
Communications and Network, 2011, 3, 85-98
doi:10.4236/cn.2011.32011 Published Online May 2011 (http://www.scirp.org/journal/cn)

Copyright © 2011 SciRes. CN

TCP Window Based Congestion Control Slow-Start
Approach

Kolawole I. Oyeyinka1, Ayodeji O. Oluwatope2, Adio. T. Akinwale3, Olusegun Folorunso3,
Ganiyu A. Aderounmu2, Olatunde O. Abiona4

1Department of Computer Science, Yaba College of Technology, Lagos, Nigeria
2Comnet Lab., Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria

3Department of Computer Science, UNAAB, Abeokuta, Nigeria
 4Department of Computer Information Systems, Indiana University Northwest, Garry, USA
E-mail: ikoyeyinka@yahoo.com, {aoluwato, gaderoun}@oauife.edu.ng, oabiona@iun.edu

Received February 23, 2011; revised March 1, 2011; accepted April 8, 2011

Abstract

Transmission control protocol (TCP) has undergone several transformations. Several proposals have been
put forward to change the mechanisms of TCP congestion control to improve its performance. A line of re-
search tends to reduce speed in the face of congestion thereby penalizing itself. In this group are the window
based congestion control algorithms that use the size of congestion window to determine transmission speed.
The two main algorithm of window based congestion control are the congestion avoidance and the slow start.
The aim of this study is to survey the various modifications of window based congestion control. Much work
has been done on congestion avoidance hence specific attention is placed on the slow start in order to moti-
vate a new direction of research in network utility maximization. Mathematical modeling of the internet is
discussed and proposals to improve TCP startup were reviewed. There are three lines of research on the im-
provement of slow start. A group uses the estimation of certain parameters to determine initial speed. The
second group uses bandwidth estimation while the last group uses explicit request for network assistance to
determine initial startup speed. The problems of each proposal are analyzed and a multiple startup for TCP is
proposed. Multiple startups for TCP specify that startup speed is selectable from an n-arry set of algorithms.
We then introduced the e-speed start which uses the prevailing network condition to determine a suitable
starting speed.

Keywords: Data Communication, Network Protocols, TCP, Congestion Control, Slow-Start

1. Introduction

Originally, the Internet was designed to support best-
effort applications meaning that then it could only de-
liver data not necessarily guaranteeing the delivery.
However, before 1988, TCP was used to compliment the
Internet by ensuring that data delivery was reliable. This
same TCP version did not include congestion avoidance,
fast-recovery and fast-retransmit mechanisms. The direct
impact on user applications is low network utility deriva-
tion as a result of heavy network congestion. This re-
sulted in congestion collapse throughout the mid 80s.
This continues until [1] introduced the concept of con-
trol through the adaptation of the source rate using
packet loss. Jacobson algorithm has been modified vari-
ously by several researchers among these were [2-7].

Worthy of note is the domination of the Internet by
TCP flows carrying data from applications such as FTP,
HTTP, SMTP etc in the early days of TCP. However, the
nature of Internet traffic has changed dramatically such
that it includes traffic from other data transmission pro-
tocols, which are TCP unfriendly. Protocols and applica-
tions that are not malleable to the dynamics of the Inter-
net are reffered to as TCP-unfriendly. But, TCP in an
attempt to respond to the dynamics [8,9] of the Internet,
it penalizes itself by reducing transmission speed spe-
cifically, in the face of network congestion. However,
these TCP-unfriendly protocols and applications are ag-
gressive at bandwidth consumption and do not respond
to network congestion indications. TCP-unfriendly ap-
plications include video streaming, voice-over-IP, and
videoconference.

mailto:aoluwato@oauife.edu.ng

86 K. I. OYEYINKA ET AL

In simple terms, congestion control is the adaptation of
an application’s rate of packets injection into the Internet
in response to changing network conditions such as
packets loss and/or end-to-end delay. There are two types
of congestion control techniques—window- and rate-
based. In window-based approach, data transmission rate is
adjusted based on setting a congestion window size using
additive increase and multiplicative decrease (AIMD)
algorithm. While in rate-based approach, a set of equa-
tions is used to control data transimission speed. TCP
uses the window-based approach as a congestion control
technique.

The fate of Jacobson’s AIMD algorithm and its sub-
sequent modifications in the face of cross traffics and
heterogeneous flows is a motivation for this work. From
literature, substantial research efforts had been concen-
trated no the understanding, modification and imple-
mentation of window-based congestion control with par-
ticular focus on the congestion avoidance stage. But,
recent study has shown that attention should shift to-
wards better understanding and modification of win-
dow-based congestion control with focus on the slow-
start stage and acknowledgement congestion control.
Therefore, the focus of this paper is to review existing
proposals on TCP congestion avoidance and slow- start
mechasims with view to motivating a new direction in
the network utility maximisation.

The rest of this paper is organized as follws: Section 2
discusses various variants of TCP implementations, Sec-
tion 3 looks at some rate based congestion control pro-
posals. Section 4 discusses mathematical modeling of the
internet congestion control, Section 5 looks at the various
modifications of the slow start state of TCP, Section 6
analyses the various problems associated with each TCP
variants, Section 7 suggests future research directions
while section 8 concludes the paper.

2. Variants of TCP

Variants of TCP, which are of interest, include those
implemented already, yet to be implemented and em-
ploying convectional slow-start algorithm.

2.1. TCP Tahoe

The TCP Tahoe was released in 1988 by V. Jacobson in
[1] being the first implementation of TCP to employ
congestion control mechanism. Tahoe contains the AIMD
(additive increase, multiplication decrease) being its
control mechanism. Tahoe achieved congestion control
through adjusting its windows size additively to increase
and multiplicatively to descrease. AIMD at the initial
stage increases windows size exponentially but, after a

certain threshold, it switches to linear window size in-
crease i.e. by one packet per RTT before conges- tion
occurs (Additive increase). At this point, Tahoe switches
to the congestion avoidance state. If the ACK for a
packet is not received before a time out, the thresh- old
set is reduced by half and the congestion window is re-
duced to one packet (Multiplicative decrease). In sum-
mary, TCP Tahoe controls congestion as follows:
 When congestion window is below the threshold, the

congestion window grows exponentially (slow start
state)

 When the congestion window is above the threshold
the congestion window grows linearly (additive in-
crease) i.e. congestion avoidance

 Whenever there is a timeout, the threshold is set to
one half of the current congestion window and the
congestion window is set to one while the packet is
retransmitted (multiplicative decrease)

 Algorithms implemented are slow start and conges-
tion avoidance.

2.2. TCP Reno

Proposal to modify Tahoe was given in [11]. Like its
predecessor, Reno sets its congestion window to one
packet upon a time out (RTO). However, Reno extended
its algorithm to include the fast retransmit mechanism.
The fast retransmit involves the re-transmission of a
dropped packet if three duplicate ACKs for a packet are
received before the RTO. Reno also introduces the fast
recovery mechanisms which prevent transmission to
re-enter the slow start state after a fast retransmit. Instead
the window size is halved and the threshold is adjusted
accordingly and TCP remain in congestion avoidance
until a timeout occurs. This is discussed in detail in [3,5].
TCP Reno became the standard TCP algorithm imple-
mented in most computers. Algorithms implemented by
Reno are slow start, congestion avoidance, fast retrans-
mit and fast recovery.

2.3. TCP New Reno

The new-Reno TCP includes a change to the Reno algo-
rithm at the sender end with a view to eliminate Reno’s
wait for a retransmit time-out whenever multiple packets
are lost from a window [7,12]. This change modifies the
sender’s behaviour during fast recovery. When this hap-
pens, New Reno does not exit from the fast recovery
state as in the case of Reno, but waits for the receipt of
all the outstanding ACKS for that window.

The followings are the summary of New-Reno fast
recovery actions;
 It notes the maximum packet s outstanding while en-

Copyright © 2011 SciRes. CN

K. I. OYEYINKA ET AL

87

tering fast recovery
 When a new ACK is received and it acknowledges all

the outstanding packets, then fast recovery is exited
and cwnd is set to half the value of ssthresh, then it
transits to the congestion avoidance state. But, if a
partial ACK is received, then, it assumes the next
packet in the link is lost and tries to retransmit

 It exits fast recovery when all data in the window is
acknowledged [6].

2.4. SACK (TCP with Selective

Acknowledgement)

One challenge with the New Reno algorithm is its inabil-
ity to detect other lost packets until the ACK for the first
retransmitted packet was received. This implies that New
Reno suffers from the fact that the detection of each
packet loss takes one RTT. Hence selective acknowl-
edgment (SACK) was proposed by [13]. SACK is an
extension of TCP Reno and TCP New Reno. It intends to
solve two problems of TCP Reno and New Reno i.e.
detection of multiple packet loss and Retransmission of
more than one lost packet per RTT.

SACK retains the slow start and fast retransmits of
Reno. It also has the coarse grained time out of Tahoe.
SACK algorithms specify that instead of cumulative ac-
knowledgement of packets as contained in TCP Tahoe,
Reno and New-Reno, Packets should be acknowledged
selectively. This requires each ACK to contain an entry
for which packet that is being acknowledged. This en-
ables the sender to figure out which packets have been
acknowledged and which ones are still outstanding.

SACK specifies that whenever a sender enters into
fast recovery state, a variable “pipe” be initiated and
used to estimate the number of packets that are missing
along the path. It then sets the size of cwnd to half its
current size as usual.

Each time an ACK is received, the size of the pipe is
decreased by one and when a packet is transmitted or
retransmitted, the pipe is increased by one. Whenever the
size of the pipe becomes smaller then cwnd, it checks
which packets are yet to be acknowledged and retrans-
mits immediately. If there are no outstanding ACK, it
sends a new packet. Thus the sender only sends new or
retransmitted packet if the pipe is less the cwnd. This
way SACK can send more than one lost packet in a sin-
gle RTT. Use of pipe variable separates the decision of
when to send a packet from which packet to send.
Other features of SACK are as follows:
 The score board: The sender maintains a data struc-

ture call scoreboard. This was proposed by [13]. The
scoreboard remembers all the ACKS that has been
received for the data sent. Hence the sender is able to

deduce which packet has not been acknowledged and
resend them when it is able.

 When a retransmitted packet is dropped, SACKs de-
tects this through the retransmit timeout. This packet
will be retransmitted and then SACKs transits to the
slow-start state.

 Recovery ACK: The sender exits fast recovery when
a recovery acknowledgement is received acknowl-
edging that all outstanding data when fast fecovery
was entered have been received.

 Partial ACKS: SACK handles partial ACKs in a spe-
cial way. Partial ACKs are those received during Fast
Recovery but do not take the sender out of Fast re-
covery. When a partial ACK is received, the pipe is
decreased by two packets rather than one, at first,
when fast retransmit is initiated, the pipe is decreased
by one for the lost packet and increased by one for
the retransmitted packet in subsequent partial ACKs
received, the pipe was incremented when the packet
was transmitted initially but the pipe was never de-
creased when that packet is assumed lost and re-
transmitted. Hence when the succeeding partial ACK
arrives, it represents two packets (the original packet
and the retransmitted packets) Hence the pipe is dec-
remented by two rather than one.

 The max burst parameter: This limits the number of
packets that can be sent in response to a single in-
coming ACK packet. This is still at the experimental
stage.
Other TCP congestion control algorithms that use se-

lective acknowledgement include that of [4,14] etc. One
major drawback of the SACK algorithm is the relative
difficulty in implementation of selective acknowledge-
ment.

2.5. TCP Vegas

The TCP congestion control schemes that have been de-
scribed so far use packet loss based approach to measure
congestion. There is a class of congestion control algo-
rithms that adapt its congestion window size based on
end-to-end delay. This approach originated from [15]
and is presented by [16,17] as TCP Vegas.

The followings are the differences between TCP Ve-
gas and TCP Reno:
 In the slow start-state, congestion control was in-

corporated by a deliberate delay in congestion win-
dow growth.

 When packet-loss occurs, TCP Vegas treats the re-
ceipt of certain ACKs, as a trigger to check if a time-
out should occur [16].

 It updates its congestion window based on end-to-end
delay instead of using packet-loss as the window up-

Copyright © 2011 SciRes. CN

K. I. OYEYINKA ET AL

Copyright © 2011 SciRes. CN

88

date parameter.
Vegas extended Reno re-transmission strategy. It keeps

track of when each packet was sent and calculates an
estimate of RTT for each transmission. This is done by
monitoring how long it took each ACK to get back to the
sender. Whenever a duplicate ACK is received, it per-
forms the following check:

if (current RTT > RTT estimate)
If this is true, it retransmits the packet without waiting

for 3 duplicate ACK or a time out as in Reno [17]. Hence,
Vegas solves the problem of not detecting lost packets
when the window is very small i.e. less than three and
could not receive enough duplicate ACKs.

TCP Vegas congestion avoidance behavior is different
from other TCP implementations. It determines congest-
ion states using the sending rate. If there is a decrease in
calculated rate of transmission as a result of large queue
in the link, it reduces its window. When the sending rate
increases, the window size also increases.

2.6. Delay Based Congestion Control Algorithms

These types of algorithms use queuing delay to signal the
need for window adjustment. The issue of fairness comes
with these algorithms. Delay based congestion control is
attractive because it can solve the problem of fairness
using queuing delay. To implement delay based conges-
tion control, it is necessary to measure propagation delay.
Propagation delay is the time it takes a packet to travel
from the sender to its destination. The propagation delay
is usually set to the smallest observed RTT. There are
several observed problems with the estimation of the
queuing delayed. Estimating queuing delay is challeng-
ing if the RTT contains more elements then affixed

propagation delay, e.g. retransmission delay in wireless
link, a high loaded Internet link etc. There are very few
researches done on delay-based congestion control in
wireless mobile network with the exception of [18] which
proposed delay based congestion control scheme for
commercial CDMA (Code Division Multiple Access).

Other lines of researches are in the area of high-speed,
large delay networks. Prominent among these are the
High Speed TCP (HSTCP) proposed by [19] and scal-
able TCP (STCP) proposed by [20] which are experi-
mental protocols that attempt to improve TCP perform-
ance under large bandwidth-delay product. They make
TCP increments rule become more aggressive. Loss-
delay based Strategy was used by TCP Africa, Com-
pound TCP [21] and TCP Illinois [22]. These protocols
try to increase window size more aggressively than TCP
New Reno as long as the network is not fully utilized and
it switches to AIMD behavior of Reno when the network
is near congestion.

2.7. Summary of Proposed TCP Congestion

Control Implementation

Henceforth, TCP Tahoe, Reno and New Reno are re-
ferred to as New- Reno. This is the transport protocol of
choice and it is implemented in over 90% of Internets
traffic today. It became officially recognized in 2004 [6].
But, currently, Compound TCP which is the version im-
plemented in Ms-Window 7 is expected to grow in us-
agen across the Internet. Table 1 shows the comparison
between TCP New-Reno and other proposed TCP algo-
rithms.

In Table 1, the various proposed TCP variants, are
categorized based on their control mechanism or type of

Table 1. Variants of TCP congestion control implementation (using TCP new reno as basis).

Protocol Type Purpose

TCP New-Reno [6] Loss based The standard TCP protocol

STCP [20] Loss based Higher throughput with high capacity and large delay

HSTCP [19] Loss based Higher throughput with high capacity and large delay

BIC – TCP [23] Loss based Higher throughput with high capacity and large delay

CUBIC [24] Loss based Higher throughput with high capacity and large delay

TCP Vegas [17] Delay based Higher through puts and reduced loss rate

Fast TCP [25] Delay based Higher throughput with high capacity and large delay

TCP Africa [26] Lossdelay based Higher throughput with high capacity and large delay

Compound TCP [21] Lossdelay based Higher throughput with high capacity and large delay

TCP Illinois [22] Lossdelay based Higher throughput with high capacity and large delay

West wood + [27] Bandwidth estimation Higher throughput over wireless networks. High capacity & large delay networks.

XCP [28] Extra signaling
Higher throughput over wireless networks. Also for high capacity and large delays. Smaller
queues. Separate fairness control

K. I. OYEYINKA ET AL

Copyright © 2011 SciRes. CN

89

feedback. It also considers the performance challenge of
New-Reno which it attempts to address. The TCP like
algorithms highlighted uses control mechanism like loss-
based, delay- based, loss-delayed based, bandwidth esti-
mating, and extra signalling. TCP New-Reno was up-
graded from experimental status to full protocol status in
2004. Several proposals and researches had been put
forward to improve its performance. Many of these pro-
posals tend to improve TCP in a high speed network
where it has been showed that TCP mechanism may lead
to network resources underutilization. [29]. TCP West-
wood proposed bandwidth estimation as congestion
measure [27]. It specified that a TCP sender continuously
computes the connection bandwidth estimate by properly
averaging the returning ACKs and the rate at which the
ACKs are received. After a loss has occurred, the sender
uses the estimated bandwidth to properly set the sending
rate and the congestion window. This is an improvement
on standard TCP which half its window on loss detection
[30]. However, TCP Westwood hase not proved any bet-
ter in term of stability and fairness when it co-habit with
the standard TCP and its suitability for general deploy-
ment has not been ascertained. Other proposed protocols
in this category include XCP [31] which requires modi-
fication to router algorithm. However, it is not visible to
modify all existing routers’ algorithms hence XCP will
remain experimental protocol for a long time. HSTCP
[19] was also designed for high bandwidth delay product.
It uses loss-delay to detect congestion. Wei et al. [25]
proposed the FAST TCP which uses delay instead of loss
to signal congestion. Other protocols in this category
include BIC TCP [23], STCP [20], CUBIC TCP [24],
TCP Illinois [22] etc. These protocols deal with modify-
ing the window growth function to TCP to match large
bandwidth-delay product. This appears easy but the issue
of fairness that comes with these protocols is enormous
and remains a challenge. These fairness issues include
both intra and inter-protocol fairness. In addition, none
of these protocols targets the startup behaviour of AIMD.

3. Rate-Based Congestion Control Scheme

According to [32], a great percentage of the current re-
searches on congestion control concentrate on the use of
network utility maximization framework [33] as guid-
ance for design and analysis [28].

The optimization-based framework introduced by [33]
formed the derived operating point for congestion control
algorithms. The framework, according to [34] associates
a utility function with each flow and maximizes the ag-
gregate system utility function subject to link capacity

constraints. This is referred to as Kelly’s system problem
and it is an optimization problem.

Under the rate based congestion control, congestion
control schemes can be viewed as algorithms that com-
pute the optimum or sub-optimum solutions to the
Kelly’s system optimization problem. Congestion control
schemes can be categorized into three: primal, dual and
primaldual.

3.1. Primal Algorithms

Here the endpoints adapt the source rates dynamically
based on the route prices and the links select a static law
to determine the links prices directly from the arrival rate
[35].

3.2. Dual Algorithms

This is a direct opposite of the primal algorithms, the
links adapt the links prices dynamically based on the link
rates and the end points select a static law to determine
the source rates directly from the route prices and other
source parameters [28,35,36].

3.3. Primal-Dual Algorithm

The algorithms in primal family measure congestion us-
ing the links aggregate rate. This involved the averaging
of feedback from the network by end points (sources).
On the other hand, the algorithms in the dual family cal-
culate the source rate from the route congestion measures
which corresponds to averaging the source rate before
the sources get a feedback of explicit congestion infor-
mation. The primal-dual algorithms viewed congestion
control as decomposable into two parts: Congestion
avoidance at the source and active queue management at
the links. Primal-dual algorithms relate rate change with
route congestion measure at the source and relate packet
marking probability change with link aggregate rate at
the router [34,37,38]. An example is the work of Liu [34],
where a new class of algorithms is introduced, which is
of primal-dual type. That is, they feature dynamic adap-
tations at both the source and the link ends.

Stability of primal mechanism under communication
is analyzed by [39,40] and reported in [32]. Paganini et
al [41] proposed a dual algorithm and showed that it is
stable in arbitrary topologies and delays. Alpcan and
Basar’s [37] algorithm for primal-dual was shown to be
stable in the absence of delay. It was also proved to be
stable for networks with a single bottleneck link and
several users when each user may have different RTT.

90 K. I. OYEYINKA ET AL

4. Mathematical Modelling of the Internet
Congestion Control

Prior to 1997, when Kelly [33] introduced the system
problem, researches in congestion control was intuitive,
based on laboratory experiment, simulation and valida-
tion. But with the Kelly [35] paper titled “Rate control in
Communication Networks”, research community began
to model congestion control mathematically. There has
been a vast research effort in this area. Currently, re-
search activities in this area are large and quite a number
of models have been proposed in literature. One impor-
tant research direction is the search for new models to
replace the Jacobson algorithm [1].

Jacobson AIMD has worked so well on the Internet
metamorphosising from a few number of users/network
to a very big giant networks with million of networks
and over a billion users world wide. However, the ade-
quacy of these models has been questioned by many re-
searchers in today’s and future Internet traffic which is
changing rapidly. Currently over 80% of the Internet
traffic is TCP traffic. However this ratio will change
rapidly in the face of anticipated growth of traffics like
multimedia application protocol, voice over Internet,
video conferencing, games etc. which use protocols that
are quite different from TCP. While TCP is self regulat-
ing in the face of congestion, other protocols that these
heterogeneous traffics are using are quite aggressive and
hence the case of fairness comes in when TCP traffic
share a bottleneck link with other traffics on the Internet.

Hence mathematical models of congestion control are
being proposed in literature. Moller [32] classified mod-
els for congestion control and related tools as;
 Packet level models: A packet level model accounts

for the location of each individual packet as the pack-
ets are queued and forwarded by the network. The
system state evolves as a series of discrete events.
Events in Internet are arrival and departure of packets,
and timeouts.

 Fluid flow models: A fluid flow model sees the data
transport as a continuous fluid, with no packet
boundaries. State variables vary continuously, and are
described using differential equations. In congestion
control, fluid flow models do not capture all details of
the dynamics. Instead the state variables represent
averages of the true system state.

 Hybrid Models: Here, evolution of the state is a result
of discrete events together with continuous changes
between events. A continuous model is used for
queuing dynamics and end host actions while action
like multiplicative decrease of TCP is modeled as
discrete event.

Jacobson’s congestion control algorithm operates in
two phases: slow start and congestion avoidance phase.

4.1. Slow Start Phase

1) cwnd = 1; Start with a window size of 1
2) while (ssthresh ≠ cwnd OR not 3 DUPACK) {
 IF ACK then
 cwnd=cwnd + 1; } Increase the window size by 1 for every

ACK received. Repeat until:
The ssthresh is reached OR packet-loss is detected

3) if ssthresh == cwnd then
Transit to congestion avoidance; If ssthresh is reached, go
to congestion avoidance phase.

4) if 3DUPACK then
 ssthresh = 0.5 * cwnd;
 cwnd = 1;

branch to step 2; If a packet loss is detected

Note: Set the initial value of ssthresh to fraction (say
half) of the maximum window size. This is determine at
the beginning of transmission

4.2. Congestion Avoidance Phase

1) Increase the window size by 1 (cwnd) for every
ACK received. This implies that the window size is in-
creased by 1 after all ACKs for that window has been
received.

2) When packets loss is detected, decrease the window
size, then transit to slow start phase.

Detecting and decreasing the window size has been
the major focus of researched in literature and quite a
huge number of proposals have been made resulting in
the formulation of different TCP variants like TCP-
Tahoe, TCP-Reno, TCP SACK, TCP New-Reno etc. For
the purpose of modeling hence forth we will refer to all
of them as TCP New-Reno. In TCP New-Reno, packet-
loss is detected either through:
 The loss of 3 consecutive packets or
 By the RTO time-out

4.3. The Slow Start Phase Analysis

To explain the algorithm of Jacobson [1] further, let the
following example be considered as presented in [42].
Assume a single TCP source is accessing a single link
that was discussed in [43]. Suppose c is the link capacity
in packets/second. Let r denote the round trip propaga-
tive delay and T (the sum of propagation delay and
queuing delay) is given by

T = r + 1/c

Now suppose that link capacity is 50 Mbps and packet
size of 4000 bytes then

c = 50,000,000 4000

c = 12,500 packet sec

1 c = 0.08 msec

Copyright © 2011 SciRes. CN

K. I. OYEYINKA ET AL

91

Assume the transmission is over a distance of 2000 km
of fibre-optic with speed of light = 3 × 108 m/sec (ignore
the refractive index of transmission media)
Round trip propagation delay (r);

r = 3 82 10 3 10

r = 2 3 × 10−5

r = 0.66 × 10−5
r = 6.6 × 10−6

r = 6.6 msec.
T = 6.6 + 0.08 msec
T = 6.68 msec

The Product cT is called bandwidth-delay product.
Denote by B, the buffer size of the link (route).
Assumptions:

1) cT ≥ B
2) Propagation delay from source to sink is negligible
3) Propagation delay from link to source is T.
Note that packets are released by the source at rate c
and they are released at 1/c seconds.
ACKs in transit = cT
Number of packets in buffer = B
Total unacknowledged packets = cT + B

Therefore, maximum window size,
wmax = cT + B

any increase above this quantity will lead to buffer over-
flow and packed loss. If packet loss occurs, as explained,
the ssthresh will be set to half the current window size.
(this will be slightly larger than wmax)

Let us assume that
ssthresh = mT 2B

where c ≤
Hence, the transitions at the slow start can be viewed

as presented in Table 2. In Table 2, a cycle refers to the
time it takes the window size to double. At time t = 0, the
source released the first packets, the ACK for this packet
got to the source after one RTT which is denoted by T
time units. The receipt of this ACK increases the window
size from 1 to 2 and triggers the release of 2 packets into
the network. This begins the next cycle. It takes 1 RTT
for the first of the packets to be acknowledged. The
window size becomes 3 and only 1 unACKed packet is
in the network, hence 2 additional packets are released
into the network when the next ACK is received, win-
dow size is increased to 4 at time t = 3T and the next,
cycle is started. Then remains 2 unACKed packets in the
network, hence 2 additional packets are released [42].
From the table, we observed the following:

Window size is given by

W nT+ m c = 2n – 1 + m + 1, 0 ≤ m ≤ 2n–1 (1)

Queue length is given by

Q μT+ m c

Table 2. Slow start transition cycles (source: modified from
[42]).

Cycle Time
Acked
packet

Window
size

Max packet
released

Cycle 0 O - 1 1

Cycle 1 T 1 2 3

Cycle 2
2T
2T + 1/c

2
3

3
4

5
7

Cycle 3

3T
3T + 1/c
3T + 2/c
3T + 3/c

4
5
6
7

5
6
7
8

9
11
13
15

Cycle 4

4T
4T + 1/c
4T + 2/c
4T + 3/c
4T + 4/c
4T + 5/c
4T + 6/c
4T + 7/c

8
9
10
11
12
13
14
15

9
10
11
12
13
14
15
16

17
19
21
23
25
27
29
31

Cycle 5

5T
5T + 1/c
5T + 2/c
…

16
17
18

17
18
19

33
35
37

1Cycle = Time for which it takes the window size to double

Max queue length is a cycle
Qm = 2n – 1 + 1 (3)

Max window size in a cycle
Wm = 2n (4)

Note that Qm wm 2 ≤ cT B 4 and Qm ≤ B
At the slow start state, the sufficient condition for

buffer not to overflow;
 cT B 4 ≤ B
B ≥ cT 3
If B cT 3 , buffer overflow occurs because
Wmax = cT + B, meaning that Q B.

Therefore at the point where the window size is
Wmax 2 ,

Q = Wmax 4
Q = Wmax = cT B 4 B
from here
B cT 3

and overflow does occur.
From the foregoing, there are two possible cases:
Case 1: B ≥ cT 3 (Buffer does not overflow)
Denote the length of the slow-start phase by Tss. From

the Table 2 observe that
W(t) 2t T
Hence Tss is given by
2Tss/T = cT B 2
Tss = Tlog2 cT B 2

 = m + 2, 0 ≤ m ≤ 2n–1 (2) Case 2: B cT 3

Copyright © 2011 SciRes. CN

92 K. I. OYEYINKA ET AL

In this case, there will be two slow start phase. The
first phase, buffer overflows and there is a packet loss
which reduces the window size to 1 and slow start is
re-entered.

During the first slow start

Tss1 = T log2 2B+T

(the additional T is added because it takes one RTT to
detect packet loss).

Nss1 = 2B
Window size at packet loss is

min (4B – 2, ssthresh)
where ssthresh = cT B 2

In the second slow-start

ssthresh = min 2B 1, cT B 4

(Since ssthresh is half of window size)
Hence

Tss2 = T log2 min 2B 1, cT B 4

Nss2 = min 2B 1, cT B 4

Generally
Tss = Tss1 + Tss2

and
Nss = Nss1 + Nss2

5. Modifications of Slow-Start

There have been several modifications of the slow start
stage to overcome the problem of performance associ-
ated with it. From literature, there are three lines of stud-
ies. A group of researchers used capacity estimation
techniques to estimate available bandwidth and set the
congestion window size using the estimated bandwidth.
In this group belongs the work of Patridge [44] which
proposed Swift Start for TCP. Swift Start used an initial
window (cwnd) of 4 packets and thereafter estimates the
available bandwidth in the first round trip time. It uses
the estimated bandwidth to calculate the bandwidth-
delay product (BDP) of the network and set the cwnd to
a percentage of the calculated BDP. Lawas-Grodek and
Tran [45] carried out a performance evaluation of Swift
Start and submitted that Swift Start improves network
performance when the network is not congested however
when the network overflows, the estimation of the cwnd
drift away from accuracy. This is due to retransmission
of delayed or lost ACKs and RTO timeouts.

Another proposal that uses capacity estimation to de-
termine the size of the congestion window is Restricted
slow-start by [46]. Restricted Slow start used a PID con-
trol algorithm as proposed by [47] to determine the rate
of increase at the slow start phase. In PID control ap-
proach, the controller calculates an output that deter-
mines the new value of the sender cwnd. This approach

has extra overhead for the computation of PID and fur-
thermore, it was not designed to work in large BDP net-
work.

Shared Passive Network Performance Discovery
(SPAND) proposed by [48] is another technique classi-
fied into this group. SPAND collects current network
state and gains optimal initial parameters to determine an
initial sending rate. The weakness of this approach is in it
needs for leaky bucket pacing for outgoing packets
which can be costly and problematic.

Adaptive Start (Astart) by Ren Wang et al [49] uses
the Eligible Rate Estimation (ERE) mechanism proposed
by TCP Westwood adaptively and repeatedly resetting
ssthresh during the slow start phase. When ERE indicates
that there is more available capacity, the connection in-
creases its cwnd at a faster rate, on the other hand, when
ERE indicates that the network is close to congestion, the
connection switches to congestion avoidance limiting the
risk of buffer overflow.

Capstart proposed by Canvendish et al. [50] estimates
path capacity after the TCP session has been established
and uses it to tune TCP to deliver higher transfer speed.
Capacity estimation is done using two network scenarios.
These are capacity expansion and capacity reduction
which is defined in relation to TCP sender speed and
path bottleneck speed. If bottleneck link capacity is
greater than sender speed then the capacity expanded
otherwise, it is capacity reduced. This protocol is capable
of adjusting itself to the available bandwidth whether
high or low, however, it did not take other network con-
ditions into account, for instance, network dynamism
such as available bandwidth at various moments de-
pending on changes occurring within the network such as
connections establishments or terminations. The second
group employs parameter-based manipulations to deter-
mine transmission speed. Commonly used network pa-
rameters are the ssthresh and cwnd. TCP Fast Start by
[51] records the recent network parameters (cwnd and
ssthresh) to reduce the start time of a new connection and
to reduce transmission delays. These parameters may be
too aggressive or too conservative when network condi-
tion changes. Chen et al. [52] proposed the collection of
recent history information on the network which shall be
used to initialize parameters for a new connection. Pa-
rameter setting based history information can not fit the
dynamic changes of network and violates slow start
principle.

In TCP Vegas, [17] restricts the growth of cwnd by
doubling cwnd only at every other RTT. TCP Vegas can
not handle multiple packet losses in one window. Lim-
ited slow start by [53] aims at eliminating exponential
growth of cwnd which causes large packet losses. The
approach limits the exponential growth up to a max-
ssthresh parameter value over which the cwnd is in-

Copyright © 2011 SciRes. CN

K. I. OYEYINKA ET AL

93

creased by a fraction of the current cwnd value. This
replaces the exponential growth with a near linear cwnd
growth when the congestion window size is greater or
equal to max-ssthresh. This will make the congestion
window grow slowly after max ssthresh is reached and
this makes limited slow start not suitable for large capac-
ity network.

Other proposals in the second group include New Pa-
rameter-Config Based Slow Start Mechanism (P-Start)
by [27] increases the congestion window exponentially
while the cwnd is less than ssthresh 2 , otherwise in-
creases by ssthresh cwnd 2 and gradually appro-
aches ssthresh until (ssthresh-cwnd) is less than the fac-
tor of d where ssthresh 2 ≥ d ≥ 2. There after congestion
avoidance is entered. The major feature of P-start is in
the manner of cwnd increases that is small amplitude at
start and transition to congestion avoidance. Changing in
sending rate is smooth and has minor impact on the
flows in the network; however, P-start may waste band-
width and may not get to maximum transmission speed
in good time thereby performing worst than slow start. In
addition, P-start will perform poorly in a high BDP net-
work thereby not suitable for future gigabit networks.

The third group obtains information and/or request
assistance from the network/link. Congestion manager
proposed by [54] collects congestion status information
and feedback from receivers and share it with endpoints
and connections in the network. This will enable connec-
tions determine the congestion status of the network and
thereby determine an initial sending rate. The congestion
manager has a weakness of being beneficial to only con-
nections that are initiated almost at the same time and
secondly, it is only those connections and endpoints that
supplied feedback that can benefit from this scheme.
Some techniques require explicit network assistance to
determine a practicable starting sending rate. Prominent
among this group is the work of [55] called Quick Start
explained below.

According to Floyd et al. [55], the experimental
Quickstart TCP extension is currently the only specified
TCP extension that realizes a fast startup. A large
amount of work has already been done to address the
issue of choosing the initial congestion window for TCP.
RFC 3390 [56] allows an initial window of up to four
packets. Quick start is based on the fact that explicit
feedback from all routers along the path is required to be
able to use an initial window larger than those specified
by RFC 3390.

In quick start proposals, a sender (TCP host) would
indicate its intention to send at a particular rate in bytes
per second. Each router along the path could approve,
reduce, disapprove or ignore the request. Approval of the
request by the router indicates that it is being underuti-
lized currently and it can accommodate the sender’s re-

quested sending rate. The quick start mechanism can
detect if there are routers in the path that disapproved or
do not understand the quick start request. The receiver
communicates its response to the sender in an answering
TCP packet. If the Quick start request is approved by all
routers along the path, then the sender can begin trans-
mission at the approved rate. Subsequently, transmis-
sions will be governed by the default TCP congestion
control mechanism. If the request is not approved, then
the sender transmits at the normal TCP startup speed [57].

According to [57], TCP is effective for both flow
control and congestion control. The TCP flow control is
a receiver-driven mechanism that informs the sender
about the available receive-buffer space and limits the
maximum amount of outstanding data. Flow control and
congestion control are independent and the size of re-
ceive buffer space depends on the capacity of the re-
ceiver network. However, if the TCP is used with a link
with large bandwidth-delay product, both congestion
window and flow control window need to be large in
other for TCP to perform well [55]. This makes both
flow control and congestion control to overlap. The
Quickstart TCP extension assumes independence of flow
and congestion control. This is not true which makes it
inappropriate for the global internet. In addition, most
routers and other network components on the global
Internet are not built with capabilities to be quick start
aware which implies that they need either to be replaced
or modified before it can be used. Hence, we propose a
milder approach to fast startup which we call (E-speed
startup). This is a form of fast startup that does not need
routers’ response or modification; rather it builds
end-to-end principles. This proposal is compatible with
the current Internet as well as the future Internet.

Table 3 summarizes the various slow start modifica-
tions that exist in literature. E-speed start combines the
feature of the two groups (Parameter based manipulation
capacity/bandwidth estimation).

6. Discussion on Problems Associated with

Individual TCP Variant

The control mechanism of TCP Tahoe has a problem. If
a packet is lost, the sender may have to wait a long pe-
riod of time for a time-out to occur for such loss to be
detected and retransmitted. The data may not be retrans-
mitted for a very long time in networks with large delay.
TCP Reno was designed to solve this problem. Although
Reno perform well over TCP Tahoe when the packet
losses are small, its performance is not good when there
are multiple packet losses in a single RTT. Reno can
handle a single packet loss. If there are multiple losses,
the first duplicate ACKs received will trigger the re-
transmission of the first packet that was lost. The next

Copyright © 2011 SciRes. CN

K. I. OYEYINKA ET AL

Copyright © 2011 SciRes. CN

94

lost packet will be detected when the sender receive the
ACK for the retransmitted data after one RTT. In addi-
tion cwnd may be reduced twice for packet losses which
occurred in one window. Another problem of RENO is
that if the window is very small when the loss occurs, the
sender may not receive enough duplicate ACKS for a
fast retransmit. Hence it has to wait for a time out to oc-
cur before detecting that the packet is lost. These prob-
lems are solved with the introduction of TCP New-Reno.

One problem with the New-Reno algorithm is its in-
ability to detect any other packet-loss in the window.
This implies that New-Reno suffers from long delay in
detecting each packet loss i.e. it takes more one RTT.
Hence selective acknowledgment (SACK) was proposed
by [6]. SACK is an extension of TCP Reno and TCP
New-Reno. It intends to solve the problems of TCP Reno
and New Reno i.e. detection of multiple packet loss and
Retransmission of more than one lost packet per RTT.
One major set back of SACK is in its selective acknowl-
edgement which is a bit cumbersome to implement.

Delay-based congestion control algorithms were pro-
posed to solve the problems associated with the loss
based congestion control models. Most delay based con-
gestion control algorithm has fairness problems when
sharing link with TCP New Reno. This is because they
become more aggressive when they are at the peak of
transmission when they suppose to slow down transmis

sion [26]. BIC-TCP and CUBIC try to solve this problem
by monitoring the window size when it experienced a
packet loss and slows down transmission as the window
size approach this monitored window size. [24]. Table 4
summarizes the deficiencies of the various TCP Variants:

7. Research Direction

Currently there are three different research directions
intending to develop or make TCP better: Improving
TCP performance over links with large bandwidth delay
product, improving TCP performance over wireless and
reducing the queuing delay at bottleneck links thereby
improving quality for real time applications. Other focus
of research includes finding a suitable startup speed for
slow start most especially in a high bandwidth delay
product. TCP modifications of the future will work well
with gigabit networks as well as backward compatible
with low speed networks, a protocol fair to both itself
and to other flows in the network i.e. intra and inter pro-
tocol fairness. A new line of research bothers on conges-
tion control of ACK packets. Controlling acknowledg-
ment packets congestion is a novel problem and differs
from the techniques used in controlling data packet con-
gestion. This is a new research direction that requires
investigation.

Table 3. Modifications of slow start.

Protocol Type Purpose

TCP Vegas [16] Parameter based Double cwnd every other RTT.

TCP Fast Start [51] Parameter based
Used network parameters to reduce connections’ start time and trans-
mission delay.

Recent history information collection [58] Parameter based
Collects recent history information and use it to initialize connection
parameters.

Limited slow start [53] Parameter based Eliminates the exponential growth of cwnd.

P-Start [59] Parameter based
Increases cwnd with small calculated amplitude after ssthresh/2 has
been reached.

FAST-FOR-WARD START [60] Parameter based
uses low-priority data segments, namely, supplement segments to
calculate cwnd.

SPAND ([48] Bandwidth Estimation Obtain network state to determine initial sending rate.

Swift Start [44] Bandwidth Estimation
Used initial packet of 4 and then estimate available bandwidth in the
first round trip.

PACED START [60] Bandwidth Estimation
Used the difference between the data packet spacing and the acknowl-
edgement spacing for estimating appropriate cwnd.

Astart [49] Bandwidth Estimation
Used Eligible Rate Estimation mechanism to determine available band-
width to adaptively and repeatedly reset ssthresh and cwnd.

Restricted slow start [46] Bandwidth Estimation Used PID control algorithms to calculate a value of the sender cwnd

Capstart [50] Bandwidth Estimation Estimate path capacity and tune TCP to deliver at higher transfer speed.

Congestion Manager [54] Require network assistance Collects congestion status information and share with endpoints.

Quick Start [55] Require network assistance
Obtain explicit feedback from all routers along the path to transmit at an
approved large rate.

K. I. OYEYINKA ET AL

95

Table 4. Deficiencies of TCP variants.

TCP Variants Issues solved Inherent problems

TCP Tahoe [1] Introduced the concept of congestion control Loss detection is after a time out

TCP Reno (Jacobson, 1990) Introduced fast retransmit and fast recovery Could not detect multiple losses within one RTT

TCP New Reno [6] Solved the problem of multiple losses detection of each packet loss takes one RTT

TCP SACK [13] Introduced Selective Acknowledgement Difficult to implement

TCP Vegas [16] Delay based Fairness issue

Fast TCP [25] Delay based Fairness issue

HSTCP(Floyd S. 2003) Loss based Fairness issue

STCP [20] Loss based Fairness issue

BIC – TCP [23] Loss based Fairness issue

CUBIC [24] Loss-Delay based Fairness issue

TCP Africa [26] Loss-Delay based Fairness issue

Compound TCP [21] Loss-Delay based Fairness issue

TCP Illinois [22] Loss-Delay based Fairness issue

West wood + ([27] Bandwidth estimation Fairness issue

XCP [28] Extra signaling Fairness issue

SPAND [48]
Obtain network state to determine initial
sending rate.

It requires the costly and problematic leaky
bucket.

TCP Fast Start [51]
Reduced connection start time and transmis-
sion delay

Too aggressive when network conditions change.

Congestion Manager [54]
Collects and share congestion status
information

Beneficial to only connections that are initiated
almost at the same time and endpoints that sup-
plied feedback.

Swift Start [44] TCP start up using 4 packets.
The estimation of the cwnd drift away from accu-
racy when there is congestion.

Recent history information collection [58]
Collects recent history information and use it
to initialize connection parameters.

Can not fit the dynamic changes of network and
violates slow start principle

Limited slow start [53] Eliminates the exponential growth of cwnd. May be too conservative in a high BDP.

Restricted slow start (Allcock et al, 2004) used a PID control algorithm extra overhead for the computation of PID

Astart (Wang R. et al, 2004)
Uses ERE mechanism adaptively and re-
peatedly resetting ssthresh during the slow
start phase.

May not be able to use its fair share of available
bandwidth

Capstart [50]
Capstart proposed by estimates path capacity
and use it to tune TCP to deliver higher
transfer speed

Did not take other continuously changing network
conditions into account.

P-Start [59]
Increases cwnd by small amplitude after
ssthresh/2 has been reached.

May waste bandwidth resource as it may not get to
a high transmission rate in good time.

8. Conclusions

We have reviewed here, various modifications of TCP in
history. There is a large number of works done in this
area. The review carried out here focused on window
based congestion control. The internet protocol of choice,
TCP New-Reno, has performed well in today’s inter-
net,the question is, how will TCP co-habit with other
protocols that are more aggressive and non responsive to

congestion indication? A possible answer is that future
protocols may have the requirements of matching up
with this aggressiveness while controlling congestion
effectively. Furthermore, super gigabit network will re-
place today’s network. How will TCP increase its trans-
mission speed to match this high bandwidth network?
What should be the slow start behaviour of TCP under
this situation? Will TCP be both backward and forward
compatible with low speed and high speed network
without necessarily using network resources sub-

Copyright © 2011 SciRes. CN

96 K. I. OYEYINKA ET AL

optimally? These are questions that must be answered in
finding a replacement for today’s internet protocol of
choice- the TCP. In addition, it was observed that all
reviewed congestion control techniques used only a sin-
gle startup for TCP, this is in most cases the slow start or
its modification. However, the option of having multiple
startups for TCP using the prevailing operating condi-
tions at the time of connection is a research line that
should attract the attention of the Internet research com-
munity. A research in this area called e-speed start uses
environmental (i.e. operating) parameters to determine
whether to use the conventional TCP slow start or any
other startup algorithms depending on the network oper-
ating conditions. It is hoped that when completed,
e-speed start will address the problem of TCP start up in
both highspeed and lowspeed networks.

9. References

[1] V. Jacobson, “Congestion Avoidance and Control,” Pro-
ceedings of ACM Sigcomm, Scanford, 26-30 August 1988,
pp. 314-329.

[2] V. Jacobson, R. Braden and D. Borman, “TCP Extensions
for High Performance,” RFC 1323, Internet Engineering
Task Force, 1992.
http://www.left.org/rfc/rfc/1323.txt

[3] W. R. Stevens, “TCP/IP Illustrated,” The Protocols, Vol. 1,
Addison-Wesley, Reading, 1997.

[4] M. Mathew and M. Jamshidi, “Forward Acknowledgment:
Refining TCP Congestion Control,” Proceedings of the
ACM SIGCOMM, Vol. 26, No. 4, 1996, pp. 281-291.

[5] M. Allman, V. Paxson and W. R. Stevens, “TCP Conges-
tion Control,” RFC 2581, 1999.
www.icir.org/mallman/papers/rfc2581.txt

[6] S. Floyd and T. Henderson, “The New Reno Modification
to TCP’s Fast Recovery Algorithm,” RFC 2582, Internet
Engineering Task Force, April 1999.
http.//www.ietf.org/rfc/rfc2528.txt

[7] J. Hoe, “Start-up Dynamics of TCP’s Congestion Control
and Avoidance Schemes,” Master Theses, Massachusetts
Institute of Technology, 1995.

[8] J, T, Wang, “The Study of Internet Congestion Control:
Equilibrium and Dynamics,” PhD Thesis, California Insti-
tute of Technology, 2005.

[9] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Conges-
tion Control for Fast Long Distance Networks,” Proceed-
ings of IEEE INFOCOM, 2004.

[10] V. Jacobson, “Modified TCP Congestion Avoidance Algo-
rithm,” Technical Report, April 1990.

[11] J. C. Hoe, “Improving the Start up Behaviour of a Conges-
tion Control Scheme for TCP,” Proceedings of ACM Sig-
comm, 1996, pp. 270-280.

[12] K. Fall and S. Floyd, “Simulation Based Comparisons of
Tahoe, Reno and SACK TCP,” ACM SIGCOMM Com-
puter Communication Review, Vol. 26, No. 3, July 1996.

doi:10.1145/235160.235162

[13] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP
Selective Acknowledgment Options,” RFC 2018, Internet
Engineering Task Force, October 1996.
http://www.ietf.org/rfc/rfc2018.txt

[14] S. Keshav and H. Saran, “Semantics and Implementation
of a Native-Mode ATM Protocol Stack,” 1994.
citeseer.ist.psu.edu/52943.html

[15] R. Jaine, “A Delay-Based Approach for Congestion Avoid-
ance in Interconnected Heterogeneous Computer Network,”
ACM Computer Communication Review, Vol. 19, No. 5,
1989. pp. 56-71. doi:10.1145/74681.74686

[16] L. S. Brakmo, S. W. O’Malley and L. L. Peterson, “TCP
Vegas: New Techniques for Congestion Detection and
Avoidance,” Proceedings ACM SIGCOMM, London,
August 31-September 2, 1994.

[17] L. Brakmo and L. Peterson, “TCP Vegas: End-to-End
Congestion Avoidance on Global Internet,” IEEE Journal
on Selected Areas in Communications, Vol. 13, No. 8,
1995, pp. 1465-1480. doi:10.1109/49.464716

[18] R. S. Jayaram and I. Rhee, “A Case of Delay-Based Flow
Control in CDMA 2.5G Networks,” International Confer-
ence on Ubitiquitous Computing, Washington, 2003.

[19] S. Floyd, “High Speed TCP for Large Congestion Wind-
ows,” RFC 3649, 2003.
www.ietf.org/rfc/rfc3649.txt

[20] T. Kelly, “Scalable TCP Improving Performance in High
Speed Wide Area Networks,” Computer Communications
Review, Vol. 32, No. 2, 2003, pp. 83-92.
doi:10.1145/956981.956989

[21] K. Tang, J. M. Song, Q. Zhang and M. Sridharan, “A
Compound TCP Approach for High-Speed and Long Dis-
tance Networks,” Proceedings of IEEE INFOCOM, Bar-
celona, 23-29 April 2006.

[22] S. Liu, T. Basar and R. Srikant, “TCP-Illinois: A Loss
and Delay-Based Congestion Control Algorithm for
High-Speed Networks,” Proceedings of First Interna-
tional Conference on Performance Evaluation Method-
ololy Tools, 2006.

[23] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Con-
gestion Control for Fast, Long Distance Networks,”
Technology Report, Computer Science Department, NC
State University, Raleigh, 2003.

[24] I. Rhee and L. Xu, “CUBIC: A New TCP—Friendly High
Speed TCP Variant,” International Workshop on Protocols
for Fast Long—Distance Networks, Lyon, 3-4 February
2005.

[25] D. X. Wei, C. Jin, S. H. Low, and S. Hedges, “Fast TCP:
Motivation, Architecture, Algorithms, Performance,” IEEE-
ACM Transaction on Networking, Vol. 14, No. 6, 2006. pp.
1246-1259. doi:10.1109/TNET.2006.886335

[26] R. King, R. Baraniuk and R. Riedi, “TCP—Africa; an
Adaptive and Fair Rapid Increase Rule for Scalable TCP,”
Proceedings of IEEE INFOCOM, Vol. 3, 2005, pp. 1838-
1848.

[27] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi and R.
Wang, “TCP Westwood: Bandwidth Estimation for En-

Copyright © 2011 SciRes. CN

http://www.left.org/rfc/rfc/1323.txt
http://dx.doi.org/10.1145/235160.235162
http://dx.doi.org/10.1145/74681.74686
http://dx.doi.org/10.1109/49.464716
http://www.ietf.org/rfc/rfc3649.txt
http://dx.doi.org/10.1145/956981.956989
http://dx.doi.org/10.1109/TNET.2006.886335

K. I. OYEYINKA ET AL

97

hanced Transport over Wireless Links,” Mobile Computing
and Networking, Rome, 16-21 July 2001, pp. 287-297.

[28] S. H. Low and D. E. Lapsley, “Optimization Flow Control:
Basic Algorithm and Convergence,” IEEE/ACM Transac-
tion on Networking, Vol. 7, No. 6, 1999, pp. 861-874.

[29] P. Sarolahti, M. Allman and S. Floyd, “Determining an
Appropriate Sending Rate over an Underutilized Network
Path,” Computer Networks, Vol. 51, No. 7, 2007, pp.
1815-1832. doi:10.1016/j.comnet.2006.11.006

[30] A. O. Oluwatope, A. B. Obadire, G. A. Aderoumu and M.
O. Adigun, “End-to-End Performance of Selected TCP
Variants Across a Hybrid Wireless Network,” Issues in In-
formation Science and Technology, Vol. 3, 2006.

[31] D. Katabi, M. Handley and C. Rohrs, “Congestion Control
for High Bandwidth-Delay Product Networks,” Pro-
ceedings of the 2002 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communications, Pittsburgh, 19-23 August, 2002.

[32] M. Neils “Window Based Congestion Control, Modeling
Analysis and Design,” Doctoral Thesis, KTH, Stockholns,
2008.

[33] F. Kelly, “Changing and Rate Control for Elastic Traffic,”
European Transactions on Telecommunications, Vol. 8,
No. 1, 1997, pp. 33-37. doi:10.1002/ett.4460080106

[34] S. Liu, “Primal-Dual Congestion Control Algorithms and
E-Red AQM Scheme,” PhD Thesis, University of Illinois
Urbana, Illinois, 2003.

[35] F. P. Kelly, A. K. Maulloo and D. K. H. Tan, “Rate Con-
trol for Communication Networks: Shadow Prices, Propor-
tional Fairness and Stability,” Journal of Operational Re-
search Society, Vol. 49, No. 3, 1998, pp. 237-252.

[36] H. Yaiche and R. R. Mazumdar, “A Game-Theoretic
Framework for Rate Allocation and Charging of Elastic
Connections in Broadband Networks,” IEEE/ACM Trans-
actions on Networking, Vol. 8, No. 5, 2000.
doi:10.1109/90.879352

[37] T. Alpcan and T. Basar, “A Globally Stable Adaptive
Congestion Control Scheme for Internet-Style Networks
with Delay,” IEEE Wireless Communications, Vol. 12, No.
6, 2005, pp. 42-49.

[38] G. Vinnicombe, “On the Stability of Networks Operating
TCP—Like Congestion Control,” IFAC World Congress,
Barcelona, 2002.
Available at http://www.eng.cam.ac.uk/gv.

[39] R. J. La and P. Ronjan, “Asymptotic Stability of a Ratio
Control System with Communication Delays,” IEEE Tran-
sactions on Automatic Control, Vol. 52, No. 10, 2007, pp.
1920-1925.

[40] L. Ying, G. E. Dullerud and R. Srikant, “Global Stability
of Internet Congestion Controllers with Heterogeneous
Delays,” IEEE/ACM Transactions on Networking, Vol.
14, No. 3, 2006, pp. 579-591.
doi:10.1109/TNET.2006.876164

[41] F. Paganini, J. Doyle and S. Low, “Scalable Laws for Sta-
ble Network Congestion Control,” Proceedings of the 40th
IEEE Conference on Decision and Control, Orlando, 4-7
December 2001, pp. 185-190.

[42] R. Srikant, “The Mathematics of Internet Congestion
Control,” Birkhauser, Boston, 2004.

[43] T. V. Lakshman, B. Suter and U. Madhow, “Win-
dow-Based Error Recovery and Flow Control with a
Slow Acknowledgement Channel: A Study of TCP/IP
Performance,” Proceedings of the INFOCOM’97. 16th
Annual Joint Conference of the IEEE Computer and
Communications Societies. Driving the Information
Revolution (INFOCOM), Washington, DC, 9-11 April,
1997, p. 1199.

[44] C. Patridge, D. Rockwell, M. Allman, R. Krishman and J.
Slerbenz, “A Swifter Start for TCP,” Technical Report
TR8339 BBN Technologies, 2002.

[45] F. J. Lawas-Grodek and D. Trans, “Evaluation of Swift
Start TCP in Long-Delay Environment,” Tran Glenn Re-
search Center, Cleveland, 2004.

[46] W. Allcock, S. Hedge and R. Kettimuthu, “Restricted Slow
Start,” IEEE International Conference on Cluster Comput-
ing, Boston, 26-30 September, 2005.
http://doi.ieee.computersociety.org/10/1109/cluster2005.34
7079.

[47] J. Gerry, “A Comparison of PID Control Algorithm,”
Journal of Control Engineering, Vol. 34, No. 41, 1987, pp.
102-105.

[48] S. Seshan, M. Stemm and R. Katz, “Shared Passive Net-
work Performance Discovery (SPAND),” Proceedings of
USITS’97, Monterey, 1-12 May, 1992.

[49] R. Wang, G. Pan, K. Yamada, M. Sanadidi and M. Gerla,
“TCP Startup Performance in Large Bandwidth Networks,”
IEEE IFOCOMM, Vol. 2, 2004, pp. 796-805.

[50] D. Canvendish, K. Kumazoe, M. Tsuru and Y. Oie, “Cap-
start: An Adaptive TCP Slow Start for High Speed Net-
works,” Department of Computer Institute of Technology,
Japan, 2009.

[51] V. Padmanabhan and R. Katz, “TCP Fast Start: A Tech-
nique for Speeding up Web Transfers,” Proceedings of
IEEE GLOBECOM, Sydney, 8-12 November, 1998, pp.
41-46.

[52] J. Chen, M. Zhang and Q. Meng, “A Network Congestion
Control Algorithm Based History Connections and Its Per-
formance Analysis,” Journal of Computer Research and
Development, Vol. 40, No. 10, 2003, pp. 1470-1475.

[53] S. Floyd, “Limited Slow Start for TCP with Large Conges-
tion Window,” RFC3742, 2004.
www.apps.ietf.org/rfc/rfc3742. html

[54] H. Balakrishman, H. Racheal and S. Seshan, “An Integrated
Congestion Manager Architechture for Internet Hosts,”
Proceedings of ACM SIGCOM, Cambridge, August 30-
September 3, 1999.

[55] S. Floyd, M. Allman, A. Jain and P. Sarolahti, “Quick-Start
for TCP and IP,” RFC 4782, 2007.
www.rfc-editor.org/rfc/rfc4782.txt;

[56] M. Allman, S. Floyd and C. Partridge, “Increasing TCP’s
Initial Wiondow,” RFC 3390, 2002.
www,icir.org/mallman/papers/rfc3390.txt

[57] M. Scharf, S. Floyd and P. Sarolahti, “TCP Flow Control

Copyright © 2011 SciRes. CN

http://www.pubzone.org/pages/publications/showAuthor.do?userId=50.6792
http://www.pubzone.org/pages/publications/showAuthor.do?userId=31.1402
http://www.pubzone.org/pages/publications/showAuthor.do?userId=25.1323
http://www.pubzone.org/pages/publications/showPublication.do;jsessionid=751D2E823D1F83BC0FF141DAE6C87C9A?deleteform=true&search=author&pos=1&publicationId=803702
http://www.pubzone.org/pages/publications/showPublication.do;jsessionid=751D2E823D1F83BC0FF141DAE6C87C9A?deleteform=true&search=author&pos=1&publicationId=803702
http://www.pubzone.org/pages/publications/showPublication.do;jsessionid=751D2E823D1F83BC0FF141DAE6C87C9A?deleteform=true&search=author&pos=1&publicationId=803702
http://dx.doi.org/10.1016/j.comnet.2006.11.006
http://dx.doi.org/10.1016/j.comnet.2006.11.006
http://dx.doi.org/10.1002/ett.4460080106
http://dx.doi.org/10.1109/90.879352
http://www.eng.cam.ac.uk/gv
http://dx.doi.org/10.1109/TNET.2006.876164
http://doi.ieee.computersociety.org/10/

K. I. OYEYINKA ET AL

Copyright © 2011 SciRes. CN

98

for Fast Startup,” 2009.
http://www.ietf.org/ietf/1id−abstracts.txt.

[58] Z. Chen, X. Deng, L. Zhang and B. Zeng, “A New Pa-
rameter-Config Based Slow Start Mechanism,” Journal of
Communication and Computer, Vol. 2, No. 5, 2005, pp.
56-62.

[59] S. Utsumi, S. M. S. Zabir and N. Shiratori, “TCP-Cherry:
A New Approach for TCP Congestion Control Over Sat-

ellite IP Networks,” Computer Communications, Vol. 31,
No. 10, 2008, pp. 2541-2561.
doi:10.1016/j.comcom.2008.03.029

[60] N. Hu and P. Steenkiste, “Improving TCP Startup Per-
formance Using Active Measurements: Algorithm and
Evaluation,” Proceedings of the 11th IEEE international
Conference on Network Protocols (ICNP), Washington,
DC, 30 September 2003, p. 107.

http://dx.doi.org/10.1016/j.comcom.2008.03.029

