers and has a single rate f(t). 

2.3. Resilience Factor and Generalized Flow 

We assign a resilience factor  to each peer 0y yr r  1
v V . Our model makes no assumption on how yr  is 
defined. For the purpose of illustration, we introduce one 
way to define yr . Suppose v follows certain lifetime 
distribution with c.d.f. F(τ), and T is a random variable 
denoting the time of departure, then the survival function 
of v is    1 Pr TF     , the probability that its time 
of departure is later than time τ. If we denote 

 *TPryr   , where τ∗ is a fixed time point in the 
future, then it represents the chance of survival for v until 
τ∗. 

Given the resilience factor of v, we consider two mod-
els to compute the rate of generalized flow. 

2.3.1. Concatenation Model 
For each peer v in tree t, there is a path from the server s 
1We note that such categorization does not apply to the management of 
P2P network, but only suits the purpose of calculating throughput to 
each peer, which is the main focus of this paper. 
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k

to v, denoted as: tion. Of the eight sub-problems, we find four of them 
polynomially solvable and present the optimal solutions. 
Of the four NP-hard problems, we are able to find a 
O(logε)-approximation algorithm, and only find heuris-
tics to the other three. We also summarize notations ap-
peared in this paper in Table 2. 

  1 2P :t s        

ir

 

Given t’s flow rate f(t), the dependency model com-
putes the generalized flow delivered to v as f(t) timed by 
the concatenate product of rv1 through rvk. We define 
such product as the resilience index of v in t: 

3. General Topology Model 
 

1

k

t
i

R 


              (1) 
In this section, we present our study on optimal general-
ized throughput under the general topology model, as 
shown in Figure 1. 

Based on this definition, f(t)Rt (v) is the generalized 
flow rate delivered to v in tree t. We can further define 
the resilience index of tree t as: 

3.1. Multiple Tress    t
V

R t R





              (2) 

We start with the most basic setting, where an unlimited 
number of trees can be constructed for the purpose of 
maximizing generalized throughput. With notions intro-
duced in Sec. 2, we formulate it into the following linear 
programming (LP) problem. 

Since Rt(v) ≤ 1, it is obvious that R(t) ≤|V|. Now we 
are able to define generalized throughput of t, which is 
the sum of generalized flow rates to all peers. 

     gf t f t R t             (3) 

   maximze 
t T

f t R t

                  (5) This model computes a peer’s generalized flow by fac-

toring in the resilience factors of all its ancestors. It fits 
the live P2P streaming scenario where a peer failure can 
cause disruptions on all its descendants. Also an implicit 
assumption in the definition of Rt(v) is that the resilience 
factor of server s is 1, i.e., s will not departure. 

   

 

subject to  ,

                               0,

e e
t T

n t f t c e

f t t T




  

 


      (6) 

The objective of problem (5) is to maximize the gen-
eralized throughput (defined in Equation (3)) of all trees. 
Inequality (6) refers to the capacity constraint, i.e., the 
aggregate raw flow of all trees cannot exceed any physi-
cal link e∈E. ne(t) is an integer variable indicating the 
number of times tree t has passed through e. Note since t 
is an overlay tree, ne(t) can be greater than 1. 

2.3.2. Non-concatenation Model 
In this model, we define the generalized flow to a peer to 
be only dependent on its immediate parent. Formally, in 
the same sample context of concatenation model, we 
define the resilience index of peer v in tree t as follows. 

 tR r k                  (4) The central difficulty of problem (5) is that its number 
of variables is exponential to the size of the P2P network. 
Based on Cayley’s theorem [14], the number of different 
spanning trees contained in T is |T|= (|V|+ 1)(|V|−1), |V| 
being the number of peers in V. 

This model fits better to P2P applications with no real 
time constraints. For example, in some on-demand 
streaming and downloading applications, the parent peer 
serves its children from its local cache. This gives its 
children buffering time to find new parent(s) upon its 
own departure or failure, thus absorbing the impact of 
cascading disruption. 

On the other hand, the dimensionality of this problem, 
i.e., the number of constraints, is |E|, the number of 
physical links. This gives us a chance to solve this prob-
lem via its dual presented as follows, which contains |T| 
variables but exponential constraints. 

Finally, in Table 1, we summarize findings when ex-
ploring along the three dimensions outlined in this sec-  
 

Table 1. Summary of findings. 

 General Topology Star Topology 

Multiple Trees (Concatenation) NP-hard (reduction to 3-SAT) Multiple Trees-Star, O(n) 

Multiple Trees (Non-Concatenation) Multiple Trees-General, 
2

log mstO U T
 

 
 

 Multiple Trees-Star, O(n) 

Single Tree (Concatenation) NP-hard (reduction to MPSP [13]) NP-hard (reduction to Hamilton Path [9]) 

Single Tree (Non-Concatenation) NP-hard (linear-programming-relaxation is NP-hard) Single Tree-Star, O(n3) 
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Table 2. Notations table. 

Notation Definition 

G = (N,  ) Physical Network 

G = (V,L) Overlay Network 

s Server node 

  = {e} Physical layer edges 

L = {l} Overlay layer links 

V = {v} Overlay nodes 

r,R Resilience index e.g. rv, R(t), Rt(v) 

T = {t} Overlay multicast trees 

f(t) Data flow over tree t 

fg(t) Generalized flow over tree t 

c Bandwidth constraint e.g. cv, ce, cs 

de Price of edge e 

Pt(v) Overlay routing path between s and v in overlay tree 
t 

 

Physical Network

Overlay Graph 

Router
Overlay Edge

V4 

Peer

V5 

V6 

V3 

V2 

V1 

(s, V1) 

s 

 

Figure 1. General topology model. 
 

maximze e e
e

c d

                (7) 

   subject to  ,

                               0,

e e
e

e

n t d R t t T

d e





  

 


    (8) 

Problem (7) refers to assigning each link e a length de, 
and minimize the sum of de multiplied by the capacity ce, 
subject to inequality (8), which states that the length of 
any spanning tree must be greater than its own resilience 
index R(t), defined in Equation (2). 

Although there exists exponential number of trees in T, 
if we can find a separation oracle able to check whether 
constraint (8) is met in polynomial time, then the dual 
problem (7) is solvable in polynomial time, hence the 
primal problem. 

To find if such an oracle exists, we first adapt the 
definition of R(t) from peer-based to link-based, to be 
consistent with the left side of constraint (8). This can be 

easily achieved as follows. We assign a resilience factor 
re to each link e  , and define it as: 

   if  exits from 

0    otherwisee

r e
r  
 


  (9) 

As articulated in Sec. 2.3, we have different defini-
tions on R(t) for concatenation and non-concatenation 
models. We start with the non-concatenation model first. 

Based on the definition on resilience index Rt(v) 
shown in Equation (4), we can easily observe that R(t) in 
this case is the sum of resilience factors of all non-leaf 
peers in tree t. Translated into the link-based definition, it 
is the sum of resilience factors of all links in t, i.e., R(t) = 
Σe∈t ne(t)re. This allows us to reformulate Inequality (8) 
into the following. 

     ,e e e e
e e

n t d n t r t T
  

     

It is now clear that the separation oracle is a minimum 
spanning tree algorithm that sees the cost on each link e 
as (de − re). Constraint (8) will be satisfied if the cost of 
the found minimum spanning tree is still greater than 0. 

To this end, we present a fully polynomial time ap-
proximation scheme (FPTAS). FPTAS is a family of 
algorithms which finds a  -approximate solution re-
turning a result at least (1 −  ) times the maximum 
value, for arbitrary error parameter   > 0. 

Table 3 shows the MultiTrees-General algorithm. It 
solves the primal and dual problems in an iterative fash-
ion. It sets initial length to β all links in E. In each itera-
tion, it finds the minimum spanning tree t∗ based on the 
cost (de − re), and route traffic over t∗. Based on the traf-
fic increment, the length de is updated as defined in line 
10. Finally, the algorithm terminates when constraint (8) 
is satisfied, i.e., when the cost of the minimum spanning 
tree is greater than 0. Note that since the aggregated raw 
flow of all returned trees can exceed the capacity of cer-
tain physical links, we introduce the index le to record the 
congestion ratio on each link e. By scaling the rate of 
each tree with the maximum congestion noted by lmax, 
the algorithm is guaranteed to return a feasible solution. 
We summarize the property of this algorithm in Theorem 
1. 

Theorem 1: Under the non-concatenation model, 

when 
 
 

1 1

1

1 V

V U









    , the MultiTrees-General 

algorithm returns the solution at least (1 − 2  ) times the 
optimal result of problem (5), with running time 

log 2log
2 mst

E
O U V T




    
 


 . U is the length of the 

longest uni-cast route and Tmst is the running time of the 
minimum spanning tree algorithm. 
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Table 3. Finding multiple trees under general topology 
model. 

MultiTrees-General(E,T) 

1  , ,e ee E d l    0

2   0,f t t T

e

 

3 loop 

4 minimum overlay spanning tree in T using (de – re) *t 

5 minlen    *e e
e E

n t d r


 

6 if minlen ≥ 0 

7 return 

8 
 *min e

e t

e

c
c

n t  

9    * *f t f t  c  

10 
   

, 1 ,e e

e e e e

e e

n t c n t
e t d d l l

c c


 
      

 
 

11 end loop 

12  max maxe t el l

13     max,t T f t f t l    

 
Now we turn to the concatenation model, where the 

resilience index is defined in Equation (1). In this case, 
each peer’s resilience index is the product of resilience 
factors of all its ancestors. Although we can perform 
logarithm operation on resilience factors re and solve this 
problem using Dijkstra’s algorithm, it becomes ex-
tremely hard when combining with length assignment de, 
which needs to be solved by a minimum spanning tree 
algorithm. In the following theorem, we prove this prob-
lem to be NP-hard, by reducing its separation oracle to 
the problem of 3-SAT. 

Theorem 2: Under the concatenation model, the Mul-
tiTrees-General problem (5) is NP-hard. 

3.2. Single Tree 

A salient feature of the MultiTrees-General algorithm is 
that it reveals the maximum generalized throughput a 
P2P network can achieve. However, given the exponen-
tial selection space in tree set T, the algorithm often re-
turns a high number of trees, which are hardly manage-
able in practice. For practical purposes, we enforce a 
limit on the number of trees we can construct. To achieve 
so, we modify problem (5) into the following integer 
programming problem. 

     
t T

Mazimize f t R t x t

        (10) 

     . . ,e e
t T

s t n t f t x t c e E


       (11) 

 

     0, 0,1 ,
t T

x t k

f t x t t




  T


    (12) 

Problem (10) introduces a 0 - 1 variable x(t), and k, the 
upper limit on the number of trees. This constraint is 
enforced by Equation (12). This problem is NP-hard 
since its special case has been proved so. When k = 1 and 
resilience factor of all peers are 1, this problem reduces 
to maximizing the throughput of a single overlay multi-
cast tree, which was shown NP-hard in [15] under the 
name MPSP (Multicast Path Set Problem). 

Following the same idea of the MultiTrees-General 
algorithm, we assign length to each physical link to find 
minimum spanning tree, but only in an online fashion. 
The algorithm runs k iterations, in each of which a tree is 
returned. The details of the algorithm can be found in 
Table 4. 

We note that the two algorithms presented in this sec-
tion can be also applied to the concatenation model. 
However, theorem 1 will not apply due to the NP-hard-
ness of separation oracle for problem (5). 

4. STAR Topology Model 

The algorithms presented in Sec. 3 rely on linear pro-
gramming technique, and operate on both overlay net-
work L and physical network whose measurement can be 
expensive. They require complete knowledge on the 
physical network, i.e., the capacity of any physical link e 
ε, if it appears in the underlying routing path that con-
nects any overlay link lL. 

Many P2P research works have chosen to rely on a sim- 
plified assumption, which imposes outgoing bandwidth 
 

Table 4. Finding k trees under general topology model. 

k-Tree(E,T) 

1 , ,e e ee E d c l 0     

2 for i = 1 to k do 

3 it  minimum overlay spanning tree in T using (de – re) 

4   1if t   

5 
   

, 1 ,e e

e e e e

e e

n t n t
e t d d l l

c c


 
      

 
 

6  max maxe tl l e

7 for i = 1 to k do 

8     maxi if t f t l  
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constraint on each peer and allow it to parent other peers 
until its outbound bandwidth depletes. In other words, 
the Internet cloud is assumed to have enough capacity 
supporting all peers. This effectively transforms the 
physical networkεinto a star network, whose central hub 
represents the Internet cloud reaching out to all peers, as 
shown in Figure 2. In this section, we study the same set 
of problems under such a special topology. 

4.1. Multiple Trees 

We again start with the case of multiple trees. To sim-
plify the illustration, we remove notations associated 
with the general network ε. Instead, we introduce nota-
tions cv to denote outbound bandwidth of peer vV, cs to 
denote outbound bandwidth of the server s, and nv(t) or 
ns(t) to denote the number of children v or s have in tree t. 
The problem formulation is as follow s2. 

   
t T

Maximize f t R t

          (13) 

   . . ,v v
t T

s t n t f t c v V


         (14) 

   s s
t T

n t f t c


           (15) 

  0,f t t T              (16) 

Inequalities (14) and (15) refer to the capacity con- 
straint. In fact, problem (13) is only a special case of the 
problem (5), thus can be solved by algorithm Multi-
Trees-General in the same linear programming fashion. 
However, given the simplified topology, we are inter-
ested to find out if this problem can be simply addressed 
through combinatorial optimization techniques. 

Table 5 shows the MultiTrees-Star algorithm. It con-
struct at most |V| + 1 trees in the order shown in Figure 3. 

Starting from peer v1 with the maximum resilience 
factor, tree t1 is constructed, which depletes the outbound 
bandwidth of v1. The process continues until v|V| or the 
server bandwidth cs runs out. If there is still residue of cs 
after tree t|V| is finished, we construct a special tree t0 to 
deplete cs. We show the optimality of this simple algo-
rithm as follows. 

Theorem 3: MultiTrees-Star algorithm returns the 
optimal result of problem (13). 

It is easy to observe that this theorem applies to both 
non-concatenation and concatenation models, since trees 
t0 through tn return the same resilience index under either 
definition, i.e., Equation (1) for concatenation model and 

S 

v2 

v1

v3 

 

Figure 2. Star topology model. 
 
Table 5. Finding multiple trees under star topology model. 

MultiTrees-Star(s,V) 

1 sort V into  in descending order of resilient index 1, nv v

2 for i = 1 to |V| 

3 construct tree ti, where vi is the only child of s, and vj(j != i) are 
children of vi 

4   min ,
1

iv

i s

c
f t c

V

    
  

 

5 min ,
1

iv

s s s

c
c c c

V

     
  

 

6 if cs > 0 

7 construct tree t0, where s is the parent of vi ( 1, ,i V  ) 

8  0 sf t c V  

 
S S S

V1 Vn 

Vn VnVn-1 V1 V1 V2 V2V2 V3  

Figure 3. Lllustration of MulTitrees-Star algorithm. 
 
Equation (4) for non-concatenation model. 

The trees found by the MultiTrees-Star algorithm 
comply with many heuristics practiced by existing works. 
In terms of tree structure, t0 through tn are “fat trees” or 
“minimum-depth tree”. In terms of construction order, 
the algorithm starts from the peer with maximum resil-
ience factor, which suggests maximum lifetime. This 

2We note that unless otherwise notified, our discussion in this section 
assumes that the inbound bandwidth of each peer v is unbounded, thus 
removed from the problem formulation. By the end of this section, we 
will introduce how our algorithms could be adapted to incorporate the 
inbound bandwidth constraint. 
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complies with the “longest-first” approach that assigns 
higher priority to peers with longer expected lifetime. 

4.2. Single Tree 

The number of trees returned by the MultiTrees-Star 
algorithm scales up linearly with |V|, the size of the P2P 
network. Although more scalable than the MultiTrees- 
General algorithm, the number of trees can be still too 
big as the P2P network grows. 

To limit the number of trees, we can impose an addi-
tional integer constraint over problem (13) in the same 
fashion we defined problem (10) under the general to-
pology model. 

     
t T

Maximize f t R t x t

         (17) 

     . . ,v
t T

vs t n t f t x t c v V


          (18) 

     s s
t T

n t f t x t c


           (19) 

 
t T

x t k


                 (20) 

     0, 0,1 ,f t x t t  T       (21) 

In particular, we are interested in the case when k = 1, 
i.e., when only one tree is allowed. 

We start with the non-concatenation model. Table 6 
shows the SingleTree-Star algorithm, which further 
contains two sub-algorithms. MaxRate-Star finds out 
the maximum rate a single tree can possibly afford. It 
works in a trial-and-error fashion by proposing a rate f 
and learning the maximum outbound degree the server s 
and each peer in V can support based on f. Starting from 
the server outbound bandwidth cs, f keeps shrinking until 
the sum of outbound degrees exceeds or equals to |V|, the 
number of peers. MostResilientTree-Star is a greedy 
algorithm constructing the tree with the highest resilience 
index. Given rate f, it gives priority to peers with the 
highest resilience factor and assign children to them up 
to their maximum outbound degrees. The algorithm re-
turns the generalized throughput, which according to the 
definition in Equation (3), is the product of f and the re-
turned tree’s resilient index. 

With these two sub-algorithms, The SingleTree-Star 
algorithm finds the optimal tree by feeding different rates 
to MostResilientTree-Star and keeping track the tree 
returning the maximum generalized throughput. The trial 
starts from the maximum affordable rate found by 
MaxRate-Star, and ends when the outbound degree of 
the server s becomes |V|. In this case, we can construct 
tree t0 shown in Figure 3, which has the maximum resil-
ience index |V|. Since in each iteration of Single-
Tree-Star, at least one peer’s outbound degree will in- 

Table 6. Finding single tree under star topology. 

MaxRate-Star (s,V) 

1 sort V into 1, V
V V  in descending order of bandwidth 

2 sf c  

3 find k such that  
1k kv vc f c

 

4 do 

5 0, 0i sum   

6 while sum < |V| and i < |V| 

7 , 1
ivsum sum c f i i       

8 if sum < |V| 

9 , 1
kvf c k k    

10 while sum < |V| 

11 return f 

MostResilientTree-Star(f, s, V) 

1 sort V into v1,…,v|V| in descending order of resilience 

2 enqueue s, v1,…,v|V| into queue P 

3 enqueue v1,…,vn into queue C 

4 0sum   

5 while C    

6 dequeue vparent from P 

7 repeat 
parentvc f    times 

8 dequeue vchild from C 

9 make vparent the parent of vchild 

10 parentsum sum r   

11 return { f sum , resulting tree} 

SingleTree-Star(s,V) 

1 f  MaxRate-Star(s,V) 

2 {max, tree*}  MostResilientTree-Star(f,s,V) 

3 while | | sf V c   

4  1new s sf c c f     

5 for i = 1 to |V| 

6 if  1
i inew v vf c c f     

7  1
i inew v vf c c f     

8 newf f  

9 {r, tree}  MostResilientTree-Star(f,s,V) 

10 if r > max 

11 max , *r tree tree   

12 return tree* 
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crease by 1, the number of iterations is bounded by 

 2
O V  . Combined with the linear running time of 
MostResilientTree-Star, its overall running time is 

 3
O V  . The following theorem establishes the optimal-
ity of SingleTree-Star. 

Theorem 4: Under the non-concatenation model, the 
SingleTree-Star algorithm returns the optimal solution 
for problem (17) when k = 1, with running time 

 3
O V . 

When applying the same algorithm to concatenation 
case, we find that the greedy approach of MostResil-
ientTree-Star does not fit the multiplicative definition of 
resilience factor given in Equation (1). Essentially, al-
though finding the tree with the maximum resilience 
index is solvable by a multiplicative-variant of Dijkstra’s 
algorithm, it becomes hard when imposing degree con-
straints on the peers. To show NP-hardness of this prob-
lem, we consider its special case, the maximum multi-
plicative cost path problem (MMCP), then reduce it to 
the Hamiltonian path problem. 

Evidently, under the concatenation model, the intrinsic 
conflict between outbound bandwidth and resilience fac-
tor poses great barrier to our effort to assign priority in 
peer selection. On the other hand, the problem becomes 
polynomially solvable under the same framework of 
SingleTree-Star if all peers are identical over either of 
above metrics. For example, if all peers have the same 
resilience index, we only need to modify MostResil-
ientTree-Star to greedily choose peers with the highest 
outbound bandwidth. If all peers have the same outbound 
bandwidth, the exact algorithm in Table 6 can be reused 
with no modification. 

We note that algorithms listed in this section have as-
sumed the inbound bandwidth of all peers are unlimited. 
Nevertheless, they can be easily modified when applying 
this constraint. Since our paper studies single-rate multi-
cast, i.e., the rate of raw flow delivered to each peer is 
the same, we only consider cin, the minimum inbound 
bandwidth of all peers. If cin ≥ cs, then one should not be 
concerned since the raw flow delivered to a peer cannot 
exceed the outbound bandwidth of the server s. Other-
wise, cin replaces cs as the bottleneck. As such, we only 
need to replace cs with min{cs, cin} in Tables 5 and 6. 

4.3. Discussions 

We finally discuss the implement-ability of algorithms 
presented in this paper. Given the unlimited number of 
trees the MultiTrees-General algorithm can produce, its 
main purpose remains to provide the theoretical optimal 
point against which other practical solutions can be 
measured. The k-Tree algorithm in Table 4 avoids this 
pitfall by limiting the number of trees. However, its func-

tioning requires measurement overhead of the underlying 
physical network. The MultiTrees-Star and Single-
Tree-Star algorithms address both of the above issues. 
However, a centralized entity, e.g., the server s, needs to 
be in place. It collects uplink bandwidth information and 
resilience factors from all peers, then runs the algorithm. 
While it is reasonable to expect the server to keep the 
up-to-date information of the peers it serves, the distrib-
uted versions of these algorithms, if possible, are often 
desirable and constitutes the future direction of our re-
search.  

5. Evaluations 

In this section, we present our evaluation study, which 
mainly carries two purposes. First, we will evaluate the 
validity of the generalized flow optimization framework 
at capturing the key characteristics of fault resilient peer 
selection problem. Second, we will study the perform-
ance of the algorithms proposed in this paper, as well as 
several well-known heuristics, at maximizing the gener-
alized throughput and maintaining fairness.  

5.1. Experimental Setup 

We use simulation to evaluate the performance of our 
algorithm. Two experimental topologies are chosen. The 
first one is a 1000-node router-level network (2000 edges) 
created by the Boston BRITE topology generator using 
the Waxman model. Any pair of routers are connected by 
a pair of links with opposite directions. The bandwidth of 
physical links between routers, as well as peers’ access 
links, are normally distributed from 100 Kbps to 1000 
Kbps. The second topology follows the star configura-
tion outlined in Figure 2. 

Under both topologies, we create 100 peers with 
unlimited inbound bandwidth. Under the general topol-
ogy, they are randomly attached to the routers in the 
network. 

Each simulation run lasts a finite time period. Starting 
from time 0, each peer is assigned a lifetime based on 
exponential and Pareto lifetime distributions with mean 
lifetime varying from 1500 seconds to 3500 seconds. The 
simulation run expires when the lifetime of the long-
est-lived peer expires. In our simulation, we assign resil-
ience factor to each peer based on its expected lifetime in 
each particular run. Our algorithms are executed at the 
beginning of each run, taking the resilience factors and 
outbound bandwidths of all peers as the input, and re-
turning single or multiple trees whose combined gener-
alized throughput is maximized. 

As time proceeds, peers expire one by one, which 
gradually tears down the tree(s) constructed at the begin-
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ning of the simulation. To capture this effect, we accu-
mulatively calculate the amount of data collected by each 
peer until its ancestor or itself fails. We term this result 
as Volume, which represents the capability of the con-
structed tree(s) at collecting data for all peers before they 
demise. 

5.2. Generalized Throughput vs. Volume 

The objective of our algorithms is to maximize the gen-
eralized throughput, given resilience factors of all peers. 
However, it merely represents the expected amount of 
data the constructed tree(s) can possibly collect. There-
fore, to test the fitness of our model under simulated P2P 
network with peer dynamics, we need the metric Volume, 
which counts the total amount of data collected. If our 
experiment can establish a proportional relationship be-
tween generalized throughput and Volume, then we can 
claim with high confidence level that our optimization 
framework can effectively model the dynamics of P2P 
network, and the developed optimization algorithms are 
able to increase the resilient throughput under such dy-
namics. Based on this consideration, our simulation does 
not include repairing mechanisms, i.e., a peer is not al-
lowed to reconnect to the P2P network once discon-
nected due to the departure of either its ancestor or itself. 
This way, the recorded Volume can more accurately re-
flect the resilience of the tree(s) constructed by our algo-
rithm. 

In Figure 4, we run the MultiTrees-General algo-
rithm under the general topology, and contrast the gener-
alized throughput returned by the algorithm in (a), cal-
culated Volume in (b). We observe that the performance 
difference under two lifetime distributions are consis-
tently obeyed in both figures when varying the mean 
peer lifetime. 

We then run the MultiTrees-Star under the star to-
pology, and contrast the generalized throughput and 
Volume by varying the mean outbound bandwidth. We 
further introduce two heuristic single-tree algorithms. In 
both heuristics, we compute the mean outbound band-
width, and the mean resilience factors of all peers, then 
assign rate of the tree as the ratio of the two. Heuristic A 
constructs the tree by assigning priorities to peers with 
higher resilience factors, and heuristic B assigns priori-
ties to the ones with higher outbound bandwidth. Our 
purpose is simple: if algorithms not developed under our 
optimization framework can still establish proportional 
relationship between generalized throughput and Volume, 
then it becomes more convincing that the generalized 
flow model can effectively capture the dynamic charac-
teristics of P2P network. As shown in Figure 5, per- 
formance ordering of these algorithms under different 

 
(a) 

 
(b) 

Figure 4. Performance of multitrees-General under non- 
concatenation model. (a) Volume; (b) generalized through-
put. 
 
lifetime distributions are consistent in both figures. 

5.3. Performance of Single Tree Algorithms 

To evaluate the ability of single tree algorithms at maxi-
mizing the generalized throughput, we run heuristics A 
and B, and SingleTree-Star algorithm under the star 
topology and concatenation model, and normalize their 
results with the one achieved by the optimal Multi-
Tree-Star algorithm. In Figure 6, we observe that all of 
them are able to maintain the performance ratio from 0.1 
to 0.6 under different mean outbound bandwidths, mean 
lifetime, and lifetime distributions.  

In Figure 7, 8, and 9, we display the sorted per-node 
generalized throughput and Volume for MultiTrees-Star, 

ingleTree-Star, and the two heuristics. S 
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Figure 5. Performances of MultiTrees-Star and two heuristics under concaternation model (mean lifetime = 1500 s). (a) Vol-
ume; (b) generalized throughput. 
 

 

Figure 6. Performances radio of heuristics to MultiTrees-Star under concaternation model. (a) Outbound bandwidth; (b) 
lifetime. 
 

 

Figure 7. Sorted nodes of MultiTrees-Stae (mean outbound bangwidth = 100 Kbps). (a) Volume; (b) Generalized throughput. 
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Figure 8. Sorted nodes of singletree-Star under non-concatenation model (mean outbound bandwidth = 100 Kbps). (a) Vol-
ume; (b) Generalized throughput. 

 

 

Figure 9. Sorted nodes of heuristics under concatenation model (mean outbound bandwidth = 100 Kbps). (a) Volume; (b) 
Generalized throughput. 
 
 
6. Related Work 

Fault resilience has been considered in many existing 
solutions in overlay and P2P networks. An important 
approach is to reduce the tree depth to minimize failure 
propagation and service delay. Algorithms bearing the 
flavor of “minimizing depth” have been proposed in [1], 
[2], etc. Several well-known works, such as Bullet [16], 
SplitStream [3], and CoopNet [4], also employs the 
multi-tree approach to reduce the impact of peer failure, 
meanwhile increasing the aggregate throughput. In con-
trast to the depth-optimizing approach, Sripanidkulchai 
et al. [5] propose the longest-first algorithm which, by 
utilizing peers’ heavy tailed lifetime distribution, grants 
the longest lived peer with higher priority. These algo-
rithms coincide with many findings in our paper, such as 
the optimal tree structure exhibited in the multi-tree set-
ting under star network model. 

Several evaluative works have been conducted to 
study the impact of different overlay construction algo-
rithms on the resilience of P2P network. Bishop et al. 
examines the effect of bandwidth- and age-priority heu-
ristics on multicast tree reliability using trace-based 
simulation [6]. Stochastic network analysis have been 
employed to study the resilience of DHT based P2P net-
work [7] and decentralized P2P network [8] under given 
peer lifetime distribution. In contrast, our work does not 
make a priori assumptions on peer characteristics, but 
focuses on finding optimal peer selection algorithms that 
can take any input. 

Optimization has long been practiced in network rout-
ing, primarily based on the multi-commodity flow theory. 
The basic idea is to assign weights to links to reflect their 
congestion conditions, and perform traffic routing based 
on the weights. In particular, the work of [17,18] pre-
sents the theoretical models for online unicast routing. In 
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the multicast domain, the work of [19] investigate the 
case of receivers within a multicast session arriving in 
batch, and the work in [20] presents a solution for re-
ceivers arriving separately. In the past, we have extended 
the multi-commodity flow theory to maximize the 
throughput of overlay multicasting [21]. This work is our 
initial effort to further incorporate fault resilience by 
introducing generalized flow theory. 

Generalized flow has many applications [9], where the 
gain factors can model physical transformations of a 
commodity due to leakage, evaporation, breeding, theft, 
also transformations from one commodity into another as 
a result of manufacturing, scheduling, or currency ex-
change, etc. Exiting works have been focused on unicast 
routing [10,11]. In particular, Wayne et al. [12] present a 
Dijkstra-variant shortest path algorithm for minimum- 
cost unicast-based generalized flow problem if all gain 
factors are below one. It is our finding in this paper that 
when applying to multicasting, the difficulty of the 
problem increases rapidly due to the complexity brought 
up by the exponential cardinality of multicast tree set. 

7. Conclusions 

In this paper, we propose an optimization framework 
based on the generalized flow theory. Utilizing the con-
cept of gain factor in this theory, we introduce the resil-
ience factor of peer to model its chance of survival in a 
probabilistic measure, and propose an optimization 
framework targeting at maximizing generalized through- 
put as the product of raw throughput and resilience fac-
tors. We report our findings in this problem domain 
along several dimensions including network topology, 
overlay organization, and concatenation model. 

Our future work will carry along two directions. On 
the theoretical front, we will study whether improvement 
space exists for optimal algorithms presented in this pa-
per, such as SingleTree-Star. On the practical front, we 
will design the lightweight distributed solution of our 
algorithms, especially under the star topology model. We 
are also interested to search for simple heuristics and 
have quantitatively evaluated within our optimization 
framework. 

8. Acknowledgements 

This work was supported by NSF award 0643488, Van-
derbilt Discovery grant, and a gift from Microsoft Re-
search. 

9. References 

[1] M. Guo and M. Ammar, “Scalable Livideo Streaming to 
Cooperative Clients Using Time Shifting and Video 

Patching,” Proceedings of the International Conference 
on Computer Communications and Networks, Chicago, 
11-13 October 2004. 

[2] V. Padmanabhan, H. Wang and P. Chou, “Resilient 
Peer-to-peer Streaming,” 11th IEEE International Con-
ference on Networking Protocols, Atlanta, 4-7 November 
2003, pp. 16-27. doi:10.1109/ICNP.2003.1249753 

[3] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. 
Rowstron and A. Singh, “Splitstream: High-Band Width 
Multicast in Cooperative Environments,” Proceedings of 
the Nineteenth ACM Symposium on Operating Systems 
Principles, Vol. 37, No. 5, 2003, pp. 298-313.  
doi:10.1145/945445.945474 

[4] V. N. Padmanabhan, H. J. Wang, P. A. Chou and K. Sri-
panidkulchai, “Distributing Streaming Media Content 
Using Cooperative Networking,” Proceedings of the 12th 
International Workshop on Network and Operating Sys-
tems Support for Digital Audio And Video, New York, 
2002, pp. 177-186. doi:10.1145/507670.507695 

[5] K. Sripanidkulchai, A. Ganjam, B. Maggs and H. Zhang, 
“The Feasibility of Supporting Large-Scale Live Stream-
ing Applications with Dynamic Application End-Points,” 
ACM SIGCOMM Computer Communication Review, Vol. 
34, No. 4, 2004, pp. 107-120.  
doi:10.1145/1030194.1015480 

[6] M. Bishop, S. Rao and K. Sripanidkulchai, “Considering 
Priority in Overlay Multicast Protocols under Heteroge-
neous Environments,” Proceedings of 25th IEEE Interna-
tional Conference on Computer Communications, Barce-
lona, April 2006, pp. 1-13.  
doi:10.1109/INFOCOM.2006.140 

[7] G. Tan and S. Jarvis, “On the Reliability of DHT-Based 
Multicast,” Proceeding of International Conference on, 
Computer Communications and Networks, Honolulu, 13- 
16 August 2007. 

[8] D. Leonard, Z. Yao, V. Rai and D. Loguinov, “On Life-
time-Based Node Failure and Stochastic Resilience of 
Decentralized Peer-to-peer Networks,” IEEE/ACM Tran- 
sactions on Networking, Vol. 15, No. 3, 2007, pp. 
644-656. 

[9] R. Ahuja, T. Magnanti and J. Orlin, “Network Flows: 
Theory, Algorithms, and Applications,” Englewood 
Cliffss, Bergen, 1993. 

[10] K. Wayne, “A Polynomial Combinatorial Algorithm for 
Generalized Minimum Cost Flow,” Proceedings of the 
31th Annual ACM Symposium on Theory of Computing, 
Atlanta, 1-4 May 1999, pp. 19-28. 

[11] E. Tardos and K. Wayne, “Simple Generalized Maximum 
Flow Algorithm,” 7th International Integer Programming 
and Combinatorial Optimization Conference, Graz, 9-11 
June 1999, pp. 1-16. 

[12] K. Wayne and L. Fleischer, “Faster Approximation Algo-
rithms for Generalized Flow,” Proceedings of the Tenth 
Annual ACM-SIAM Symposium on Discrete Algorithms, 
San Francisco, 1999. 

[13] Y. Cui, Y. Xue and K. Nahrstedt, “Max-min Overlay 
Multicast: Rate Allocation and Tree Construction,” IEEE 
International Workshop on Quality of Service, Montreal, 

Copyright © 2011 SciRes.                                                                                   CN 

http://dx.doi.org/10.1109/ICNP.2003.1249753
http://dx.doi.org/10.1145/945445.945474
http://dx.doi.org/10.1145/945445.945474
http://dx.doi.org/10.1145/507670.507695
http://dx.doi.org/10.1145/1030194.1015480
http://dx.doi.org/10.1109/INFOCOM.2006.140


B. LIU  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                   CN 

180 

June 2004. 

[14] N. Deo, “Graph Theory with Applications to Engineering 
and Computer Science,” Prentice Hall Inc., Upper Saddle 
River, 1994. 

[15] R. Cohen and G. Kaempfer, “A Unicast-Based Approach 
for Streaming Multicast,” Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications So-
cieties, Vol. 1, 2001, pp. 440-448.  
doi:10.1109/INFCOM.2001.916727 

[16] D. Kostic, A. Rodriguez, J. Albrecht and A. Vahdat, 
“Bullet: High Bandwidth Data Dissemination Using an 
Overlay Mesh,” Proceedings of the 19th ACM Sympo-
sium on Operating System Principles, Vol. 37, No. 5, 
2003, pp. 282-297. doi:10.1145/1165389.945473 

[17] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts, 
“On-line Routing of Virtual Circuits with Applications to 
Load Balancing and Machine Scheduling,” Journal of the 
Association for Computing Machinery, Vol. 44, No. 3, 
1997. doi:10.1145/258128.258201 

[18] B. Awerbuch, Y. Azar, S. Plotkin and O. Waarts, “Com- 

petitive Routing of Virtual Circuits with Unknown Dura-
tion,” Proceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, Philadelphia, 1995, pp. 
321-327. doi:10.1145/314464.314508 

[19] B. Awerbuch, Y. Azar and S. Plotkin, “Throughput- 
Competitive Online Routing,” Proceedings of the 1993 
IEEE 34th Annual Foundations of Computer Science, 
Washington, 1993. doi:10.1109/SFCS.1993.366884 

[20] A. Goel, M. Henzinger and S. Plotkin, “Online Through-
put-competitive Algorithm for Multicast Routing and 
Admission Control,” Proceedings of the 9th ACM-SIAM 
Symposium on Discrete Algorithms, Vol. 5, 1998. 

[21] Y. Cui, B. Li and K. Nahrstedt, “On Achieving Opti-
mized Capacity Utilization in Application Overlahy 
Networks with Multiple Competing Sessions,” 16th an-
nual ACM Symposium on Parallel Algorithms and Archi-
tectures, Barcelona, 27 - 30 June 2004, pp. 11-19. 

 

 
 
Appendix: Proof of Theorem 1 

Lemma 3: When 
 
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





    , the final flow  

The proof of Theorem 1 follows the proofs of the fol-
lowing lemmas. We denote OPT as the optimal value of 
the problem (5).  scaled by 

 
1

1
log

V

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 has a value at least (1- 2  )  

Lemma 1: MultiTrees-General terminates after at 
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1
logE 
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 iterations. 
times OPT. U is the length of the longest unicast route. 

Proof: We make the following denotations. Regarding 
a set of edge length assignments de (e ∈ε), the objective 
function in problem (7) is 

e E
 is the 

minimum overlay spanning tree in terms of de – re. We 
denote 

e ed d
e eL c d  Proof: Let us consider any edge e∈ε. Initially, de = β. 

The last time the length of e is updated, it is on a overlay 
spanning tree t whose length is less than  
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, and is increased by at most a factor 
of 1 +  . Since every augmentation increases the length 
of some edge by a factor of at least 1 +  , and R(t) ≤|V|, 
the number of possible augmentations is at most  

The objective of problem (7) is to minimize , sub-
ject to the constraint that . This con-
straint can be easily satisfied if we scale the length of all 
edges by 

edL
e  edd t R t d
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Lemma 2: Scaling the final flow by 
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yields a feasible primal solution. 

 is  to finding a set of edge lengths, such that 
edd t

minimized. Thus the optimal value of problem (7) is 

 
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d t
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Proof: In the ith iteration of the algorithm, the total 
flow on an edge e∈εincreases by a fraction 0 ≤ γ(i) ≤ 1 of 
its capacity. Its length de is multiplied by 1 + γ(i). Since 
(1+  γ(i)) ≥ (1+  )γ(i) when 0 ≤γ(i) ≤ 1, we have 
Πi(1+ γ(i)) ≥ (1+  )Σi γ(i) . Thus, every time the flow on e 
increases by its capacity, its length de increases by a fac-
tor of at least (1 +  ). Since de is initialized as β, and 
ends up at ost (1 + 

In each iteration of the algorithm, the length of an 
edge is updated. We use  to denote the length of e 
after the ith iteration. e

( )i
ed

)(0d   is the initial weight of de. 
Regarding e , we simplify the following denotations L 

, t de (i) and d(t de (i)), into ,  and 

( )id
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ed ( )iL ( )it  ( )id t . We 

also denote f(i) as the total flow that has been routed after 
the ith iteration. Then based on the edge length update 
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 
1

1
loge

V
c 





. 
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function (Line 10 in Table 7), we have 
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which implies that 

          0 1

1

i
i j j

j

L L f f d t  



        (22) 

Now let us consider the length function ), i.e., 
for each edge e ∈ E, its length is , since 
the length function is monotonically increasing. Thus, we 
have . Since  and  only 
differs by the constant β at each edge,  and  
are the same tree. In addition, the length of the tree using 

) versus  differs by at most β|V|U, U being 
the length of the longest unicast route. Hence 

   0id 

 0 0e e 

 id
   0

 id d

   0i 

it

       0i iL L  

   0id 

d
 it

 id

        
    

     
  

0 0 (0)

0

i i i

i i

L R t L L R t
OPT

d t d t V U

 




 



i

 

Substituting this bound on L(i) – L(0) in Equation (22) 
gives 
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since .   1R t 
Observe that, for fixe  i, this right hand side is maxi-

mized by setting 
d

  jd t
i

 to its maximum possible value, 
for all 0 . Let us call this maximum value   j 

  jd t . Hence 
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Since      0 0d t R t V U  , this implies that 
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   , the objective of 

problem (7). 
The algorithm stops when the value of  
     id t R t i . Let f∗ be the total flow routed, we 

have, 
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By Lemma 2,  
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 is a feasible solu-  

tion to problem (7). Then the ratio between the optimal 
value of problem (7) and the result returned by our algo-
rithm is 
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    , the above inequality be-

comes 

        22

1
(23)

1 ln 1 1 2 1

 
     

  
    

 

Now we are ready to proof Theorem 1 as follows. 
Proof: By Lemma 1, the algorithm terminates after at  

most 1

1
logE 





 rounds, each round containing a 

minimum spanning tree construction. When  
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
    , the maximum number of the itera-

tions needed by the algorithm is 
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Therefore, the running time is  

2 log 2log mst

E
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
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 

. 

Appendix: Proof of Theorem 2 

Proof: We prove that problem (7), the dual problem of (5) 
is NP-complete. 

The proof is by reduction from the 3-SAT problem. 
Let F be a 3-SAT formula in conjunctive normal form, 
where each clause consists of three literals from 

 1, , Vv v  and  1, , Vv v  . In Figure 10, we build an 
overlay network, in which testing if constraint (8) is vio-
lated, i.e., the separation oracle of problem (5), corre-
sponds to satisfying assignment of F. 

Besides server s, There are two types of peers in this 
graph. The first type of peers correspond to literals i  
and 

v
 1, ,iv i V   . The second type of peers corre-

spond to clauses of F. All peers have the same resilience 
factor. The overlay network is a complete graph, whose 
edges are grouped into two subsets, where edges in each 
subset carry the same length. Figure 10 only shows all 
edges with smaller lengths: they direct from s to all lit-
eral nodes, between each pair of literal nodes, and from 
each literal node to each clause node it appears in. 

It is obvious that, in terms of the literal set size, there 
exist an exponential number of minimum spanning trees 
in this graph, in which all edges have the same length. 
However, among these trees, we can decide if there ex-
ists a tree with the maximum resilience index only by 
solving the assignment F. 

Since all peers have the same resilience factor, the 
greatest resilience index a peer can get is via the shortest 
path from s to itself. This is straightforward for literal 
nodes since s has a direct edge to each of them. A clause 
node will have to connect to s either through a literal 
node directly (two-edge path), or through a pair of literal 
nodes (three-edge path). Only if F is satisfied can we 
prove the existence of the minimum spanning tree with 
the maximum resilience index, in which a two-edge path 
exists for all clause nodes. 

S 

V1 V2 V3 1v 2v  3v

1 2 3v v v  1 2 3v v v   1 2 3v v v 
 

Figure 10. Proof of theorem 2. 

Appendix: Proof of Theorem 3 

Proof: Our proof consists of two parts. In the first part, 
we show that any tree can be reorganized into the collec-
tion of a subset of the |V| + 1 trees shown in Figure 3 
with higher generalized throughput. In the second part, 
we prove that the tree selection priority the Multi- 
Trees-Star algorithm follows at choosing among these 
|V| + 1 trees guarantees optimality. 

In the first part, we examine an arbitrary tree t, with 
data flow rate  f t  and resilient index  R t . We in-
troduce a set  R t , which consists of all non-leaf nodes 
in t. It is obvious that . For each node  S R t

 v R t , we denote  y  as the number of children 
v has in t. Then the bandwidth contribution by v is 

nc t

   ync t f t . The resilient throughput contributed by v is 
the summation of generalized flow received by all its 
children. Under the non-concatenation model, this value 
is    y ync t f t r , the product of v’s bandwidth contribu-
tion and its resilient factor. Under the concatenation 
model, this value is     y tf ttc

  snc t

 r R



y , the product of 
v’s bandwidth contribution, resilient factor, and resilient 
index. Under both models, the resilient throughput con-
tributed by the server s is 

n v

f t , since the resil-
ience factor of s is 1. As such, t’s resilient throughput 
   f t R t  can be considered as the summation of resil-

ient throughput contribution by all nodes in  R t . 
We now reorganize t as follows. For each peer node  

v ∈ R(t), we select tree tv in Figure 3, where v is the 
relaying node. The flow rate of the selected tree is 

     1s fn t t Vc  , such that the bandwidth contribu-
tion of v equals to its contribution in t. In this tree, the 
resilient throughput contributed by v is    y ync t f t r  
under both concatenation and nonconcatenation models. 
Compared to the same value in t, v’s resilient throughput 
contribution in the new tree is higher in concatenation 
model, and stays the same in non-concatenation model. 
After conducting the above step for all peer nodes in R(t), 
the total bandwidth contribution by s would have reached 

      1snc tV f t V  , which is also its resilient 
throughput contribution. To consume the bandwidth still 
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left at s, we construct tree t0, the last tree in Figure 3, 
with rate       1s fnc t t V 1 . Since s must have 
at least one child to ensure connectivity, this value is no 
smaller than 0. Then s’s bandwidth contribution, as well 
as its resilient throughput contribution, adding over all 
trees constructed, is    snc t f t . This value stays the 
same as in t under both concatenation and non-conca- 
tenation models. Now we can claim that, with the above 
reorganization, the generalized throughput contribution 
by each node in R(t) is greater or equal to its contribution 
in tree t. Hence collectively, the aggregate generalized 
throughput of these trees is greater or equal to the gener-
alized throughput of t, with the same bandwidth contri-
bution by each node in R(t). 

As it is now clear that the 1V   trees shown in Fig-
ure 3 collectively achieve higher generalized throughput 
than any other tree, we proceed to the second part of our 
proof. Each tree tv except t0 only consumes the band-
width of s and the relaying peer v, and has its rate upper 
bounded by the minimum of  1c V vi  and the re-
maining bandwidth of s. t0 consumes solely the band-
width of s. As such, the bandwidth of s becomes bottle-
neck resource that all trees rely on. We introduce the 
“gain ratio” for each tree, which is the ratio of its gener-
alized throughput and the bandwidth contribution by s. 
For all trees except t0, such value is 1 yr V  1 , where 
rv is the resilience factor of the relaying peer v. For the 
last tree t0, such value is vic V . The tree selection of 
MultiTrees-Star is based on the descending order of 
their gain ratios. It is now clear that the algorithm fol-
lows a greedy strategy, in each round the tree with the 
highest gain ratio is chosen and fed with the maximum 
achievable rate, until the bandwidth of s is depleted. 

Appendix: Proof of Theorem 4 

Proof: Our proof consists of three parts. First, we show 

that the rate returned by MaxRate-Star is feasible to 
construct a tree. Second, we show that given a fixed rate, 
MostResilientTree-Star constructs the tree with the 
maximum generalized throughput. Third, we show that 
the number of iterations by SingleTree-Star is bounded 
by  2

O V . 
MaxRate-Star works in a trial-and-error fashion. In 

line 2, it sets the rate f to cs, the uplink bandwidth of the 
server, which the maximum possible value for f. From 
line 3 to 9, it finds sum, the total number of children that 
the server and all peers can support. If it is smaller than 
the target value V , a smaller value of f will be tried 
until sum ≥ V . Since the value of m will advance by at 
least 1 in each iteration, the algorithm runs in no more 
than V  iterations. 

Next, MaxRate-Star constructs a tree by the given 
streaming rate. It works in a greedy fashion by schedul-
ing the peer with the highest resilience factors to take the 
maximum number of children it can, starting from the 
server whose resilience factor is the maximum. Given the 
definition of a tree’s generalized throughput in the 
non-concatenation model, the tree constructed will return 
the highest generalized throughput. The number of peers 
scheduled by the algorithm is bounded by |V|. 

Finally, SingleTree-Star tries different streaming 
rates from the maximum rate returned by MaxRate-Star 
to the minimum value sc V , since any value smaller 
than that allows the server to stream to all peers, a tree 
with the maximum resilience index. Since in each itera-
tion, at least one peer’s outbound degree (number of 
children it can support) will increase by 1, it takes at 
most V  iterations to increase the server’s outbound 
degree by 1. Therefore, the number of iterations by 
SingleTree-Star is bounded by 

2
V , which makes the 

running time of MostResilientTree-Star  3
O V . 

 
 

 


