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Abstract 

The regulatory mechanisms in cellular signaling systems have been studied 
intensively from the viewpoint that the malfunction of the regulation is 
thought to be one of the substantial causes of cancer formation. On the other 
hand, it is rather difficult to develop the theoretical framework for investiga-
tion of the regulatory mechanisms due to their complexity and nonlinearity. 
In this study, more general approach is proposed for elucidation of characte-
ristics of the stability in cellular signaling systems by construction of mathe-
matical models for a class of cellular signaling systems and stability analysis of 
the models over variation of the network architectures and the parameter val-
ues. The model system is formulated as regulatory network in which every 
node represents a phosphorylation-dephosphorylation cyclic reaction for re-
spective constituent enzyme. The analysis is performed for all variations of the 
regulatory networks comprised of two nodes with multiple feedback regula-
tion loops. It is revealed from the analysis that the regulatory networks be-
come mono-stable, bi-stable, tri-stable, or oscillatory and that the negative 
mutual feedback or positive mutual feedback is favorable for multi-stability, 
which is augmented by a negatively regulated node with a positive au-
to-regulation. Furthermore, the multi-stability or the oscillation is more likely 
to emerge in the case of low value of the Michaelis constant than in the case of 
high value, implying that the condition of higher saturation levels induces 
stronger nonlinearity in the networks. The analysis for the parameter regions 
yielding the multi-stability and the oscillation clarified that the stronger regu-
lation shifts the systems toward multi-stability. 
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1. Introduction 

Cellular signaling systems have been studied extensively from the recent view-
point that their disorder is thought to be one of the causes for cancer formation 
since the systems are known to regulate biochemical reactions operating in cells 
for various functions such as cell differentiation, cell proliferation, and homeos-
tasis. Figure 1(a) displays MAPK (Mitogen-activated Protein Kinase) cascade 
which is one of the typical cellular signaling systems, and has been studied in-
tensively, elucidating the various regulatory characteristics for activities of living 
cells such as the switch-like responses, bi-stability, oscillations, robustness, and 
so on [1]-[6]. The cellular signaling systems are comprised of enzymatic reac-
tions such as phosphorylation-dephosphorylation cyclic reactions which are 
primary components of MAPK cascade as seen in Figure 1(a). Cyclic reaction  
 

 
Figure 1. Regulatory network for MAPK cascade. (a): The MAPK cascade which is com-
posed of several cyclic reactions with a feedback regulation from MAPK-PP; (b): Simpli-
fied version of the MAPK cascade. 1P , 2P , 3P , and 4P  correspond to active Ras, Raf, 
Mek, and Erk, respectively, while 1U , 2U , 3U , and 4U  are inactive forms of those en-
zymes; (c): Regulatory network representing the MAPK cascade. Each node represents 
the cyclic reaction in (b); (d): Cyclic reaction in node i. iU : inactive form of enzyme at 
node i; iP : active form of enzyme at node i; jP : activating enzyme for iU ; kP : inacti-

vating enzyme for iP . The rate constant for the activation and the inactivation are de-
noted by ia  and id , respectively. 
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seems to be primary reaction system for other cellular signaling systems such as 
Rac1, PAK, and RhoA signaling networks [7]. 

Many studies have employed simulation analysis with the given values for the 
parameters in the signaling systems because of the difficulty in developing the 
analytical method for the systems analysis due to their nonlinearity. In this 
study, more general approach is proposed for characterization of the stability in 
cellular signaling systems by construction of mathematical models for a class of 
cellular signaling systems and simulation analysis of the models over variation of 
the network architectures and the values of parameters. The model system is 
formulated as regulatory network in which every node represents an activa-
tion-inactivation cyclic reaction for respective constituent enzyme of the net-
work and the regulatory interactions between the activated enzyme and the reac-
tion are depicted by arcs between nodes. The Michaelis-Menten mechanism is 
assumed for the reaction paths in each cyclic reaction and the emergence of the 
stable point in steady states of the network is analyzed. 

It is biologically significant to analyze the characteristics of the stability in 
cellular signaling systems since stable points are convergent states of the relaxa-
tion process in dynamic changes due to random noises, and seem to correspond 
to the distinct biochemical states such as normal states or malfunctional states. 
Similar approaches have been taken in several studies [5] [8]-[15]. Kuwahara et 
al. applied the rather simpler regulatory networks to elucidate the effects of net-
work architectures on the stochastic characteristics [8]. Ma et al., Yao et al., and 
Adler et al. employed the similar regulatory networks of three nodes, but focused 
on the biochemical adaptation mechanisms, robust and resettable bi-stability, 
and fold-change detection mechanism for living cells, respectively [9] [14] [15]. 

In this study the stability analysis is performed for all variations of the regula-
tory networks comprised of two nodes with multiple feedback regulation loops. 

2. Results 
2.1. Formulation of Regulatory Networks for Cellular Signaling  

Systems 

The regulatory network is formulated as follows. Every node represents an activa-
tion-inactivation cyclic reaction for respective constituent enzyme of the network. 
The activated enzyme in a node acts on another node for the positive regulation 
which increases the active enzyme or for the negative regulation which increases 
the inactive enzyme through the reverse path. The regulatory interactions be-
tween the activated enzyme and the reaction are depicted by arcs between nodes. 
The MAPK cascade is comprised of several cyclic reactions and has a feedback 
regulation from MAPK-PP as shown in Figure 1(a). Figure 1(b) is a simplified 
representation of the MAPK cascade of Figure 1(a). Figure 1(c) illustrates the 
regulatory network of the MAPK cascade, which is analyzed in this study. 

Figure 1(d) shows a cyclic reaction in node i which is regulated positively by 
node j, and negatively by node k. We assume the Michaelis-Menten mechanism 
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as the reaction mechanism in the cyclic reactions and the reaction rate equations 
are formulated as Equations (1)-(5):  
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It should be noted that the Michaelis-Menten equation is adopted as the reac-
tion mechanism, and therefore, the enzyme-substrate complex does not appear 
in the reaction rate equations. iT  is the total concentration of enzyme iP  in 
node i and iR  is the relative concentration of iP . jL  and kL  are the norma-
lized Michaelis constants of enzymes jP  and kP , respectively. In addition to 

jL  and kL , the normalized rate Equation (4) has a parameter iK , which is the 
ratio of maximum inactivation velocity to maximum activation velocity. The 
value of jR  is set to be unity in the case of no positive regulation for node i, 
whereas the value of kR  is set to be unity in the case of no negative regulation. 

We analyze the characteristics of stability for all variations of two-node regu-
latory networks with multiple feedback regulation loops under the restriction 
that each node has at most one positive regulation and one negative regulation 
as designated in Figure 2. 
 

 
Figure 2. Regulatory networks with feedback regulations. Red arrows and blue arrows 
depict the positive and negative regulations, respectively. The number in each node cor-
responds to the parameter 1K  or 2K  in the graphs of parameter space as shown in 
Figure 4 and Figure 5. 
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2.2. Characteristics of Multi-Stability in the Regulatory Networks 

In Figure 3 the effects of Michaelis constant on the emergence ratio of multi- 
stable state are demonstrated for each regulatory network examined. It follows 
from this figure that the networks are divided into two groups; that is, the net-
works with high emergence ratio (F, G, H, I, J) and those with zero or slight 
emergence ratio (A, B, C, D, E). The former group is further categorized into 
those with very high emergence ratio (I, J) and those with moderate emergence 
ratio (F, G, H). The latter group also is further assorted into the networks with 
zero emergence ratio (A, B, C) and slight emergence ratio (D, E). It is observed 
that the emergence ratio decreases when the Michaelis constant gets higher, and 
then it converges at certain levels for the networks with very high emergence ra-
tio. On the other hand, multi-stable state arises when the Michaelis constant is 
low, and then the ratios become zero for the networks with the moderate emer-
gence ratio. The highest emergence ratio at Michaelis constant of 52−  is 100%, 
69.4%, 25.6%, 19.0%, and 16.5% for the networks J, I, H, G, and F, respectively. 
Regarding the networks E and D, the highest ratio of 1.7% is attained at Michae-
lis constant of 52−  and 12− , respectively. 

In Figure 4 the distributions of multi-stable equilibrium points in the para-
meter space of 1K  and 2K  are illustrated for each regulatory network and 
various Michaelis constants examined. The heat maps in Figure 4 mean the sen-
sitivities which quantify the effect of the change of parameter values on the set of 
stable equilibrium points. The precise definition of the sensitivity is provided in 
the method section. The blue area corresponds to the zero or slight sensitivities, 
implying that the set of stable equilibrium points hardly change in the area. In 
contrast, the red area indicates high sensitivity where the set changes drastically. 

It should be noted that, as the networks G, H, and J are symmetric for each 
node, the graphs for these networks are symmetric to the diagonal line. It is re-
vealed that bi-stable states appear in the area with low values of iK  for the 
network G which is composed of mutual negative feedbacks. In contrast, 
bi-stable states are likely to appear in the area with high values of iK  for the  
 

 
Figure 3. Emergence ratio of multi-stability for the regulatory networks. The abscissa de-
picts each regulatory network and the ordinate represents logarithm values of base 2 for 
the normalized Michaelis constant L. The applicate axis represents the emergence ratio. 

https://doi.org/10.4236/cmb.2017.73003


C. Sueyoshi, T. Naka 
 

 

DOI: 10.4236/cmb.2017.73003 38 Computational Molecular Bioscience 
 

 
Figure 4. Distributions of multi-stable equilibrium points and the sensitivities for each regulatory network in the parameter space. 
Each column corresponds respectively to the individual regulatory networks of D, E, F, G, H, I, and J for which multi-stability 
emerges. L denotes the normalized Michaelis constant. The abscissa and the ordinate in each small graph depict the logarithm 
values of base 2 for 1K  and 2K , respectively. The subscripts of K correspond to the numbers in the nodes in Figure 2. Orange 
circle marks and blue triangle marks locate the bi-stable points and tri-stable points, respectively. Green cross marks in the graphs 
for network D depict the oscillation points for the values between 52−  and 22− . The sensitivities of a set of equilibrium points to 
the change of parameter values of 1K  and 2K  are displayed as the heat maps in which light blue shows low sensitivity and pur-

ple indicates high sensitivity. The white areas in the graph for network H and 12L −=  correspond to the points in which real part 
of one of the eigenvalues are zero. The five graphs in the bottom row except the leftmost one show the values of the stable equili-
brium points in each light blue area of upper graphs indicated by the corresponding alphabetic letters below where the points are 
indicated by circles, while the leftmost one demonstrates the values of equilibrium points in ( )1 2,R R -plane in subgraphs in the 

right four graphs. 
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networks H and J which contain mutual positive feedbacks. Since the parameter 

iK  is the maximum velocity of inactivation divided by that of activation, higher 
and lower values of iK  enforce negative regulations and positive regulations, 
respectively. Therefore, bi-stable state is likely to appear in the area where the 
regulations are enforced. 

The bi-stable area for lower value of the Michaelis constant include the area 
for higher value of the Michaelis constant for the network F, G, H, I, and J, that 
is consistent with the tendency that lower value of the Michaelis constant is fa-
vorable to emergence of multi-stable state shown in Figure 3. Likewise, tri-stable 
states in the area with low values of iK  of network J gets smaller with lower 
value of the Michaelis constant, and then vanishes at L = 20. 

It follows from Figure 4 that the parameter space is divided into the robust 
several subspaces according to the change in iK  and bifurcation occurs on the 
high sensitive purple area across the low sensitive light blue area. The set of sta-
ble equilibrium points in the light blue areas contains the combinations of nearly 
zero or nearly unity values of 1R  or 2R . The graphs in the bottom row explain 
these combinations for each graph in the upper rows. The values under 0.1 and 
the values over 0.9 are regarded as zero and unity, respectively, in these graphs. 
It is noted that the networks with mutual positive feedbacks yield the bi-stable 
state in which the both of two nodes are fully activated or fully inactivated, while 
the networks with mutual negative feedbacks yield the bi-stable state in which 
either of the nodes is fully activated and the other node is fully inactivated in the 
parameter space with high or moderate values of iK . On the other hand, both of 
the two nodes are fully activated in the areas with low values of iK  for all the 
networks examined. This feature is predictable since the low value of iK  en-
forces the activation, and it seems capable to yield the tri-stable equilibrium 
points in network J. 

The white area in the graph at 12L −=  for the network H indicates that the 
set of stable equilibrium points is empty since the eigenvalues of this point are −2 
and 0. Likewise, the white areas in the graphs for the network D depict the emp-
ty set of stable equilibrium points because of the oscillations. 

2.3. Characteristics of Oscillations in the Regulatory Networks 

Figure 5 displays the limit cycles for the oscillations indicated by green cross 
marks in the graphs for network D in Figure 4. It is observed that the oscillation 
area for lower value of the Michaelis constant includes the area for higher value 
of the Michaelis constant as in the case of multi-stability. Furthermore, oscilla-
tion arises in the case that 2K  is less than unity. It seems difficult to find out 
the simple rules for the locations and the sizes of limit cycles with respect to the 
value of Michaelis constant L; however, the size of the limit cycle for each L val-
ue is getting bigger with higher 2K , and then getting smaller, suggesting that 
the optimal value of 2K  seems to exist to maximize the size of the limit cycle 
for each L value. It is also seen that the almost of all limit cycles appear in the  
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Figure 5. The characteristics of the limit cycles in Network D. The abscissa depicts the parameter values of 2K  and the 
ordinate denotes the values of the normalized Michaelis constant L. The parameter values of 1K  is 20 except the three 
graphs in second row and two graphs in forth row, where the values of 1K  is 21 as indicated in the respective rows. The 
abscissa in each small graph depicts 1R  which is the activation level of node 1, while the ordinate shows 2R  which is the 
activation level of node 2. The subscripts of K and R correspond to the numbers in the nodes in Figure 2. The light blue 
arrows demonstrate the dynamic flows and the series of red arrows indicate the courses of the limit cycles. 

 
area with small values of ( )1 2,R R , and go through the neighbor points of the 
origin ( )0,0 . 
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It is found that all of the limit cycles are counterclockwise. The limit cycles 
arise in the case of 1 2K K> , implying that the inactivation reaction is more 
dominant than the activation reaction at node 1, while the activation reaction is 
more dominant than the inactivation reaction at node 2. As for the network D, 
node 1 has a positive auto-regulation and a negative regulation from node 2, 
while node 2 has a positive regulation from node 1. Therefore, if the system is 
operated around ( ) ( )1 2, 0.5,0.5R R = , the value of 1R  would decrease under 
the condition of 1 2K K> ; that is, the state would move left in ( )1 2,R R -plane. 
When the value of 1R  becomes small enough, then the value of 2R  is getting 
lower since the activating power of 1R  to 2R  is getting weak; that is, the state 
would move down along with left edge of the ( )1 2,R R -plane. The value of 2R  
becomes small enough, and then the value of 1R  would be getting higher since 
the inactivating power of 2R  to 1R  is getting weak; that is, the state would 
move right along with bottom edge of the ( )1 2,R R -plane. When the value of 

1R  becomes high enough, the value of 2R  is getting higher since the activating 
power of 1R  to 2R  is retrieved; that is, the state would move up, and return to 
the starting point of the state. Subsequently, the next cycle would start again. 
This might be the mechanism for yielding the limit cycles. 

3. Discussion 

The characteristics of the emergence of stable equilibrium points are analyzed 
quantitatively by the emergence ratio and the sensitivity of equilibria which are 
newly proposed and defined in this study. These quantities seem to successfully 
detect the effects of the architectures and the values of parameters on the charac-
teristics. 

Comparison of the emergence ratios of bi-stable state for the regulatory net-
works as shown in Figure 2 suggests that the networks with high ratios have ei-
ther the mutual positive or negative feedbacks. The auto-regulation seems to fur-
ther affect the emergence of multi-stability. The effects of the mutual regulations 
and the auto regulations could be summarized as in Table 1; that is, positive mu-
tual regulations or negative mutual regulations are likely to raise the emergence 
ratio of multi-stable state, while positive and negative mutual regulations tend to 
make the emergence ratio lower. With respect to the auto regulations, contain-
ment of node with both of positive auto regulation and negative regulation from  
 
Table 1. Effects of network structure on emergence of multi-stable state. 

 Mutual feedback Auto-feedback 

Boost  
 

 

 
 

Decline 
  

The partial network structures in the upper row make the emergence ratio of multi-stable state higher, while 
those in the bottom row work reversely. 
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the other node could boost multi-stable systems, while a network containing node 
with both of negative auto regulation and positive regulation from the other node 
curtail the multi-stable systems. 

As a common feature for the regulatory networks examined, smaller norma-
lized Michaelis constant L yields higher emergence ratio of multi-stability or os-
cillation, implying that the condition of the higher saturation levels induces 
stronger nonlinearity. In the parameter spaces multi-stability arises in the region 
where iK  is small in the case that the node is regulated positively and iK  is 
large in the case that the node is regulated negatively, suggesting that the strong-
er regulation shifts the systems toward multi-stability. Multi-stable state is ob-
served to emerge very robustly on the regulatory network J which undergoes 
mutual negative feedbacks and positive auto regulation on both of two nodes. It 
has been suggested that this robust reaction system works as the sequential 
Bayesian filter to reduce the noise in cells [16] [17]. 

It is difficult to visualize and analyze the number of the stable equilibrium 
points and the values of the points, since high dimensional representation is re-
quired due to the existence of plural stable equilibrium points in two-dimen- 
sional space such as ( )1 2,R R -plane at each point in the parameter space such as 
( )1 2,K K -plane. The sensitivity of equilibria is introduced to resolve this diffi-
culty in this study. At first, the sensitivity is utilized to divide the parameter 
space to the robust area and high sensitive area, then the number of the stable 
equilibrium points and the values of the points are analyzed in the robust areas. 
It is revealed that the variations of these points are scarce and sorted in the ro-
bust areas as shown in the graphs in the bottom row in Figure 4. 

Furthermore, the emergence of oscillations are analyzed to elucidate that the 
emergence of the oscillations are rare from the viewpoints of the regulatory 
structures and the values of parameters comparing to the high emergence of mul-
ti-stable states, such as 100% for the network J at the small values of L. 

It is suggested that the method proposed in this study utilizing the emergence 
ratio and the sensitivity of equilibria are useful for this kind of analysis. On the 
other hand, it is unclear if these results are available to the higher order networks 
such as three-node or four-node regulatory networks due to the nonlinearity of 
the systems. Therefore, the similar analysis for the higher order networks are un-
dergoing in our laboratory, facing the difficulty for the high dimension to visual-
ize. It is also required to invent the new way to visualize and analyze the high di-
mensional dynamics. 

4. Method 
4.1. Range of Parameter Space for the Analysis 

The analysis is performed with variation of the parameter values in appropriate 
range to cover the assumed values for reactions of MAPK cascade described in 
other studies [18] [19] [20] [21] [22]. From physiological point of view, the pa-
rameter set serves as surrogates of varying cellular activities across different cell 
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types and cellular environments. We assume that the value of normalized Mi-
chaelis constant jL  and kL  in Equation (5) is common for all nodes to cha-
racterize the essence of the regulatory networks and to reduce the computational 
costs, which is denoted by L. The value of L is changed over the discrete values 
of 5 4 5, ,2 2,2− −

  (11 different values). iK  is set to be independent values for 
each node, and has 11 different values as same as L. Therefore, the total number 
of parameter combinations of iK  is 121 (i.e., 112). 

4.2. Quantification for the Characteristics of Stability 

Stability is assessed by the standard stability theory [23]. At first, a set of alge-
braic equations derived by setting the right-hand side of Equation (4) to be zero 
are solved to obtain the equilibrium points of the system. Then, the eigenvalues 
at those points are calculated for the Jacobian matrix of the set of algebraic equa-
tions. If the real parts of all eigenvalues are negative, the point is thought to be 
the stable equilibrium point. If more than two stable equilibrium points exist, 
then the system is multi-stable. We define emergence ratio of multi-stability as 
the percentage of the total number of combinations for the parameter ( iK ) val-
ues yielding the multi-stability to the total number of examined combinations 
for parameter values, which is used to evaluate the characteristics of emergence 
of multi-stability quantitatively. 

Furthermore, the sensitivity of equilibria (or equilibrium) is defined and uti-
lized to quantify the effect of the change of parameter values on a set of stable 
equilibrium points. That is, the sensitivity denotes the change of numbers of the 
equilibrium points and how much the values of equilibria move when the values 
of parameters are changed. At first, we define the distance between two sets of 
points in two dimensional Euclid space as:  

( ) { } { }1 1, min , , , , , ,j i j m ni
d A b a b A a a B b b= − = =          (6) 

( ) ( ) ( )( ), max max , ,max ,j j j jD A B d A b d B a=             (7) 

The defined distance ( ),D A B  is the longest Euclid distance among the 
shortest Euclid distances between a point in one set and a point in the other set. 
It should be noted that this distance is the metric since it fulfills the axioms for 
distances. Then, sensitivity is defined as  

( ) ( ) ( ) ( ) ( )( ), 1, , 1, , , 1 , , 1, mean , , , , , , ,i j i j i j i j i j i j i j i jS i j D e e D e e D e e D e e+ − + −=    (8) 

where ,i je  is a set of the stable equilibrium points at 1 2iK =  and 2 2 jK =  in 
the parameter space. Namely, the sensitivity is the mean value of distances be-
tween a set of the stable equilibrium points and a set of the stable equilibrium 
points at Neumann neighborhood. The system with low sensitivity is robust to 
the change of parameter values, while the high sensitivity might imply that the 
stability characteristics of the system could be regulated by the parameters. 
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