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Abstract 
 
Transmission control protocol (TCP) has undergone several transformations. Several proposals have been 
put forward to change the mechanisms of TCP congestion control to improve its performance. A line of re-
search tends to reduce speed in the face of congestion thereby penalizing itself. In this group are the window 
based congestion control algorithms that use the size of congestion window to determine transmission speed. 
The two main algorithm of window based congestion control are the congestion avoidance and the slow start. 
The aim of this study is to survey the various modifications of window based congestion control. Much work 
has been done on congestion avoidance hence specific attention is placed on the slow start in order to moti-
vate a new direction of research in network utility maximization. Mathematical modeling of the internet is 
discussed and proposals to improve TCP startup were reviewed. There are three lines of research on the im-
provement of slow start. A group uses the estimation of certain parameters to determine initial speed. The 
second group uses bandwidth estimation while the last group uses explicit request for network assistance to 
determine initial startup speed. The problems of each proposal are analyzed and a multiple startup for TCP is 
proposed. Multiple startups for TCP specify that startup speed is selectable from an n-arry set of algorithms. 
We then introduced the e-speed start which uses the prevailing network condition to determine a suitable 
starting speed. 
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1. Introduction 
 
Originally, the Internet was designed to support best- 
effort applications meaning that then it could only de-
liver data not necessarily guaranteeing the delivery. 
However, before 1988, TCP was used to compliment the 
Internet by ensuring that data delivery was reliable. This 
same TCP version did not include congestion avoidance, 
fast-recovery and fast-retransmit mechanisms. The direct 
impact on user applications is low network utility deriva- 
tion as a result of heavy network congestion. This re- 
sulted in congestion collapse throughout the mid 80s. 
This continues until [1] introduced the concept of con- 
trol through the adaptation of the source rate using 
packet loss. Jacobson algorithm has been modified vari- 
ously by several researchers among these were [2-7]. 

Worthy of note is the domination of the Internet by 
TCP flows carrying data from applications such as FTP, 
HTTP, SMTP etc in the early days of TCP. However, the 
nature of Internet traffic has changed dramatically such 
that it includes traffic from other data transmission pro- 
tocols, which are TCP unfriendly. Protocols and applica-
tions that are not malleable to the dynamics of the Inter- 
net are reffered to as TCP-unfriendly. But, TCP in an 
attempt to respond to the dynamics [8,9] of the Internet, 
it penalizes itself by reducing transmission speed spe-
cifically, in the face of network congestion. However, 
these TCP-unfriendly protocols and applications are ag-
gressive at bandwidth consumption and do not respond 
to network congestion indications. TCP-unfriendly ap-
plications include video streaming, voice-over-IP, and 
videoconference. 

mailto:aoluwato@oauife.edu.ng


 
86 K. I. OYEYINKA  ET  AL 

In simple terms, congestion control is the adaptation of 
an application’s rate of packets injection into the Internet 
in response to changing network conditions such as 
packets loss and/or end-to-end delay. There are two types 
of congestion control techniques—window- and rate- 
based. In window-based approach, data transmission rate is 
adjusted based on setting a congestion window size using 
additive increase and multiplicative decrease (AIMD) 
algorithm. While in rate-based approach, a set of equa-
tions is used to control data transimission speed. TCP 
uses the window-based approach as a congestion control 
technique. 

The fate of Jacobson’s AIMD algorithm and its sub- 
sequent modifications in the face of cross traffics and 
heterogeneous flows is a motivation for this work. From 
literature, substantial research efforts had been concen- 
trated no the understanding, modification and imple- 
mentation of window-based congestion control with par- 
ticular focus on the congestion avoidance stage. But, 
recent study has shown that attention should shift to- 
wards better understanding and modification of win- 
dow-based congestion control with focus on the slow- 
start stage and acknowledgement congestion control. 
Therefore, the focus of this paper is to review existing 
proposals on TCP congestion avoidance and slow- start 
mechasims with view to motivating a new direction in 
the network utility maximisation. 

The rest of this paper is organized as follws: Section 2 
discusses various variants of TCP implementations, Sec- 
tion 3 looks at some rate based congestion control pro- 
posals. Section 4 discusses mathematical modeling of the 
internet congestion control, Section 5 looks at the various 
modifications of the slow start state of TCP, Section 6 
analyses the various problems associated with each TCP 
variants, Section 7 suggests future research directions 
while section 8 concludes the paper. 
 
2. Variants of TCP 
 
Variants of TCP, which are of interest, include those 
implemented already, yet to be implemented and em-
ploying convectional slow-start algorithm. 
 
2.1. TCP Tahoe 
 
The TCP Tahoe was released in 1988 by V. Jacobson in 
[1] being the first implementation of TCP to employ 
congestion control mechanism. Tahoe contains the AIMD 
(additive increase, multiplication decrease) being its 
control mechanism. Tahoe achieved congestion control 
through adjusting its windows size additively to increase 
and multiplicatively to descrease. AIMD at the initial 
stage increases windows size exponentially but, after a 

certain threshold, it switches to linear window size in-
crease i.e. by one packet per RTT before conges- tion 
occurs (Additive increase). At this point, Tahoe switches 
to the congestion avoidance state. If the ACK for a 
packet is not received before a time out, the thresh- old 
set is reduced by half and the congestion window is re-
duced to one packet (Multiplicative decrease). In sum-
mary, TCP Tahoe controls congestion as follows: 
 When congestion window is below the threshold, the 

congestion window grows exponentially (slow start 
state) 

 When the congestion window is above the threshold 
the congestion window grows linearly (additive in-
crease) i.e. congestion avoidance 

 Whenever there is a timeout, the threshold is set to 
one half of the current congestion window and the 
congestion window is set to one while the packet is 
retransmitted (multiplicative decrease) 

 Algorithms implemented are slow start and conges-
tion avoidance. 

 
2.2. TCP Reno 
 
Proposal to modify Tahoe was given in [11]. Like its 
predecessor, Reno sets its congestion window to one 
packet upon a time out (RTO). However, Reno extended 
its algorithm to include the fast retransmit mechanism. 
The fast retransmit involves the re-transmission of a 
dropped packet if three duplicate ACKs for a packet are 
received before the RTO. Reno also introduces the fast 
recovery mechanisms which prevent transmission to 
re-enter the slow start state after a fast retransmit. Instead 
the window size is halved and the threshold is adjusted 
accordingly and TCP remain in congestion avoidance 
until a timeout occurs. This is discussed in detail in [3,5]. 
TCP Reno became the standard TCP algorithm imple-
mented in most computers. Algorithms implemented by 
Reno are slow start, congestion avoidance, fast retrans-
mit and fast recovery. 
 
2.3. TCP New Reno 
 
The new-Reno TCP includes a change to the Reno algo-
rithm at the sender end with a view to eliminate Reno’s 
wait for a retransmit time-out whenever multiple packets 
are lost from a window [7,12]. This change modifies the 
sender’s behaviour during fast recovery. When this hap-
pens, New Reno does not exit from the fast recovery 
state as in the case of Reno, but waits for the receipt of 
all the outstanding ACKS for that window. 

The followings are the summary of New-Reno fast 
recovery actions; 
 It notes the maximum packet s outstanding while en-
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tering fast recovery 
 When a new ACK is received and it acknowledges all 

the outstanding packets, then fast recovery is exited 
and cwnd is set to half the value of ssthresh, then it 
transits to the congestion avoidance state. But, if a 
partial ACK is received, then, it assumes the next 
packet in the link is lost and tries to retransmit 

 It exits fast recovery when all data in the window is 
acknowledged [6]. 

 
2.4. SACK (TCP with Selective  

Acknowledgement) 
 
One challenge with the New Reno algorithm is its inabil-
ity to detect other lost packets until the ACK for the first 
retransmitted packet was received. This implies that New 
Reno suffers from the fact that the detection of each 
packet loss takes one RTT. Hence selective acknowl-
edgment (SACK) was proposed by [13]. SACK is an 
extension of TCP Reno and TCP New Reno. It intends to 
solve two problems of TCP Reno and New Reno i.e. 
detection of multiple packet loss and Retransmission of 
more than one lost packet per RTT. 

SACK retains the slow start and fast retransmits of 
Reno. It also has the coarse grained time out of Tahoe. 
SACK algorithms specify that instead of cumulative ac-
knowledgement of packets as contained in TCP Tahoe, 
Reno and New-Reno, Packets should be acknowledged 
selectively. This requires each ACK to contain an entry 
for which packet that is being acknowledged. This en-
ables the sender to figure out which packets have been 
acknowledged and which ones are still outstanding. 

SACK specifies that whenever a sender enters into 
fast recovery state, a variable “pipe” be initiated and 
used to estimate the number of packets that are missing 
along the path. It then sets the size of cwnd to half its 
current size as usual. 

Each time an ACK is received, the size of the pipe is 
decreased by one and when a packet is transmitted or 
retransmitted, the pipe is increased by one. Whenever the 
size of the pipe becomes smaller then cwnd, it checks 
which packets are yet to be acknowledged and retrans- 
mits immediately. If there are no outstanding ACK, it 
sends a new packet. Thus the sender only sends new or 
retransmitted packet if the pipe is less the cwnd. This 
way SACK can send more than one lost packet in a sin-
gle RTT. Use of pipe variable separates the decision of 
when to send a packet from which packet to send. 
Other features of SACK are as follows: 
 The score board: The sender maintains a data struc-

ture call scoreboard. This was proposed by [13]. The 
scoreboard remembers all the ACKS that has been 
received for the data sent. Hence the sender is able to 

deduce which packet has not been acknowledged and 
resend them when it is able. 

 When a retransmitted packet is dropped, SACKs de-
tects this through the retransmit timeout. This packet 
will be retransmitted and then SACKs transits to the 
slow-start state. 

 Recovery ACK: The sender exits fast recovery when 
a recovery acknowledgement is received acknowl-
edging that all outstanding data when fast fecovery 
was entered have been received. 

 Partial ACKS: SACK handles partial ACKs in a spe-
cial way. Partial ACKs are those received during Fast 
Recovery but do not take the sender out of Fast re-
covery. When a partial ACK is received, the pipe is 
decreased by two packets rather than one, at first, 
when fast retransmit is initiated, the pipe is decreased 
by one for the lost packet and increased by one for 
the retransmitted packet in subsequent partial ACKs 
received, the pipe was incremented when the packet 
was transmitted initially but the pipe was never de-
creased when that packet is assumed lost and re-
transmitted. Hence when the succeeding partial ACK 
arrives, it represents two packets (the original packet 
and the retransmitted packets) Hence the pipe is dec-
remented by two rather than one. 

 The max burst parameter: This limits the number of 
packets that can be sent in response to a single in-
coming ACK packet. This is still at the experimental 
stage. 
Other TCP congestion control algorithms that use se-

lective acknowledgement include that of [4,14] etc. One 
major drawback of the SACK algorithm is the relative 
difficulty in implementation of selective acknowledge-
ment. 
 
2.5. TCP Vegas 
 
The TCP congestion control schemes that have been de-
scribed so far use packet loss based approach to measure 
congestion. There is a class of congestion control algo-
rithms that adapt its congestion window size based on 
end-to-end delay. This approach originated from [15] 
and is presented by [16,17] as TCP Vegas. 

The followings are the differences between TCP Ve-
gas and TCP Reno: 
 In the slow start-state, congestion control was in- 

corporated by a deliberate delay in congestion win-
dow growth. 

 When packet-loss occurs, TCP Vegas treats the re-
ceipt of certain ACKs, as a trigger to check if a time-
out should occur [16]. 

 It updates its congestion window based on end-to-end 
delay instead of using packet-loss as the window up-
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date parameter. 
Vegas extended Reno re-transmission strategy. It keeps 

track of when each packet was sent and calculates an 
estimate of RTT for each transmission. This is done by 
monitoring how long it took each ACK to get back to the 
sender. Whenever a duplicate ACK is received, it per-
forms the following check: 

if (current RTT > RTT estimate) 
If this is true, it retransmits the packet without waiting 

for 3 duplicate ACK or a time out as in Reno [17]. Hence, 
Vegas solves the problem of not detecting lost packets 
when the window is very small i.e. less than three and 
could not receive enough duplicate ACKs. 

TCP Vegas congestion avoidance behavior is different 
from other TCP implementations. It determines congest- 
ion states using the sending rate. If there is a decrease in 
calculated rate of transmission as a result of large queue 
in the link, it reduces its window. When the sending rate 
increases, the window size also increases. 

 
2.6. Delay Based Congestion Control Algorithms 
 
These types of algorithms use queuing delay to signal the 
need for window adjustment. The issue of fairness comes 
with these algorithms. Delay based congestion control is 
attractive because it can solve the problem of fairness 
using queuing delay. To implement delay based conges-
tion control, it is necessary to measure propagation delay. 
Propagation delay is the time it takes a packet to travel 
from the sender to its destination. The propagation delay 
is usually set to the smallest observed RTT. There are 
several observed problems with the estimation of the 
queuing delayed. Estimating queuing delay is challeng- 
ing if the RTT contains more elements then affixed 

propagation delay, e.g. retransmission delay in wireless 
link, a high loaded Internet link etc. There are very few 
researches done on delay-based congestion control in 
wireless mobile network with the exception of [18] which 
proposed delay based congestion control scheme for 
commercial CDMA (Code Division Multiple Access). 

Other lines of researches are in the area of high-speed, 
large delay networks. Prominent among these are the 
High Speed TCP (HSTCP) proposed by [19] and scal-
able TCP (STCP) proposed by [20] which are experi-
mental protocols that attempt to improve TCP perform-
ance under large bandwidth-delay product. They make 
TCP increments rule become more aggressive. Loss- 
delay based Strategy was used by TCP Africa, Com-
pound TCP [21] and TCP Illinois [22]. These protocols 
try to increase window size more aggressively than TCP 
New Reno as long as the network is not fully utilized and 
it switches to AIMD behavior of Reno when the network 
is near congestion. 

 
2.7. Summary of Proposed TCP Congestion 

Control Implementation 
 
Henceforth, TCP Tahoe, Reno and New Reno are re-
ferred to as New- Reno. This is the transport protocol of 
choice and it is implemented in over 90% of Internets 
traffic today. It became officially recognized in 2004 [6]. 
But, currently, Compound TCP which is the version im-
plemented in Ms-Window 7 is expected to grow in us-
agen across the Internet. Table 1 shows the comparison 
between TCP New-Reno and other proposed TCP algo-
rithms. 

In Table 1, the various proposed TCP variants, are 
categorized based on their control mechanism or type of 

 
Table 1. Variants of TCP congestion control implementation (using TCP new reno as basis). 

Protocol Type Purpose 

TCP New-Reno [6] Loss based The standard TCP protocol 

STCP [20] Loss based Higher throughput with high capacity and large delay 

HSTCP [19] Loss based Higher throughput with high capacity and large delay 

BIC – TCP [23] Loss based Higher throughput with high capacity and large delay 

CUBIC [24] Loss based Higher throughput with high capacity and large delay 

TCP Vegas [17] Delay based Higher through puts and reduced loss rate 

Fast TCP [25] Delay based Higher throughput with high capacity and large delay 

TCP Africa [26] Lossdelay based Higher throughput with high capacity and large delay 

Compound TCP [21] Lossdelay based Higher throughput with high capacity and large delay 

TCP Illinois [22] Lossdelay based Higher throughput with high capacity and large delay 

West wood + [27] Bandwidth estimation Higher throughput over wireless networks. High capacity & large delay networks. 

XCP [28] Extra signaling 
Higher throughput over wireless networks. Also for high capacity and large delays. Smaller 
queues. Separate fairness control 
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feedback. It also considers the performance challenge of 
New-Reno which it attempts to address. The TCP like 
algorithms highlighted uses control mechanism like loss- 
based, delay- based, loss-delayed based, bandwidth esti-
mating, and extra signalling. TCP New-Reno was up-
graded from experimental status to full protocol status in 
2004. Several proposals and researches had been put 
forward to improve its performance. Many of these pro-
posals tend to improve TCP in a high speed network 
where it has been showed that TCP mechanism may lead 
to network resources underutilization. [29]. TCP West-
wood proposed bandwidth estimation as congestion 
measure [27]. It specified that a TCP sender continuously 
computes the connection bandwidth estimate by properly 
averaging the returning ACKs and the rate at which the 
ACKs are received. After a loss has occurred, the sender 
uses the estimated bandwidth to properly set the sending 
rate and the congestion window. This is an improvement 
on standard TCP which half its window on loss detection 
[30]. However, TCP Westwood hase not proved any bet-
ter in term of stability and fairness when it co-habit with 
the standard TCP and its suitability for general deploy-
ment has not been ascertained. Other proposed protocols 
in this category include XCP [31] which requires modi-
fication to router algorithm. However, it is not visible to 
modify all existing routers’ algorithms hence XCP will 
remain experimental protocol for a long time. HSTCP 
[19] was also designed for high bandwidth delay product. 
It uses loss-delay to detect congestion. Wei et al. [25] 
proposed the FAST TCP which uses delay instead of loss 
to signal congestion. Other protocols in this category 
include BIC TCP [23], STCP [20], CUBIC TCP [24], 
TCP Illinois [22] etc. These protocols deal with modify-
ing the window growth function to TCP to match large 
bandwidth-delay product. This appears easy but the issue 
of fairness that comes with these protocols is enormous 
and remains a challenge. These fairness issues include 
both intra and inter-protocol fairness. In addition, none 
of these protocols targets the startup behaviour of AIMD. 
 
3. Rate-Based Congestion Control Scheme 
 
According to [32], a great percentage of the current re-
searches on congestion control concentrate on the use of 
network utility maximization framework [33] as guid-
ance for design and analysis [28]. 

The optimization-based framework introduced by [33] 
formed the derived operating point for congestion control 
algorithms. The framework, according to [34] associates 
a utility function with each flow and maximizes the ag-
gregate system utility function subject to link capacity 

constraints. This is referred to as Kelly’s system problem 
and it is an optimization problem. 

Under the rate based congestion control, congestion 
control schemes can be viewed as algorithms that com-
pute the optimum or sub-optimum solutions to the 
Kelly’s system optimization problem. Congestion control 
schemes can be categorized into three: primal, dual and 
primaldual. 

 
3.1. Primal Algorithms 

 
Here the endpoints adapt the source rates dynamically 
based on the route prices and the links select a static law 
to determine the links prices directly from the arrival rate 
[35]. 

 
3.2. Dual Algorithms 

 
This is a direct opposite of the primal algorithms, the 
links adapt the links prices dynamically based on the link 
rates and the end points select a static law to determine 
the source rates directly from the route prices and other 
source parameters [28,35,36]. 

 
3.3. Primal-Dual Algorithm 

 
The algorithms in primal family measure congestion us-
ing the links aggregate rate. This involved the averaging 
of feedback from the network by end points (sources). 
On the other hand, the algorithms in the dual family cal-
culate the source rate from the route congestion measures 
which corresponds to averaging the source rate before 
the sources get a feedback of explicit congestion infor-
mation. The primal-dual algorithms viewed congestion 
control as decomposable into two parts: Congestion 
avoidance at the source and active queue management at 
the links. Primal-dual algorithms relate rate change with 
route congestion measure at the source and relate packet 
marking probability change with link aggregate rate at 
the router [34,37,38]. An example is the work of Liu [34], 
where a new class of algorithms is introduced, which is 
of primal-dual type. That is, they feature dynamic adap-
tations at both the source and the link ends. 

Stability of primal mechanism under communication 
is analyzed by [39,40] and reported in [32]. Paganini et 
al [41] proposed a dual algorithm and showed that it is 
stable in arbitrary topologies and delays. Alpcan and 
Basar’s [37] algorithm for primal-dual was shown to be 
stable in the absence of delay. It was also proved to be 
stable for networks with a single bottleneck link and 
several users when each user may have different RTT. 
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4. Mathematical Modelling of the Internet 
Congestion Control 

 
Prior to 1997, when Kelly [33] introduced the system 
problem, researches in congestion control was intuitive, 
based on laboratory experiment, simulation and valida-
tion. But with the Kelly [35] paper titled “Rate control in 
Communication Networks”, research community began 
to model congestion control mathematically. There has 
been a vast research effort in this area. Currently, re-
search activities in this area are large and quite a number 
of models have been proposed in literature. One impor-
tant research direction is the search for new models to 
replace the Jacobson algorithm [1]. 

Jacobson AIMD has worked so well on the Internet 
metamorphosising from a few number of users/network 
to a very big giant networks with million of networks 
and over a billion users world wide. However, the ade-
quacy of these models has been questioned by many re-
searchers in today’s and future Internet traffic which is 
changing rapidly. Currently over 80% of the Internet 
traffic is TCP traffic. However this ratio will change 
rapidly in the face of anticipated growth of traffics like 
multimedia application protocol, voice over Internet, 
video conferencing, games etc. which use protocols that 
are quite different from TCP. While TCP is self regulat-
ing in the face of congestion, other protocols that these 
heterogeneous traffics are using are quite aggressive and 
hence the case of fairness comes in when TCP traffic 
share a bottleneck link with other traffics on the Internet. 

Hence mathematical models of congestion control are 
being proposed in literature. Moller [32] classified mod-
els for congestion control and related tools as; 
 Packet level models: A packet level model accounts 

for the location of each individual packet as the pack-
ets are queued and forwarded by the network. The 
system state evolves as a series of discrete events. 
Events in Internet are arrival and departure of packets, 
and timeouts. 

 Fluid flow models: A fluid flow model sees the data 
transport as a continuous fluid, with no packet 
boundaries. State variables vary continuously, and are 
described using differential equations. In congestion 
control, fluid flow models do not capture all details of 
the dynamics. Instead the state variables represent 
averages of the true system state. 

 Hybrid Models: Here, evolution of the state is a result 
of discrete events together with continuous changes 
between events. A continuous model is used for 
queuing dynamics and end host actions while action 
like multiplicative decrease of TCP is modeled as 
discrete event. 

Jacobson’s congestion control algorithm operates in 
two phases: slow start and congestion avoidance phase. 

4.1. Slow Start Phase 
 
1) cwnd = 1; Start with a window size of 1 
2) while (ssthresh ≠ cwnd OR not 3 DUPACK) { 
 IF ACK then 
 cwnd=cwnd + 1; } Increase the window size by 1 for every 

ACK received. Repeat until: 
The ssthresh is reached OR packet-loss is detected 

3) if ssthresh == cwnd then 
Transit to congestion avoidance; If ssthresh is reached, go 
to congestion avoidance phase. 

4) if 3DUPACK then  
 ssthresh = 0.5 * cwnd;  
 cwnd = 1; 

branch to step 2; If a packet loss is detected 
 

Note: Set the initial value of ssthresh to fraction (say 
half) of the maximum window size. This is determine at 
the beginning of transmission 
 
4.2. Congestion Avoidance Phase 
 

1) Increase the window size by 1 (cwnd) for every 
ACK received. This implies that the window size is in-
creased by 1 after all ACKs for that window has been 
received. 

2) When packets loss is detected, decrease the window 
size, then transit to slow start phase. 

Detecting and decreasing the window size has been 
the major focus of researched in literature and quite a 
huge number of proposals have been made resulting in 
the formulation of different TCP variants like TCP- 
Tahoe, TCP-Reno, TCP SACK, TCP New-Reno etc. For 
the purpose of modeling hence forth we will refer to all 
of them as TCP New-Reno. In TCP New-Reno, packet- 
loss is detected either through: 
 The loss of 3 consecutive packets or 
 By the RTO time-out 
 
4.3. The Slow Start Phase Analysis 
 
To explain the algorithm of Jacobson [1] further, let the 
following example be considered as presented in [42]. 
Assume a single TCP source is accessing a single link 
that was discussed in [43]. Suppose c is the link capacity 
in packets/second. Let r denote the round trip propaga-
tive delay and T (the sum of propagation delay and 
queuing delay) is given by 

T = r + 1/c 

Now suppose that link capacity is 50 Mbps and packet 
size of 4000 bytes then  

c = 50,000,000 4000  

c = 12,500 packet sec  

1 c  = 0.08 msec 
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Assume the transmission is over a distance of 2000 km 
of fibre-optic with speed of light = 3 × 108 m/sec (ignore 
the refractive index of transmission media) 
Round trip propagation delay (r); 

r =    3 82 10 3 10   

r = 2 3 × 10−5 

r = 0.66 × 10−5 
r = 6.6 × 10−6 

r = 6.6 msec. 
T = 6.6 + 0.08 msec 
T = 6.68 msec 

The Product cT is called bandwidth-delay product. 
Denote by B, the buffer size of the link (route). 
Assumptions: 

1) cT ≥ B 
2) Propagation delay from source to sink is negligible 
3) Propagation delay from link to source is T. 
Note that packets are released by the source at rate c 
and they are released at 1/c seconds. 
ACKs in transit = cT 
Number of packets in buffer = B 
Total unacknowledged packets = cT + B 

Therefore, maximum window size, 
wmax = cT + B 

any increase above this quantity will lead to buffer over-
flow and packed loss. If packet loss occurs, as explained, 
the ssthresh will be set to half the current window size. 
(this will be slightly larger than wmax) 

Let us assume that 
ssthresh =  mT 2B  

where c ≤  
Hence, the transitions at the slow start can be viewed 

as presented in Table 2. In Table 2, a cycle refers to the 
time it takes the window size to double. At time t = 0, the 
source released the first packets, the ACK for this packet 
got to the source after one RTT which is denoted by T 
time units. The receipt of this ACK increases the window 
size from 1 to 2 and triggers the release of 2 packets into 
the network. This begins the next cycle. It takes 1 RTT 
for the first of the packets to be acknowledged. The 
window size becomes 3 and only 1 unACKed packet is 
in the network, hence 2 additional packets are released 
into the network when the next ACK is received, win-
dow size is increased to 4 at time t = 3T and the next, 
cycle is started. Then remains 2 unACKed packets in the 
network, hence 2 additional packets are released [42]. 
From the table, we observed the following: 

Window size is given by 

W nT+ m c  = 2n – 1 + m + 1, 0 ≤ m ≤ 2n–1  (1) 

Queue length is given by 

Q μT+ m c

Table 2. Slow start transition cycles (source: modified from 
[42]). 

Cycle Time 
Acked 
packet 

Window 
size 

Max packet 
released 

Cycle 0 O - 1 1 

Cycle 1 T 1 2 3 

Cycle 2
2T 
2T + 1/c 

2 
3 

3 
4 

5 
7 

Cycle 3

3T 
3T + 1/c 
3T + 2/c 
3T + 3/c 

4 
5 
6 
7 

5 
6 
7 
8 

9 
11 
13 
15 

Cycle 4

4T 
4T + 1/c 
4T + 2/c 
4T + 3/c 
4T + 4/c 
4T + 5/c 
4T + 6/c 
4T + 7/c 

8 
9 
10 
11 
12 
13 
14 
15 

9 
10 
11 
12 
13 
14 
15 
16 

17 
19 
21 
23 
25 
27 
29 
31 

Cycle 5

5T 
5T + 1/c 
5T + 2/c 
… 

16 
17 
18 

17 
18 
19 

33 
35 
37 

1Cycle = Time for which it takes the window size to double 
 

Max queue length is a cycle 
Qm = 2n – 1 + 1             (3) 

Max window size in a cycle 
Wm = 2n                   (4) 

Note that Qm wm 2  ≤  cT  B 4 and Qm ≤ B 
At the slow start state, the sufficient condition for 

buffer not to overflow; 
 cT  B 4 ≤ B 
B ≥ cT 3  
If B  cT 3 , buffer overflow occurs because 
Wmax = cT + B, meaning that Q  B. 

Therefore at the point where the window size is 
Wmax 2 , 

Q = Wmax 4  
Q = Wmax =  cT  B 4 B 
from here 
B  cT 3  

and overflow does occur. 
From the foregoing, there are two possible cases: 
Case 1: B ≥ cT 3  (Buffer does not overflow) 
Denote the length of the slow-start phase by Tss. From 

the Table 2 observe that 
W(t)  2t T  
Hence Tss is given by 
2Tss/T =  cT  B 2  
Tss = Tlog2  cT  B 2  
    

  = m + 2, 0 ≤ m ≤ 2n–1     (2) Case 2: B  cT 3  
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In this case, there will be two slow start phase. The 
first phase, buffer overflows and there is a packet loss 
which reduces the window size to 1 and slow start is 
re-entered. 

During the first slow start 

Tss1 = T log2   2B+T

(the additional T is added because it takes one RTT to 
detect packet loss). 

Nss1 = 2B 
Window size at packet loss is 

min (4B – 2, ssthresh) 
where ssthresh =  cT  B 2  

In the second slow-start 

ssthresh = min   2B 1, cT B 4   

(Since ssthresh is half of window size) 
Hence 

Tss2 = T log2  min 2B 1, cT B 4    

Nss2 = min   2B 1, cT B 4   

Generally 
Tss = Tss1 + Tss2 

and 
Nss = Nss1 + Nss2 

5. Modifications of Slow-Start 

There have been several modifications of the slow start 
stage to overcome the problem of performance associ-
ated with it. From literature, there are three lines of stud-
ies. A group of researchers used capacity estimation 
techniques to estimate available bandwidth and set the 
congestion window size using the estimated bandwidth. 
In this group belongs the work of Patridge [44] which 
proposed Swift Start for TCP. Swift Start used an initial 
window (cwnd) of 4 packets and thereafter estimates the 
available bandwidth in the first round trip time. It uses 
the estimated bandwidth to calculate the bandwidth- 
delay product (BDP) of the network and set the cwnd to 
a percentage of the calculated BDP. Lawas-Grodek and 
Tran [45] carried out a performance evaluation of Swift 
Start and submitted that Swift Start improves network 
performance when the network is not congested however 
when the network overflows, the estimation of the cwnd 
drift away from accuracy. This is due to retransmission 
of delayed or lost ACKs and RTO timeouts. 

Another proposal that uses capacity estimation to de-
termine the size of the congestion window is Restricted 
slow-start by [46]. Restricted Slow start used a PID con-
trol algorithm as proposed by [47] to determine the rate 
of increase at the slow start phase. In PID control ap-
proach, the controller calculates an output that deter-
mines the new value of the sender cwnd. This approach 

has extra overhead for the computation of PID and fur-
thermore, it was not designed to work in large BDP net-
work. 

Shared Passive Network Performance Discovery 
(SPAND) proposed by [48] is another technique classi-
fied into this group. SPAND collects current network 
state and gains optimal initial parameters to determine an 
initial sending rate. The weakness of this approach is in it 
needs for leaky bucket pacing for outgoing packets 
which can be costly and problematic. 

Adaptive Start (Astart) by Ren Wang et al [49] uses 
the Eligible Rate Estimation (ERE) mechanism proposed 
by TCP Westwood adaptively and repeatedly resetting 
ssthresh during the slow start phase. When ERE indicates 
that there is more available capacity, the connection in-
creases its cwnd at a faster rate, on the other hand, when 
ERE indicates that the network is close to congestion, the 
connection switches to congestion avoidance limiting the 
risk of buffer overflow. 

Capstart proposed by Canvendish et al. [50] estimates 
path capacity after the TCP session has been established 
and uses it to tune TCP to deliver higher transfer speed. 
Capacity estimation is done using two network scenarios. 
These are capacity expansion and capacity reduction 
which is defined in relation to TCP sender speed and 
path bottleneck speed. If bottleneck link capacity is 
greater than sender speed then the capacity expanded 
otherwise, it is capacity reduced. This protocol is capable 
of adjusting itself to the available bandwidth whether 
high or low, however, it did not take other network con-
ditions into account, for instance, network dynamism 
such as available bandwidth at various moments de-
pending on changes occurring within the network such as 
connections establishments or terminations. The second 
group employs parameter-based manipulations to deter-
mine transmission speed. Commonly used network pa-
rameters are the ssthresh and cwnd. TCP Fast Start by 
[51] records the recent network parameters (cwnd and 
ssthresh) to reduce the start time of a new connection and 
to reduce transmission delays. These parameters may be 
too aggressive or too conservative when network condi-
tion changes. Chen et al. [52] proposed the collection of 
recent history information on the network which shall be 
used to initialize parameters for a new connection. Pa-
rameter setting based history information can not fit the 
dynamic changes of network and violates slow start 
principle. 

In TCP Vegas, [17] restricts the growth of cwnd by 
doubling cwnd only at every other RTT. TCP Vegas can 
not handle multiple packet losses in one window. Lim-
ited slow start by [53] aims at eliminating exponential 
growth of cwnd which causes large packet losses. The 
approach limits the exponential growth up to a max- 
ssthresh parameter value over which the cwnd is in-
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creased by a fraction of the current cwnd value. This 
replaces the exponential growth with a near linear cwnd  
growth when the congestion window size is greater or 
equal to max-ssthresh. This will make the congestion 
window grow slowly after max ssthresh is reached and 
this makes limited slow start not suitable for large capac-
ity network. 

Other proposals in the second group include New Pa-
rameter-Config Based Slow Start Mechanism (P-Start) 
by [27] increases the congestion window exponentially 
while the cwnd is less than ssthresh 2 , otherwise in-
creases by  ssthresh cwnd 2  and gradually appro- 
aches ssthresh until (ssthresh-cwnd) is less than the fac-
tor of d where ssthresh 2 ≥ d ≥ 2. There after congestion 
avoidance is entered. The major feature of P-start is in 
the manner of cwnd increases that is small amplitude at 
start and transition to congestion avoidance. Changing in 
sending rate is smooth and has minor impact on the 
flows in the network; however, P-start may waste band-
width and may not get to maximum transmission speed 
in good time thereby performing worst than slow start. In 
addition, P-start will perform poorly in a high BDP net-
work thereby not suitable for future gigabit networks. 

The third group obtains information and/or request 
assistance from the network/link. Congestion manager 
proposed by [54] collects congestion status information 
and feedback from receivers and share it with endpoints 
and connections in the network. This will enable connec-
tions determine the congestion status of the network and 
thereby determine an initial sending rate. The congestion 
manager has a weakness of being beneficial to only con-
nections that are initiated almost at the same time and 
secondly, it is only those connections and endpoints that 
supplied feedback that can benefit from this scheme. 
Some techniques require explicit network assistance to 
determine a practicable starting sending rate. Prominent 
among this group is the work of [55] called Quick Start 
explained below. 

According to Floyd et al. [55], the experimental 
Quickstart TCP extension is currently the only specified 
TCP extension that realizes a fast startup. A large 
amount of work has already been done to address the 
issue of choosing the initial congestion window for TCP. 
RFC 3390 [56] allows an initial window of up to four 
packets. Quick start is based on the fact that explicit 
feedback from all routers along the path is required to be 
able to use an initial window larger than those specified 
by RFC 3390. 

In quick start proposals, a sender (TCP host) would 
indicate its intention to send at a particular rate in bytes 
per second. Each router along the path could approve, 
reduce, disapprove or ignore the request. Approval of the 
request by the router indicates that it is being underuti-
lized currently and it can accommodate the sender’s re-

quested sending rate. The quick start mechanism can 
detect if there are routers in the path that disapproved or 
do not understand the quick start request. The receiver 
communicates its response to the sender in an answering 
TCP packet. If the Quick start request is approved by all 
routers along the path, then the sender can begin trans-
mission at the approved rate. Subsequently, transmis-
sions will be governed by the default TCP congestion 
control mechanism. If the request is not approved, then 
the sender transmits at the normal TCP startup speed [57]. 

According to [57], TCP is effective for both flow 
control and congestion control. The TCP flow control is 
a receiver-driven mechanism that informs the sender 
about the available receive-buffer space and limits the 
maximum amount of outstanding data. Flow control and 
congestion control are independent and the size of re-
ceive buffer space depends on the capacity of the re-
ceiver network. However, if the TCP is used with a link 
with large bandwidth-delay product, both congestion 
window and flow control window need to be large in 
other for TCP to perform well [55]. This makes both 
flow control and congestion control to overlap. The 
Quickstart TCP extension assumes independence of flow 
and congestion control. This is not true which makes it 
inappropriate for the global internet. In addition, most 
routers and other network components on the global 
Internet are not built with capabilities to be quick start 
aware which implies that they need either to be replaced 
or modified before it can be used. Hence, we propose a 
milder approach to fast startup which we call (E-speed 
startup). This is a form of fast startup that does not need 
routers’ response or modification; rather it builds 
end-to-end principles. This proposal is compatible with 
the current Internet as well as the future Internet. 

Table 3 summarizes the various slow start modifica-
tions that exist in literature. E-speed start combines the 
feature of the two groups (Parameter based manipulation 
capacity/bandwidth estimation). 
 
6. Discussion on Problems Associated with  

Individual TCP Variant 
 
The control mechanism of TCP Tahoe has a problem. If 
a packet is lost, the sender may have to wait a long pe-
riod of time for a time-out to occur for such loss to be 
detected and retransmitted. The data may not be retrans-
mitted for a very long time in networks with large delay. 
TCP Reno was designed to solve this problem. Although 
Reno perform well over TCP Tahoe when the packet 
losses are small, its performance is not good when there 
are multiple packet losses in a single RTT. Reno can 
handle a single packet loss. If there are multiple losses, 
the first duplicate ACKs received will trigger the re-
transmission of the first packet that was lost. The next 
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lost packet will be detected when the sender receive the 
ACK for the retransmitted data after one RTT. In addi-
tion cwnd may be reduced twice for packet losses which 
occurred in one window. Another problem of RENO is  
that if the window is very small when the loss occurs, the 
sender may not receive enough duplicate ACKS for a 
fast retransmit. Hence it has to wait for a time out to oc-
cur before detecting that the packet is lost. These prob-
lems are solved with the introduction of TCP New-Reno. 

One problem with the New-Reno algorithm is its in-
ability to detect any other packet-loss in the window. 
This implies that New-Reno suffers from long delay in 
detecting each packet loss i.e. it takes more one RTT. 
Hence selective acknowledgment (SACK) was proposed 
by [6]. SACK is an extension of TCP Reno and TCP 
New-Reno. It intends to solve the problems of TCP Reno 
and New Reno i.e. detection of multiple packet loss and 
Retransmission of more than one lost packet per RTT. 
One major set back of SACK is in its selective acknowl-
edgement which is a bit cumbersome to implement. 

Delay-based congestion control algorithms were pro-
posed to solve the problems associated with the loss 
based congestion control models. Most delay based con-
gestion control algorithm has fairness problems when 
sharing link with TCP New Reno. This is because they 
become more aggressive when they are at the peak of 
transmission when they suppose to slow down transmis 

sion [26]. BIC-TCP and CUBIC try to solve this problem 
by monitoring the window size when it experienced a 
packet loss and slows down transmission as the window 
size approach this monitored window size. [24]. Table 4 
summarizes the deficiencies of the various TCP Variants: 
 
7. Research Direction 
 
Currently there are three different research directions 
intending to develop or make TCP better: Improving 
TCP performance over links with large bandwidth delay 
product, improving TCP performance over wireless and 
reducing the queuing delay at bottleneck links thereby 
improving quality for real time applications. Other focus 
of research includes finding a suitable startup speed for 
slow start most especially in a high bandwidth delay 
product. TCP modifications of the future will work well 
with gigabit networks as well as backward compatible 
with low speed networks, a protocol fair to both itself 
and to other flows in the network i.e. intra and inter pro-
tocol fairness. A new line of research bothers on conges-
tion control of ACK packets. Controlling acknowledg-
ment packets congestion is a novel problem and differs 
from the techniques used in controlling data packet con-
gestion. This is a new research direction that requires 
investigation. 

 
Table 3. Modifications of slow start. 

Protocol Type Purpose 

TCP Vegas [16] Parameter based Double cwnd every other RTT. 

TCP Fast Start [51] Parameter based 
Used network parameters to reduce connections’ start time and trans-
mission delay. 

Recent history information collection [58] Parameter based 
Collects recent history information and use it to initialize connection 
parameters. 

Limited slow start [53] Parameter based Eliminates the exponential growth of cwnd. 

P-Start [59] Parameter based 
Increases cwnd with small calculated amplitude after ssthresh/2 has 
been reached. 

FAST-FOR-WARD START [60] Parameter based 
uses low-priority data segments, namely, supplement segments to  
calculate cwnd. 

SPAND ([48] Bandwidth Estimation Obtain network state to determine initial sending rate. 

Swift Start [44] Bandwidth Estimation 
Used initial packet of 4 and then estimate available bandwidth in the 
first round trip. 

PACED START [60] Bandwidth Estimation 
Used the difference between the data packet spacing and the acknowl-
edgement spacing for estimating appropriate cwnd. 

Astart [49] Bandwidth Estimation 
Used Eligible Rate Estimation mechanism to determine available band-
width to adaptively and repeatedly reset ssthresh and cwnd. 

Restricted slow start [46] Bandwidth Estimation Used PID control algorithms to calculate a value of the sender cwnd 

Capstart [50] Bandwidth Estimation Estimate path capacity and tune TCP to deliver at higher transfer speed.

Congestion Manager [54] Require network assistance Collects congestion status information and share with endpoints. 

Quick Start [55] Require network assistance
Obtain explicit feedback from all routers along the path to transmit at an 
approved large rate. 
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Table 4. Deficiencies of TCP variants. 

TCP Variants Issues solved Inherent problems 

TCP Tahoe [1] Introduced the concept of congestion control Loss detection is after a time out 

TCP Reno (Jacobson, 1990) Introduced fast retransmit and fast recovery Could not detect multiple losses within one RTT 

TCP New Reno [6] Solved the problem of multiple losses detection of each packet loss takes one RTT 

TCP SACK [13] Introduced Selective Acknowledgement Difficult to implement 

TCP Vegas [16] Delay based Fairness issue 

Fast TCP [25] Delay based Fairness issue 

HSTCP(Floyd S. 2003) Loss based Fairness issue 

STCP [20] Loss based Fairness issue 

BIC – TCP [23] Loss based Fairness issue 

CUBIC [24] Loss-Delay based Fairness issue 

TCP Africa [26] Loss-Delay based Fairness issue 

Compound TCP [21] Loss-Delay based Fairness issue 

TCP Illinois [22] Loss-Delay based Fairness issue 

West wood + ([27] Bandwidth estimation Fairness issue 

XCP [28] Extra signaling Fairness issue 

SPAND [48] 
Obtain network state to determine initial 
sending rate. 

It requires the costly and problematic leaky 
bucket. 

TCP Fast Start [51] 
Reduced connection start time and transmis-
sion delay 

Too aggressive when network conditions change. 

Congestion Manager [54] 
Collects and share congestion status  
information 

Beneficial to only connections that are initiated 
almost at the same time and endpoints that sup-
plied feedback. 

Swift Start [44] TCP start up using 4 packets. 
The estimation of the cwnd drift away from accu-
racy when there is congestion. 

Recent history information collection [58] 
Collects recent history information and use it 
to initialize connection parameters. 

Can not fit the dynamic changes of network and 
violates slow start principle 

Limited slow start  [53] Eliminates the exponential growth of cwnd. May be too conservative in a high BDP. 

Restricted slow start (Allcock et al, 2004) used a PID control algorithm extra overhead for the computation of PID 

Astart (Wang R. et al, 2004) 
Uses ERE mechanism adaptively and re-
peatedly resetting ssthresh during the slow 
start phase. 

May not be able to use its fair share of available 
bandwidth 

Capstart [50] 
Capstart proposed by estimates path capacity 
and use it to tune TCP to deliver higher 
transfer speed 

Did not take other continuously changing network 
conditions into account. 

P-Start [59] 
Increases cwnd by small amplitude after 
ssthresh/2 has been reached. 

May waste bandwidth resource as it may not get to 
a high transmission rate in good time. 

 

8. Conclusions 

 
We have reviewed here, various modifications of TCP in 
history. There is a large number of works done in this 
area. The review carried out here focused on window 
based congestion control. The internet protocol of choice, 
TCP New-Reno, has performed well in today’s inter- 
net,the question is, how will TCP co-habit with other 
protocols that are more aggressive and non responsive to 

congestion indication? A possible answer is that future 
protocols may have the requirements of matching up 
with this aggressiveness while controlling congestion 
effectively. Furthermore, super gigabit network will re-
place today’s network. How will TCP increase its trans-
mission speed to match this high bandwidth network? 
What should be the slow start behaviour of TCP under 
this situation? Will TCP be both backward and forward 
compatible with low speed and high speed network 
without necessarily using network resources sub- 
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optimally? These are questions that must be answered in 
finding a replacement for today’s internet protocol of 
choice- the TCP. In addition, it was observed that all 
reviewed congestion control techniques used only a sin-
gle startup for TCP, this is in most cases the slow start or 
its modification. However, the option of having multiple 
startups for TCP using the prevailing operating condi-
tions at the time of connection is a research line that 
should attract the attention of the Internet research com-
munity. A research in this area called e-speed start uses 
environmental (i.e. operating) parameters to determine 
whether to use the conventional TCP slow start or any 
other startup algorithms depending on the network oper-
ating conditions. It is hoped that when completed, 
e-speed start will address the problem of TCP start up in 
both highspeed and lowspeed networks. 
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