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Abstract: The ways for improving on techniques for finding new solvable potentials based on supersym-
metry and shape invariance has been discussed by Morales et al. [1] In doing so they address the peculiar 
system known as the one-dimensional hydrogen atom. In this paper we show that their remarks on such 
problem are mistaken. We do this by explicitly constructing both the one-dimensional Coulomb potential and 
the superpotential associated with the problem, objects whose existence are denied in the mentioned paper. 
 
Keywords: one-dimensional hydrogen atom, one-dimensional Coulomb potential, supersymmetric quantum 

mechanics. 
 

A paper of Morales et. al. [1] has discussed the use of 
supersymmetric and shape invariance techniques and of 
Darboux and intertwining transformations, for building 
new solvable potentials.  

To illustrate these ideas they apply them to hydro-
gen-like potentials and to radial and one-dimensional 
problems. They assert [page 23 of [1], in the paragraph 
after Equation (39)] that the potential corresponding to a 
one-dimensional hydrogen atom, i. e. a one-dimensional 
Coulomb potential, is nonexistent. They further claim 
that there is no superpotential associated with the -1/|x| 
potential energy term [page 22 of [1], in the paragraph 
just before their Equation (36)]. In this letter we want to 
challenge these two affirmations. Throughout this work 
we use atomic units qe = ~ = m = 1. In this paper we want 
to discuss their results concerning such 1D problem. 

We recognize from the start that the potential deserv-
ing the name one-dimensional Coulomb potential is not 
the one usually alluded to in the literature—i. e. it is not 
-1/|x|. The true Coulomb potential in one dimension must 
be the solution of the corresponding Poisson equation   

2 1 4 ( )DC x                (1) 

where δ(x) is a Dirac delta function which is really not a 
function but a distribution also termed a generalized 
function [2]. As it is very easy to realize, just solving 
Equation (3), the 1D Coulomb potential definitively exist 
and is given by 

1 2DC x                 (2) 

so the potential energy function needed in the Schr- 
ödinger equation should be  

1 ( ) 2DCV x x              (3) 

In this sense the one-dimensional Coulomb potential 
does indeed exist. However, V1DC (x) is not the potential 
energy usually referred to as the one-dimensional hydro-
gen atom potential. But even if Morales et. al. are refer-
ring to this potential, namely V1DH = -1/|x|, corresponding 
to a Hamiltonian  

2

1 2

1 1

2DC
d

H
xdx

             (4) 

the existence of a superpotential is beyond doubt, as we 
intend to exhibit in this work, see also [3,4]. The result 
[Equation (36) in [1]] they base their argument on the 
nonexistence of a superpotential for the one-dimensional 
hydrogen atom cannot be right since it does not have any 
explicit r-dependence. Even though this problem is 
surely just a misprint, the limit l → 0 has no meaning for 
discrediting Hamiltonian (4) because the problem really 
comes from the need to describe Coulomb systems con-
strained to one-dimensional motions with no spherical 
symmetry and hence described by states with no well 
defined angular momentum. 
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Any system described by Hamiltonian (4) is one with 
baffling properties [5–7]. Its properties are so peculiar 
that people is prone to express erroneous concepts about 
it. For example, it has been claimed that the potntial en-
ergy term in Hamiltonian (4) is its own supersymmetric 
partner [8], or, as in [1], that the Hamiltonian itself can-
not really be written since its potential energy function 
does not exist. On the other hand, it has been proven that 
it violateswhich the nondegeneracy theorem for one- 
dimensional quantum problems [5], and it has been 
shown that a superselection rule, analogous to the one 
preventing the so-called paradox of optical isomers of 
quantum chemistry, operates in the system [6,9–13]; see 
also [14,15] for other similar points of view. The Hamil-
tonian (4) is not in general self-adjoint (in conventional 
physics parlance, is not Hermitian). Self-adjoint 4 pa-
rameter extensions have been derived in [16], such ex-
tension admits Hamiltonian (4) as one of its members 
[7,16–19]. Let us emphasize that Hamiltonian HD to-
gether with the matching condition φ(x)|x=0=0 is self- 
adjoint. 

We think the misconception in the Morales et. al. pa-
per could have arisen from their ideas on how the one- 
dimensional hydrogen atom problem come to be. As they 
say that, according to certain authors [1], its equation 
arises from the radial Schrödinger equation of the (3D) 
hydrogen atom merely by substituting r by x and a van-
ishing  angular momentum l = 0. Given such assertion, 
we assume that they think the 1D hydrogen atom is a 
purely formal problem with little or no relation to any 
actual systems. This, however, is not so. There are spe-
cific problems which lead to essentially one-dimensional 
quantum motions which may be described by Hamilto-
nian (4). Examples of such problems are an hydrogen 
atom placed in a constant but super-strong magnetic field 
B [20–22], or the problem of the motion of an electron 
sitting on a surface producing an image charge as hap-
pens to electrons over a pool of liquid helium. In this last 
case, given the charge and its image is hence clear that 
the electron is acted by a Coulomb interaction [23]. In 
the case of the hydrogen atom within a B field, any elec-
tron state may be expressed as a product of transverse 
Landau states times a state depending on a coordinate 
parallel to B — states with no spherical symmetry [21]. 
The motion tranverse to the magnetic field is classically 
restrained to distances of the order of ρc = ( c/B)1/2. In the 
quantum case ρc may be called the mean size of the 
Landau states. So, as the intensity of the magnetic field is 
increased, ρc → 0 leaving only the motion along B for a 
dynamical description [20]. When the (x-pointing) mag-
netic field is super-strong the potential felt by the elec-
tron can be approximated as 

2 2

1 1
( ) lim

B
c

V r
xx

  


          (5) 

This is the potential used in Equation (4). Hence the 
name one-dimensional hydrogen atom is justified: it is 
just an hydrogen atom constrained to move in one direc-
tion and under the assumption that any transverse mo-
tions can be disregarded for field strenghts B ~109 Gauss 
typical of neutron stars [24] they are certainly very small. 
It is worth noting that an hydrogen atom in a magnetic 
field has two integrable cases: 1) when B=0, and, 2) 
when B=∞.  

As we have shown previously [3–6], the two eigen-
functions describing the ground state of the one dimen-
sional hydrogen atom are  

1
0

0
2 (2 )exp( ) 0

( )
0 0

xL x x if x
x

if x
     


    (6) 

and 

0 1
0

0 0
( )

2 ( 2 )exp( ) 0

if x
x

xL x x if x
   

 
    (7) 

where the L1
0 (x) are generalized Laguerre polynomials 

[17]. Notice the vanishing of the eigenfunctions at x = 0 
and the explicit separation between the x > 0 and the x < 
0 regions. This is one of the manifestations of the su-
perselection rule which, among other things, prohibits 
any superposition of the right ψ0

+ with the left ψ0
- eigen-

states. The energy eigenstates of the problem are given 
by a Balmer-like formula [4,13,25,26] En = -1/2 n2, 
n=1,2,3, …, so the ground state energy is E1 = -1/2. 

With the ground eigenstates given above, the superpo-
tential can be easily calculated as [3,27,28] 

'
0
'
0

( ) 1
( ) sgn( )

( )

x
W x x

xx




             (8) 

where sgn(x) is the signum function and we have in-
cluded in a single formula the consequences of both the 
right and the left eigenfunctions. Using the superpoten-
tial, the corresponding partner potentials are readily 
evaluated 

2

1 1 1 1 1
( ) , ( )

2 2
V x and V x

x xx
           (9) 

where, clearly, V- is the one-dimensional hydrogen atom 
potential, V1DH, but shifted so that its ground state energy 
is zero, and V+ is the partner potential. Also, the raising 
and lowering operators are  

d
A W

dx
                 (10) 

and 

d
A W

dx
                (11) 
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where, as it is easy to show,  

[ , ] 2
dW

A A
dx

              (12) 

and 

22V V W               (13) 

The results (8) to (13) establish that the one dimen-
sional potential V1DH can be regarded as stemming  
from the superpotential W(x) in Equation (8). In [4,29], 
we have discussed a complete supersymmetric extension 
of the one-dimensional hydrogen atom problem, with 
Hamiltonian 

2

2 2 2

1 1 1 1 1

2 22 2
susy zH

xx x x


     


   (14) 

where σz is a standard Pauli matrix which is needed to 
operate on both the the fermionic and bosonic sectors of 
the system. But, as the motivations of [29] were the 
similarities between light-cone singularities in quantum 
field theory with the singularity in (4), the results in [29] 
are not all related to the present discussion. Second, that 
Morales et al. have mistaken the paper they cite (refer-
ence [21] in their paper, reference [30] in this work) for 
other of our papers dealing with the one-dimensional 
hydrogen atom, since [30] has nothing to do with the 
problem at hand. It deals with a solvable model in rela-
tivistic quantum mechanics, the Dirac oscillator, which at 
the time was thought to have applications in QCD. They 
should have cited [3,5,29] instead. 
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