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Abstract: The ways for improving on techniques for finding new solvable potentials based on supersym-
metry and shape invariance has been discussed by Morales et al. [1] In doing so they address the peculiar
system known as the one-dimensional hydrogen atom. In this paper we show that their remarks on such
problem are mistaken. We do this by explicitly constructing both the one-dimensional Coulomb potential and
the superpotential associated with the problem, objects whose existence are denied in the mentioned paper.
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A paper of Morales et. al. [1] has discussed the use of
supersymmetric and shape invariance techniques and of
Darboux and intertwining transformations, for building
new solvable potentials.

To illustrate these ideas they apply them to hydro-
gen-like potentials and to radial and one-dimensional
problems. They assert [page 23 of [1], in the paragraph
after Equation (39)] that the potential corresponding to a
one-dimensional hydrogen atom, i. €. a one-dimensional
Coulomb potential, is nonexistent. They further claim
that there is no superpotential associated with the -1/|x|
potential energy term [page 22 of [1], in the paragraph
just before their Equation (36)]. In this letter we want to
challenge these two affirmations. Throughout this work
we use atomic units qe = ~=m = 1. In this paper we want
to discuss their results concerning such 1D problem.

We recognize from the start that the potential deserv-
ing the name one-dimensional Coulomb potential is not
the one usually alluded to in the literature—i. €. it is not
-1/|x|. The true Coulomb potential in one dimension must
be the solution of the corresponding Poisson equation

V24IDC = —475(x) (1)

where §(X) is a Dirac delta function which is really not a
function but a distribution also termed a generalized
function [2]. As it is very easy to realize, just solving
Equation (3), the 1D Coulomb potential definitively exist
and is given by
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#1DC = -27|X| )

so the potential energy function needed in the Schr-
ddinger equation should be

Vipc (X) = 2”|X| (3)

In this sense the one-dimensional Coulomb potential
does indeed exist. However, Vipc (X) is not the potential
energy usually referred to as the one-dimensional hydro-
gen atom potential. But even if Morales et. al. are refer-
ring to this potential, namely Vpy = -1/|X|, corresponding
to a Hamiltonian

Hioc =—%——5-7 “)

the existence of a superpotential is beyond doubt, as we
intend to exhibit in this work, see also [3,4]. The result
[Equation (36) in [1]] they base their argument on the
nonexistence of a superpotential for the one-dimensional
hydrogen atom cannot be right since it does not have any
explicit r-dependence. Even though this problem is
surely just a misprint, the limit | — 0 has no meaning for
discrediting Hamiltonian (4) because the problem really
comes from the need to describe Coulomb systems con-
strained to one-dimensional motions with no spherical
symmetry and hence described by states with no well
defined angular momentum.
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Any system described by Hamiltonian (4) is one with
baffling properties [5—7]. Its properties are so peculiar
that people is prone to express erroneous concepts about
it. For example, it has been claimed that the potntial en-
ergy term in Hamiltonian (4) is its own supersymmetric
partner [8], or, as in [1], that the Hamiltonian itself can-
not really be written since its potential energy function
does not exist. On the other hand, it has been proven that
it violateswhich the nondegeneracy theorem for one-
dimensional quantum problems [5], and it has been
shown that a superselection rule, analogous to the one
preventing the so-called paradox of optical isomers of
quantum chemistry, operates in the system [6,9-13]; see
also [14,15] for other similar points of view. The Hamil-
tonian (4) is not in general self-adjoint (in conventional
physics parlance, is not Hermitian). Self-adjoint 4 pa-
rameter extensions have been derived in [16], such ex-
tension admits Hamiltonian (4) as one of its members
[7,16-19]. Let us emphasize that Hamiltonian Hp to-
gether with the matching condition @(X)|,-¢=0 is self-
adjoint.

We think the misconception in the Morales et. al. pa-
per could have arisen from their ideas on how the one-
dimensional hydrogen atom problem come to be. As they
say that, according to certain authors [1], its equation
arises from the radial Schrédinger equation of the (3D)
hydrogen atom merely by substituting r by X and a van-
ishing angular momentum | = 0. Given such assertion,
we assume that they think the 1D hydrogen atom is a
purely formal problem with little or no relation to any
actual systems. This, however, is not so. There are spe-
cific problems which lead to essentially one-dimensional
quantum motions which may be described by Hamilto-
nian (4). Examples of such problems are an hydrogen
atom placed in a constant but super-strong magnetic field
B [20-22], or the problem of the motion of an electron
sitting on a surface producing an image charge as hap-
pens to electrons over a pool of liquid helium. In this last
case, given the charge and its image is hence clear that
the electron is acted by a Coulomb interaction [23]. In
the case of the hydrogen atom within a B field, any elec-
tron state may be expressed as a product of transverse
Landau states times a state depending on a coordinate
parallel to B — states with no spherical symmetry [21].
The motion tranverse to the magnetic field is classically
restrained to distances of the order of p, = ( ¢/B)"2. In the
quantum case p. may be called the mean size of the
Landau states. So, as the intensity of the magnetic field is
increased, p. — 0 leaving only the motion along B for a
dynamical description [20]. When the (X-pointing) mag-
netic field is super-strong the potential felt by the elec-
tron can be approximated as

V() ~ fim——t L )

B> pcz+X2 |x|
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This is the potential used in Equation (4). Hence the
name one-dimensional hydrogen atom is justified: it is
just an hydrogen atom constrained to move in one direc-
tion and under the assumption that any transverse mo-
tions can be disregarded for field strenghts B ~10° Gauss
typical of neutron stars [24] they are certainly very small.
It is worth noting that an hydrogen atom in a magnetic
field has two integrable cases: 1) when B=0, and, 2)
when B=oo.

As we have shown previously [3-6], the two eigen-
functions describing the ground state of the one dimen-
sional hydrogen atom are

V0= {éxuo(zx) exp(—X) ifif Xx< zo O 6
and
0 if x>0
Vo (x)= {2xL{)(—2x) o) it x<0 )

where the L') (x) are generalized Laguerre polynomials
[17]. Notice the vanishing of the eigenfunctions at X = 0
and the explicit separation between the X > 0 and the X <
0 regions. This is one of the manifestations of the su-
perselection rule which, among other things, prohibits
any superposition of the right y," with the left v, eigen-
states. The energy eigenstates of the problem are given
by a Balmer-like formula [4,13,25,26] E, = -1/2 n2,
n=1,2,3, ..., so the ground state energy is E; = -1/2.

With the ground eigenstates given above, the superpo-
tential can be easily calculated as [3,27,28]

W) =200 -1 ®)
Wo(X) X

where sgn(x) is the signum function and we have in-
cluded in a single formula the consequences of both the
right and the left eigenfunctions. Using the superpoten-
tial, the corresponding partner potentials are readily
evaluated

I 1 I 1
N+X—2,andV—(X)=—N+— (9)

2
where, clearly, V. is the one-dimensional hydrogen atom
potential, V py, but shifted so that its ground state energy
is zero, and V., is the partner potential. Also, the raising
and lowering operators are

V+(x):%—

d

At =—— W (10)
dx
and
Azi—W (11)
dx
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where, as it is easy to show,

(A AT]=2 W (12)
dx
and
V, +V_=2w? (13)

The results (8) to (13) establish that the one dimen-
sional potential Vipy can be regarded as stemming
from the superpotential W(X) in Equation (8). In [4,29],
we have discussed a complete supersymmetric extension
of the one-dimensional hydrogen atom problem, with
Hamiltonian

10> 1 1 1 1
susy :_E§+W_N+E+WO-Z (14)
where o, is a standard Pauli matrix which is needed to
operate on both the the fermionic and bosonic sectors of
the system. But, as the motivations of [29] were the
similarities between light-cone singularities in quantum
field theory with the singularity in (4), the results in [29]
are not all related to the present discussion. Second, that
Morales et al. have mistaken the paper they cite (refer-
ence [21] in their paper, reference [30] in this work) for
other of our papers dealing with the one-dimensional
hydrogen atom, since [30] has nothing to do with the
problem at hand. It deals with a solvable model in rela-
tivistic quantum mechanics, the Dirac oscillator, which at
the time was thought to have applications in QCD. They
should have cited [3,5,29] instead.
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