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Abstract 
With over 10 million points of genetic variation from person to person, every 
individual’s genome is unique and provides a highly reliable form of identifi-
cation. This is because the genetic code is specific to each individual and does 
not change over time. Genetic information has been used to identify individ-
uals in a variety of contexts, such as criminal investigations, paternity tests, 
and medical research. In this study, each individual’s genetic makeup has 
been formatted to create a secure, unique code that incorporates various ele-
ments, such as species, gender, and the genetic identification code itself. The 
combinations of markers required for this code have been derived from 
common single nucleotide polymorphisms (SNPs), points of variation found 
in the human genome. The final output is in the form of a 24 numerical code 
with each number having three possible combinations. The custom code can 
then be utilized to create various modes of identification on the decentralized 
blockchain network as well as personalized services and products that offer 
users a novel way to uniquely identify themselves in ways that were not poss-
ible before. 
 

Keywords 
Genomic Fingerprint, Digital Code, SNP’s, Auxiliary Code, Marker Selection, 
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1. Introduction 

There are approximately 8 billion people in the world and a large majority own 
computers, smartphones, and other internet-connected devices [1] [2]. Accord-
ing to a US survey in 2020, 87 percent of individuals have access to a computer 
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in their households, and about 5 billion active internet users in the world today 
[3]. This number is expected to grow exponentially with the recent revolution of 
IoT, Web3.0 and Metaverse applications [4]. Traditional forms of identity in use 
today have limited security and are often fragmented and inconvenient. A tradi-
tional username and password are commonly used to identify individuals, but 
password theft and phishing attacks raise serious concerns for many, and forget-
ting one’s login information can be a significant inconvenience [5] [6]. Popular 
biometric identification methods such as facial recognition are increasingly 
common and at times can be more convenient than using a traditional user-
name, but proper functionality involves ideal conditions, and using facial data 
for security purpose may raise concerns about a government or corporate over-
reach [7]. Blockchain technology-enabled identification methods could poten-
tially allow for more secure management and storage of digital identities by pro-
viding unified, interoperable, and tamper-proof infrastructure with key benefits 
to enterprises, users, and IoT management systems [8] [9]. Having a unique, 
personalized identification code allows the individual to safely identify them-
selves without having to reveal other personal information to other parties with 
the added benefit of the code being truly unique to that individual.  

Individual identity and personalization are integral to a functioning society 
and economy [10]. Having a safe, secure, and robust way to identify and perso-
nalize ourselves and our possessions is becoming increasingly crucial in today’s 
digital society and global markets [11] [12]. At its most basic level, identity is a 
collection of claims about a person, place, or thing. For people, this usually con-
sists of first and last name, date of birth, nationality, and some form of national 
identifier such as one’s passport number, social security number (SSN), driving 
license, etc. [13] [14]. These data points are issued by centralized entities (gov-
ernments) and are stored in centralized databases (central government servers) 
[15]. A digital identity arises organically from the use of personal information on 
the web and from shadow data created by the individual’s actions online [16]. 
More robust identity and personalization management systems could be used to 
eradicate current identity issues such as inaccessibility, data insecurity, and 
fraudulent identities [8] [17] [18]. Security and identity are complex and ev-
er-evolving issues for enterprise and government systems alike. Blockchain-based 
solutions could provide exceptional utility in solving issues common in current 
identity and digital systems [19] [20]. Blockchain technology allows users to 
create and manage digital identities through the combination of decentralized 
identifiers, identity management and embedded encryption. However, current 
blockchain-based identification methods rely on randomly generated digital 
code that is not unique to the individual [21] [22]. The genome fingerprint-based 
personalized digital code is unique to each individual and could potentially be 
used to verify ownership of identity even in the case when a private key or pass-
code is not available for the associated data.  

The human genome holds roughly 3 billion base pairs [23] [24]. Each person’s 
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genome sequence holds a unique combination formulated from random recom-
bination from the parent’s genome during fertilization [25] [26]. Half of the in-
dividual genome is inherited from the father and the other half from the mother. 
The genetic makeup is composed of four nucleotides (ACGT) and shares 99% 
similarities among all people [27]. Most genetic variations are in the form of sin-
gle nucleotide polymorphisms (SNPs), which have been extensively studied by 
many acclaimed scientists after the completion of the Human Genome Project 
(HGP) in 2003 [28] [29]. SNPs are commonly obtained through several methods 
such as genome sequencing [30], genotyping arrays [31], or polymerase chain 
reaction (PCR) methods [2]. When using such methods, it is crucial to verify 
and validate SNP sites because validation success can vary based on SNPs chosen 
and different ethnic populations [32]. Most of these specific variations are rather 
rare and show an individual and population-specific occurrence, but some frac-
tion of these variations arise very frequently in every population studied [33] 
[34]. These high allele frequencies (close to 50%) pan-ethnic common SNPs are 
considered to be natural results from evolution history and are not associated 
with any known phenotype or disease [35]. Most of these variations are 
bi-allelic, which means only two choices of nucleotides are observed at a given 
specific site [36] [37]. The patterns of these high allele frequencies bi-allelic SNP 
variations can be used to generate a personalized genetic code that can poten-
tially identify and track individuals for use in forensics, such as the CODES me-
thod which uses fragment length polymorphisms [38]. SNPs have also been used 
to track animals such as U.S. beef cattle when suppliers require cattle identifica-
tion for paternity analysis and breeding information [39]. We employ these 
bi-allelic, high frequency, pan-ethnic common SNP variations in the genome to 
prepare and create a unique genomic pattern akin to fingerprint authentication 
(Genome Fingerprinting). This information can provide accurate and powerful 
means to identify and distinguish individual people in a digital format by simply 
decoding the digital code without revealing other identifiable personal informa-
tion. We employ a panel of selective, universal, high allele frequency bi-allele 
human SNP markers to efficiently generate a unique combination code that can 
be used in digital identification and personalization.  

2. Methods 

The proposed digital identification method comprises of steps that involve se-
lecting genetic markers for identification, assembling information for the unique 
genetic identification, assigning digital codes for each of the features, creating 
the digital identification codes, decoding the digital identification code, register-
ing the codes for blockchain, and implementing codes for various applications.  

2.1. Digital Identification Format 

In order to formulate a digital identification which holds all the necessary in-
formation from a wide selection of species of animals and plants with the possi-

https://doi.org/10.4236/cmb.2023.131001


I. K. Lee 
 

 

DOI: 10.4236/cmb.2023.131001 4 Computational Molecular Bioscience 
 

bility of a rare event (identical twins or cloning), we propose the following digi-
tal identification format:  

Species Code (2 - 4 digits), Gender Code (1 digit with Natural or Virtual birth 
separation) (1), Identification Codes (24 digits for numerical, and 12 digits for 
alphabetical), Auxiliary Code (1 or 2 digits). 

2.2. Species Codes 

Every animal, plant, bacteria, and virus on earth has genetic makeup (DNA and 
RNA) vital for growth, reproduction, and multiplication. Although the current 
study is primarily focused on using genetic code in identifying human individu-
als, the same concept of genetic based blockchain identification can be used in 
other species for identification, parental linkage, tracking, or management anal-
ysis in agricultural businesses. Therefore, species identification code should be 
included in the digital format. Below is an example of the proposed codes for 
some of the well-known species of interest (Table 1). The two-digit combination 
of the alphabetical code can cover up to 576 (24 × 24) different species in the 
code combination. Three (13,824 species) or four (331,776 species) digit species 
identification code combination may be implemented in future expansion. 

2.3. Gender Codes 

With respect to biological sex, humans are born as either male or female. How-
ever, gender classifications are simply not binary so other types (gender neutral, 
transgender, genetic abnormalities) should be considered in the gender code as-
signment to cover a wide spectrum of people. Furthermore, we are also explor-
ing the possibility of a non-natural birth (Artificial or Virtual) individual such as 
cloning or digital creation in some applications, that could be differentiated 
from real (Natural) individuals to that of artificial or virtual individuals (Table 
2). 
 
Table 1. Examples of species code. 

Species Codes Scientific Name Codes 

Human Homo sapiens HS 

Dog Canis lupus CL 

Cat Felis tus FT 

Babine Bos taurus BT 

Swine Sus scrofa SS 

Horse Equus caballus EC 

Sheep Ovis aries OA 

Tuna Thunnus albacares TA 

Salmon Salmo salar SS 

Alien Xenomorph x XX 
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Table 2. Gender code with possible outcomes for both natural and virtual birth. 

Gender Codes Male Female Other 

Natural 1 2 3 

Artificial 5 6 7 

2.4. 24-Digit Numerical Codes 

Because of SNP’s mostly bi-allelic nature, each position of the markers has three 
different possible combinations as summarized in the table below. We can assign 
a code “1” for the known reference allele, “2” for the alternative allele, and “3” 
for the mixture of two alleles called heterozygotes. However, there is a possibility 
of an incomplete or failed sequencing result at a particular site that can stem 
from either low confidence call or missing call for a certain SNP [40] [41]. The 
missing calling makes it difficult to assign a piece of correct allele information 
on the given sites. Therefore, the missing genotypes are labeled “NA” in the se-
quencing output file and assigned a “0” in the code output. Typically, the stan-
dard whole genome sequencing coves roughly 95% of the entire genome region 
when it is sequenced in 30X read depth (standard Whole Genome Sequencing 
QC criteria), meaning that there is always a chance that one or more SNPs may 
not produce a satisfactory result to assign an appropriate code [42] [43]. In order 
to establish a criteria cutline and a measure of quality control, the minimum da-
ta point needed to assign a reliable identity code will be designated to 21 data 
points. Based on the 24 SNPs needed for human identification code generation 
used, the encoding system can accommodate and produce a valid result even 
when up to three SNP data points are missing (Table 3). 

2.5. 12-Digit Alphabetical Codes  

In order to accommodate the limitation of the numerical code while shortening 
it simultaneously, we converted the 24-digit numerical code into a 12-digit al-
phabetical code by combining two numerical codes into one alphabetical code 
(Table 4).  

The numerical code has only four (0 - 3) options in each digit sites, but al-
phabetical codes have 16 different options in each digit sites and gives more op-
tions for downstream applications.  

The 12-digit alphabetical codes can be easily converted back to a 24-digit nu-
meric codes and be able to decode original SNP sequence of each individual 
people. 

2.6. Auxiliary Codes 

One of the drawbacks for using genetic-based identification codes is its inability 
to separate and distinguish individuals with identical genetic makeup. Such cri-
teria are found in identical twins, triplets, quadruplets, and human clones [44]. 
Therefore, an auxiliary identification code is needed when two individuals with 
the same genetic makeup are to be identified. The auxiliary code can also be used  
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Table 3. Possible outcomes of each genetic markers’ digital code including three possible 
combinations plus no result calls. 

SNP Compositions Allele1/Allele1 Allele2/Allele2 Allele1/Allele2 No Call 

A/C AA CC AC or CA NA 

A/T AA TT AT or TA NA 

A/G AA GG AG or GA NA 

C/T CC TT CT or TC NA 

C/G CC GG CG or GC NA 

T/G TT GG TG or GT NA 

CODE 1 2 3 0 

 
Table 4. Conversion tables for two numeric codes to one alphabetical code. The alphabet 
order is based on occurrence rate of each combination with A being the most common 
and P being the least common in the general population. 

Numeric Code 
Combination 

Alphabetical Code 
Conversion 

Occurrence 

33 A 6 Most Common 

32 B 5 Most Common 

31 C 5 Most Common 

23 D 5 Most Common 

13 E 5 Most Common 

22 F 4 Common 

21 G 4 Common 

12 H 4 Common 

11 I 4 Common 

30 J 3 Less Common 

03 K 3 Less Common 

20 L 2 Less Common 

10 M 2 Least Common 

02 N 2 Least Common 

01 O 2 Least Common 

00 P 1 Unlikely 

 
to separate real (natural birth) individuals from artificial (virtual birth) individ-
uals that are created in virtual environments through games or other computer 
algorithms. The auxiliary code can be numeric or alphabetic, both of which can 
be either single digit or double-digit, depending on the potential number of ge-
netically identical individuals created in a natural (identical twins) or artificial 
(cloning) environment. For example, we are assigning the number “1” for single 
born real individuals and “2” for twins with identical genetic makeup (Table 5).  
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Table 5. Auxiliary code for genetically identical individuals such as twins and clones. 

Codes Single borne 
Identical 

Twin 
Identical 

Triple 
Identical  

Quadruple 

Born 1 2 3 4 

Clone Alphabetical Combination 

 
Note that non-identical twins have different genetic makeup and therefore will 
produce different codes. The auxiliary code is also designed to take into account 
the very rare event (one out of 280 billion cases when 24 SNPs are being used in 
the panel) when two unrelated individuals have the same sequencing code by ac-
cident. 

2.7. SNP Identity Marker Selection 

It is well established that about 0.1% of the genome accounts for all the genetic 
variations that are found from person to person [45] [46]. This means that there 
are potentially around three million base pair differences in a particular genome 
between two non-related individuals [47]. All of these variations in the genome 
can be used as a fingerprint for patterns when differentiating from other indi-
viduals. Therefore, each individual, except identical twins, has a unique genomic 
fingerprint that solely belongs to that person [48]. Single nucleotide polymor-
phisms (SNPs) are the most common type of genetic variation, and they are easy 
to detect with most genotyping and sequencing technology platforms [49] [50]. 
Extensive research in the human genome project has led to more than 20 million 
variations being studied in different ethnicity and nationality backgrounds [51] 
[52]. Most of these variations are quite rare and show individual and popula-
tion-specific distribution patterns, but some of these fractions arise very fre-
quently in every population studied [53] [54]. The majority of these variations 
are bi-allelic, which means only two choices of nucleotides are observed within a 
given specific SNP site. The patterns and fingerprints of these high-frequency 
bi-allelic SNPs have been used in other applications, most notably to identify in-
dividuals for forensic purposes [55] [56].  

In order to select the most informative markers for the identification and 
personalization purposes, SNPs that show a high minor allele frequency (>0.45) 
from all population studies were selected from HapMap and 1000 genome se-
quencing database [57] [58]. For example, there are over 4 million SNPs that 
have been genotyped in the CEU cohort within HapMap, and 218,000 SNPs 
showed minor allelic frequencies of greater than 45% [59]. The higher the minor 
allelic frequencies are, the more informative the result will be based on marker 
combinations present in the genomes [60]. Therefore, fewer markers are re-
quired when higher frequency SNP markers are used for testing, analysis, and 
interpretation for the identification and personalization purpose [61]. 

2.8. Marker Selection Workflow 

Markers are selected from published HapMap and 1000 Genome Sequencing 
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database using the criteria below: 
- Identify marker sets with high minor allele frequency (e.g., >45%) within the 

study population 
- Select only bi-allelic SNP markers with good Hardy-Weinberg distribution 
- Avoid markers with adjacent known polymorphisms to minimize potential 

allele drop in sequencing 
- Find markers that are well separated from each other 
- Avoid markers in a region containing duplicated sequence motifs 

Number of SNP markers for digital identification code generation  
Because each bi-allele SNPs has three different allele combinations (Reference, 

Alternative, Heterozygote), each SNP analysis could generate three distinct iden-
tification codes [62]. The possible combination of two unrelated SNP markers 
could potentially generate 9 (3 × 3) different codes, and three distinct SNP 
markers would result in 27 (3 × 3 × 3) different combination codes. When con-
sidering a world population of 8.1 billion people in recent world population 
survey, a 21 SNPs composition (Over 10 billion possible combination codes) 
could potentially differentiate all the people in the world (Table 6). Therefore, 
we propose to use 24 SNP combinations for human identification to create suffi-
cient buffer and accommodate for future population growth, as well as virtual 
creation of artificial individuals. 

2.9. Candidate SNP Marker Selection for Digital Identification  

The table below showcases the proposed 100 markers to be used, all of which 
have an average 50% minor allele frequency ranging from 0.498 to 0.508 in all 
populations tested by the 1000 genome sequencing project (Table 7). Therefore, 
each of these SNPs is expected to be highly present in all populations. The results 
from any subset of these markers provide enough statistical power to reliably 
identify and separate every individual from the most genome data available. 

2.10. Digital Identification Panel Design 

We further selected 24 SNPs from the 100 candidates SNPs for our digital iden-
tity panel that showed the least ethnicity differences in all populations tested  
 
Table 6. Theoretical combinations codes from the given SNP marker analysis based on 
three different allele combinations (bi-allele SNP analysis). 

Num of Alleles Num of SNPs Possible Combination codes 

3 20 3,486,784,401 

3 21 10,460,353,203 

3 22 31,381,059,609 

3 23 94,143,178,827 

3 24 282,429,536,481 

3 25 847,288,609,443 

3 26 2,541,865,828,329 
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Table 7. An example of a 100 candidate SNP marker selection from a public HapMap and 1000 Genome Sequencing database for 
digital identification and personalization purpose. RSID: Reference SNP Cluster ID, #CHR: Chromosome Number, position: SNP 
position in the chromosome. 

RSID #CHR position REF ALT EAS SAS EUR AMR AFR Average 

rs884918 chr16 10,059,826 T C 0.5903 0.5337 0.499 0.4957 0.4054 0.50482 

rs4901619 chr14 56,367,814 A G 0.5903 0.4427 0.4135 0.5865 0.4705 0.5007 

rs12194277 chr6 1.55E+08 T C 0.5833 0.4213 0.5159 0.5605 0.4138 0.49896 

rs9976404 chr21 35,551,600 C A 0.5823 0.4202 0.505 0.5937 0.4191 0.50406 

rs312368 chr4 19,275,229 G A 0.5605 0.4264 0.4115 0.598 0.5151 0.5023 

rs3829794 chr1 1.79E+08 T C 0.5347 0.591 0.504 0.4164 0.4773 0.50468 

rs7551188 chr1 25,273,200 T C 0.5248 0.5307 0.4732 0.5893 0.407 0.505 

rs2570569 chr9 18,700,566 A G 0.5248 0.5174 0.4672 0.5807 0.4032 0.49866 

rs7332772 chr13 38,270,164 G A 0.5248 0.4427 0.5139 0.4222 0.618 0.50432 

rs9225 chr2 47,086,112 C T 0.4861 0.453 0.5934 0.4323 0.5416 0.50128 

rs6940098 chr6 2,826,677 A G 0.4831 0.4744 0.4453 0.5 0.618 0.50416 

rs7596062 chr2 5,855,300 T G 0.4821 0.4448 0.4891 0.5893 0.5091 0.50288 

rs7688462 chr4 1.09E+08 C T 0.4722 0.59 0.503 0.4625 0.4856 0.50266 

rs1504192 chr5 18,173,795 T C 0.4692 0.5337 0.4622 0.428 0.6059 0.4998 

rs6572347 chr14 22,736,111 T C 0.4692 0.4652 0.4304 0.513 0.6256 0.50068 

rs2826401 chr21 21,939,786 C A 0.4663 0.5266 0.4394 0.4496 0.6399 0.50436 

rs2065378 chr9 89,188,290 C A 0.4663 0.4346 0.5974 0.5706 0.4221 0.4982 

rs10925027 chr1 2.48E+08 T C 0.4653 0.4867 0.5954 0.4424 0.5242 0.5028 

rs2932770 chr5 68,513,290 A G 0.4623 0.5818 0.4245 0.4683 0.5537 0.49812 

rs7642134 chr3 86,916,882 A G 0.4603 0.5828 0.5825 0.4496 0.4425 0.50354 

rs4322086 chr9 85,787,718 G A 0.4563 0.4939 0.5169 0.5793 0.4697 0.50322 

rs9411345 chr9 1.35E+08 C A 0.4544 0.5777 0.4563 0.4121 0.6241 0.50492 

rs11156119 chr6 1.57E+08 C T 0.4405 0.5133 0.5179 0.5922 0.441 0.50098 

rs236528 chr17 68,215,590 T C 0.4385 0.5879 0.5 0.4841 0.4947 0.50104 

rs12616545 chr2 1.19E+08 T C 0.4325 0.4611 0.5726 0.438 0.6044 0.50172 

rs6565479 chr17 78,712,423 A G 0.4296 0.453 0.5805 0.4207 0.6082 0.4984 

rs2680197 chr9 1.1E+08 T G 0.4286 0.4397 0.5616 0.4741 0.6172 0.50424 

rs631287 chr9 1.28E+08 G A 0.4256 0.5828 0.5398 0.5115 0.4592 0.50378 

rs4512966 chr13 1.11E+08 T C 0.4246 0.4836 0.4821 0.5058 0.6006 0.49934 

rs873233 chr1 1.53E+08 A G 0.4187 0.4857 0.4264 0.5648 0.6112 0.50136 

rs2808105 chr10 32,110,907 C T 0.4187 0.4632 0.495 0.5375 0.6021 0.5033 

rs11745164 chr5 1.61E+08 T C 0.4187 0.4601 0.5537 0.5821 0.503 0.50352 

rs10854351 chr21 33,382,451 T C 0.4157 0.4918 0.5954 0.4409 0.5734 0.50344 

rs12642421 chr4 1.12E+08 G A 0.5784 0.5368 0.4493 0.4308 0.5212 0.5033 

rs10737505 chr1 1.65E+08 C T 0.5744 0.4765 0.5477 0.5086 0.407 0.50284 
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Continued 

rs9302806 chr16 5,793,163 G A 0.5744 0.4765 0.4284 0.4712 0.5492 0.49994 

rs7693572 chr4 60,143,686 C T 0.5734 0.498 0.4433 0.4539 0.525 0.49872 

rs4843257 chr16 87,713,034 G A 0.5645 0.4274 0.4751 0.5533 0.4697 0.498 

rs3114431 chr7 20,347,570 A G 0.5526 0.5654 0.4374 0.4294 0.5197 0.5009 

rs687782 chr11 95,766,185 C T 0.5516 0.5184 0.499 0.4323 0.4902 0.4983 

rs2453244 chr1 32,975,903 T G 0.5516 0.502 0.4314 0.513 0.5053 0.50066 

rs10237006 chr7 1.57E+08 A G 0.5486 0.4448 0.4911 0.5101 0.5068 0.50028 

rs4428160 chr3 14,253,587 A G 0.5456 0.4622 0.5318 0.4986 0.4788 0.5034 

rs130423 chr22 33,984,394 A G 0.5456 0.4611 0.5 0.4582 0.5492 0.50282 

rs12303240 chr12 89,832,423 C T 0.5446 0.4274 0.499 0.4712 0.5628 0.501 

rs10930407 chr2 1.71E+08 C T 0.5437 0.4949 0.4394 0.5706 0.4546 0.50064 

rs7231112 chr18 57,612,891 G A 0.5407 0.4448 0.4861 0.4683 0.5703 0.50204 

rs12049869 chr11 1.28E+08 A G 0.5377 0.4499 0.4861 0.4798 0.5393 0.49856 

rs6860296 chr5 91,798,227 A G 0.5337 0.5 0.4374 0.4712 0.5764 0.50374 

rs2420477 chr10 1.2E+08 T C 0.5278 0.5583 0.5249 0.4135 0.4735 0.4996 

rs2638398 chr12 20,015,242 A C 0.5228 0.4867 0.5577 0.5159 0.4092 0.49846 

rs11074843 chr16 27,090,311 T C 0.5228 0.4213 0.5467 0.5562 0.4705 0.5035 

rs273701 chr18 23,181,382 C A 0.5218 0.4376 0.4632 0.5548 0.5431 0.5041 

rs3761161 chr20 10,110,237 G A 0.5188 0.5307 0.5527 0.4712 0.447 0.50408 

rs2172645 chr2 53,647,729 A C 0.5188 0.5225 0.4364 0.4337 0.5968 0.50164 

rs1048408 chr3 1.51E+08 G A 0.5139 0.5102 0.4642 0.5692 0.4561 0.50272 

rs708563 chr17 43,340,936 G A 0.5139 0.4642 0.5229 0.5735 0.4478 0.50446 

rs7939948 chr11 36,311,014 G T 0.5129 0.5266 0.4722 0.4337 0.5582 0.50072 

rs567681 chr11 1.16E+08 A C 0.5129 0.5061 0.4523 0.4568 0.5605 0.49772 

rs4684400 chr3 3,657,425 G T 0.5129 0.5041 0.5318 0.4813 0.4781 0.50164 

rs303898 chr6 25,039,602 G A 0.5119 0.5593 0.505 0.428 0.5204 0.50492 

rs10813796 chr9 32,359,091 A G 0.5109 0.5061 0.5447 0.5274 0.4115 0.50012 

rs17616971 chr15 36,260,238 G A 0.5079 0.5123 0.5378 0.4222 0.5159 0.49922 

rs7309088 chr12 1.04E+08 C T 0.5079 0.4642 0.5368 0.4582 0.5356 0.50054 

rs1884770 chr20 19,753,074 C A 0.506 0.4816 0.502 0.5519 0.447 0.4977 

rs2834323 chr21 35,359,935 A G 0.505 0.5245 0.4235 0.5231 0.5182 0.49886 

rs10169352 chr2 66,357,905 T C 0.503 0.501 0.4583 0.5231 0.5287 0.50282 

rs11037366 chr11 43,244,906 A G 0.5 0.4632 0.5447 0.4107 0.5749 0.4987 

rs2510245 chr9 1.37E+08 G A 0.498 0.5327 0.5586 0.4971 0.4092 0.49912 

rs12919933 chr16 3,137,261 G A 0.497 0.545 0.498 0.4553 0.528 0.50466 

rs1891110 chr10 1.25E+08 G A 0.4931 0.4898 0.5785 0.4597 0.4834 0.5009 

rs2924466 chr5 8,077,509 A G 0.4891 0.4581 0.502 0.562 0.4879 0.49982 
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Continued 

rs10955282 chr8 1.03E+08 G A 0.4841 0.4836 0.4573 0.4712 0.5961 0.49846 

rs3737669 chr1 9,164,133 G A 0.4831 0.5225 0.5358 0.5476 0.4153 0.50086 

rs252217 chr5 14,118,565 G T 0.4831 0.4427 0.5775 0.5375 0.4735 0.50286 

rs255888 chr5 1.11E+08 C T 0.4792 0.4796 0.5517 0.5562 0.4561 0.50456 

rs9290003 chr3 99,906,993 T C 0.4722 0.544 0.4314 0.4798 0.5734 0.50016 

rs1474016 chr10 1.25E+08 A C 0.4722 0.4683 0.5507 0.4914 0.5356 0.50364 

rs1573612 chr12 12,047,429 T C 0.4722 0.4417 0.4503 0.5778 0.5772 0.50384 

rs2736043 chr8 15,713,330 G A 0.4683 0.5307 0.494 0.4683 0.5537 0.503 

rs4831495 chr8 13,726,384 C T 0.4663 0.501 0.5646 0.549 0.4175 0.49968 

rs7203781 chr16 25,759,028 T G 0.4563 0.4877 0.5716 0.5605 0.4123 0.49768 

rs4594899 chr5 1,132,216 A G 0.4544 0.5368 0.4374 0.5576 0.5098 0.4992 

rs9345612 chr6 66,083,780 G A 0.4534 0.5153 0.5437 0.5058 0.472 0.49804 

rs168080 chr5 1.77E+08 A G 0.4534 0.4693 0.5159 0.4914 0.5877 0.50354 

rs7815790 chr8 98,902,730 A G 0.4504 0.454 0.5775 0.5591 0.4493 0.49806 

rs11672485 chr19 53,833,712 T C 0.4454 0.4663 0.5417 0.4697 0.5915 0.50292 

rs1876648 chr5 1.21E+08 G A 0.4425 0.5511 0.5527 0.4236 0.5469 0.50336 

rs2022499 chr20 36,966,531 G T 0.4425 0.4898 0.5398 0.5288 0.5159 0.50336 

rs4772827 chr13 86,963,707 T G 0.4425 0.4898 0.4891 0.5086 0.5877 0.50354 

rs897297 chr10 1.26E+08 A G 0.4405 0.5143 0.5586 0.5793 0.4115 0.50084 

rs2970627 chr8 36,884,712 T C 0.4315 0.5327 0.5696 0.4395 0.5424 0.50314 

rs4240927 chr1 2.22E+08 C T 0.4276 0.5583 0.5189 0.428 0.5598 0.49852 

rs4682576 chr3 1.1E+08 C T 0.4276 0.5215 0.5577 0.5346 0.4644 0.50116 

rs6664070 chr1 1.17E+08 A C 0.4256 0.4734 0.5229 0.5519 0.5265 0.50006 

rs10171464 chr2 1.39E+08 C T 0.4256 0.4489 0.5338 0.5476 0.5537 0.50192 

rs6889876 chr5 27,804,605 C T 0.4236 0.4346 0.5716 0.5245 0.5386 0.49858 

rs460697 chr5 95,018,939 A G 0.4206 0.546 0.5348 0.4625 0.5287 0.49852 

rs2323661 chr17 15,300,309 A C 0.4127 0.5225 0.4801 0.5144 0.5628 0.4985 

rs6955473 chr7 90,866,589 G A 0.4117 0.4928 0.5795 0.5317 0.4841 0.49996 

 
(Table 8). The chosen SNPs show minor allele frequency between 0.43 - 0.58 in 
every population tested, allowing for a wide variety of combinations for every 
individual across all populations. The fixed universal marker set can be used in 
all individuals in the same species for the digital identification panel. 

2.11. Personal Digital Identity Code Assignment from 24 SNPs  
Panel Collection  

Table 9 below is used to generate a personalized digital code for two real indi-
viduals (Person 1 male, and Person 2 female) using selected 24 SNP markers in 
the panel. 
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Table 8. 24SNP marker selection for the development of a digital identification panel. RSID: Reference SNP Cluster ID, #CHR: 
Chromosome Number, position; SNP position in the chromosome, REF: Reference Allele, ALT: Alternative Allele, EAS: East 
Asian, SAS: South. 

RSID #CHR position REF ALT EAS SAS EUR AMR AFR Average 

rs10169352 chr2 66,357,905 T C 0.503 0.501 0.4583 0.5231 0.5287 0.50282 

rs1048408 chr3 1.51E+08 G A 0.5139 0.5102 0.4642 0.5692 0.4561 0.50272 

rs4428160 chr3 14,253,587 A G 0.5456 0.4622 0.5318 0.4986 0.4788 0.5034 

rs4684400 chr3 3,657,425 G T 0.5129 0.5041 0.5318 0.4813 0.4781 0.50164 

rs255888 chr5 1.11E+08 C T 0.4792 0.4796 0.5517 0.5562 0.4561 0.50456 

rs252217 chr5 14,118,565 G T 0.4831 0.4427 0.5775 0.5375 0.4735 0.50286 

rs2924466 chr5 8,077,509 A G 0.4891 0.4581 0.502 0.562 0.4879 0.49982 

rs9345612 chr6 66,083,780 G A 0.4534 0.5153 0.5437 0.5058 0.472 0.49804 

rs10237006 chr7 1.57E+08 A G 0.5486 0.4448 0.4911 0.5101 0.5068 0.50028 

rs2736043 chr8 15,713,330 G A 0.4683 0.5307 0.494 0.4683 0.5537 0.503 

rs1474016 chr10 1.25E+08 A C 0.4722 0.4683 0.5507 0.4914 0.5356 0.50364 

rs12049869 chr11 1.28E+08 A G 0.5377 0.4499 0.4861 0.4798 0.5393 0.49856 

rs567681 chr11 1.16E+08 A C 0.5129 0.5061 0.4523 0.4568 0.5605 0.49772 

rs687782 chr11 95,766,185 C T 0.5516 0.5184 0.499 0.4323 0.4902 0.4983 

rs7939948 chr11 36,311,014 G T 0.5129 0.5266 0.4722 0.4337 0.5582 0.50072 

rs7309088 chr12 1.04E+08 C T 0.5079 0.4642 0.5368 0.4582 0.5356 0.50054 

rs1573612 chr12 12,047,429 T C 0.4722 0.4417 0.4503 0.5778 0.5772 0.50384 

rs12919933 chr16 3,137,261 G A 0.497 0.545 0.498 0.4553 0.528 0.50466 

rs708563 chr17 43,340,936 G A 0.5139 0.4642 0.5229 0.5735 0.4478 0.50446 

rs7231112 chr18 57,612,891 G A 0.5407 0.4448 0.4861 0.4683 0.5703 0.50204 

rs2022499 chr20 36,966,531 G T 0.4425 0.4898 0.5398 0.5288 0.5159 0.50336 

rs1884770 chr20 19,753,074 C A 0.506 0.4816 0.502 0.5519 0.447 0.4977 

rs3761161 chr20 10,110,237 G A 0.5188 0.5307 0.5527 0.4712 0.447 0.50408 

rs130423 chr22 33,984,394 A G 0.5456 0.4611 0.5 0.4582 0.5492 0.50282 

Average  
Frequency     

0.44 - 0.55 0.44 - 0.55 0.45 - 0.58 0.43 - 0.58 0.45 - 0.57 0.5 - 0.55 

3. Results 

- Individual 1: 
Numerical Codes: 233331123133313113232333 
Alphabetical Codes: DACHCACCEDDA 

- Individual 2:  
Numerical Codes 133223333321112302211231 
Alphabetical Codes: EBDAAGIDNGHC 
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Table 9. Digital identification code assignment from the SNP panel data. 

Markers RSID #CHR position REF ALT 
Person 1 
Genotype 

Code 1 
Person 2 
Genotype 

Code 2 

1 rs10169352 chr2 66,357,905 T C CC 2 TT 1 

2 rs1048408 chr3 1.51E+08 G A AG 3 AG 3 

3 rs4428160 chr3 14,253,587 A G AG 3 AG 3 

4 rs4684400 chr3 3,657,425 G T GT 3 TT 2 

5 rs255888 chr5 1.11E+08 C T CT 3 TT 2 

6 rs252217 chr5 14,118,565 G T GG 1 GT 3 

7 rs2924466 chr5 8,077,509 A G AA 1 AG 3 

8 rs9345612 chr6 66,083,780 G A AA 2 AG 3 

9 rs10237006 chr7 1.57E+08 A G AG 3 AG 3 

10 rs2736043 chr8 15,713,330 G A GG 1 AG 3 

11 rs1474016 chr10 1.25E+08 A C AC 3 CC 2 

12 rs12049869 chr11 1.28E+08 A G AG 3 AA 1 

13 rs567681 chr11 1.16E+08 A C AC 3 AA 1 

14 rs687782 chr11 95,766,185 C T CC 1 CC 1 

15 rs7939948 chr11 36,311,014 G T GT 3 TT 2 

16 rs7309088 chr12 1.04E+08 C T CC 1 CT 3 

17 rs1573612 chr12 12,047,429 T C TT 1 CT 3 

18 rs12919933 chr16 3,137,261 G A AG 3 AA 2 

19 rs708563 chr17 43,340,936 G A AA 2 AA 2 

20 rs7231112 chr18 57,612,891 G A AG 3 GG 1 

21 rs2022499 chr20 36,966,531 G T TT 2 GG 1 

22 rs1884770 chr20 19,753,074 C A AC 3 AA 2 

23 rs3761161 chr20 10,110,237 G A AG 3 AG 3 

24 rs130423 chr22 33,984,394 A G AG 3 AA 1 

Generation of the Personalized Digital ID Code 

Format: Species Code (2), Gender Code (1), Identification Codes (24), Auxiliary 
Code (1). Below are the two people used to generate the digital identification 
code using the format and composition of this paper. Individual 1 is a male hu-
man and single born. Individual 2 is a female human and single born. A 2D 
barcode can be created from the following code and can be linked to an HTML 
file or web page to link with additional information (Figure 1 and Figure 2). 
- Individual 1: Human, Male, Single born 

HS,1,233331123133313113232333,1  
HS,1,DACHCACCEDDA1  

- Individual 2: Human, Female, Single born 
HS,2,133223333321112302211231,1 
HS,2,EBDAAGIDNGHC,1 
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Figure 1. Generated 2D QR Code from the numerical genetic 
identity code from each individual using the UTF-8 encoding. 

 

 
Figure 2. Generated 2D QR Code from the alphabetical genetic 
identity code from each individual using the UTF-8 encoding. 

4. Discussion 

The era of the Internet and the continual rise of social media platforms has shown 
the true value of secure identification and personalization. A large majority of 
consumers now expect companies to deliver personalized products and services, 
while at the same time, ensuring maximum privacy and control over their data 
[63]. 

In this paper, a detailed process of generating a personalized digital code from 
an individual’s genome data was proposed. Through a process called genome 
fingerprinting, this code can be used as part of a decentralized identification 
(DID) system [64]. The genetic information obtained from genome fingerprint-
ing can then be securely stored on blockchain, creating a genome based decen-
tralized identifier (gDID) [65] [66]. This allows for secure authentication and 
verification of identity based on the individual's genomic information.  

A genome-based code can be useful in a variety of ways in current Internet 
infrastructure as well as a decentralized one [67]. For example, genome data can 
be used to personalize virtual experiences by having custom avatars and charac-
ters. A real-world example that similarly captures this concept is CryptoKitties 
released in 2017 [68] [69]. CrytoKitties is a decentralized platform and digital 
collectible game built on the Ethereum blockchain. The game has a community 
of players that breed and raise virtual cats. Although the platform did not use 
actual genome data, each CryptoKitty, to a certain extent, had its own “virtual” 
genome, making each virtual cat unique and having its own set of traits and 
attributes that determine its appearance and abilities. CryptoKitties retained its 
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popularity through 2019 where the platform accumulated over 1.5 million users 
and over $40 million worth of transactions. The game’s popularity has shown 
that personalized virtual experiences using blockchain technology has immense 
potential and using real genome data to augment such platforms can bring new, 
unreached levels of identity and personalization [69]. But perhaps a more uni-
versal use-case of utilizing a genome-based code is enhanced authentication and 
identity on Blockchain [70]. Genetic data is unique to an individual and cannot 
be changed or altered, inherently making it a highly secure form of identification 
[71]. Genome data can be used for biometric authentication in addition to finger 
or iris scanning [72]. A study has shown that a large majority of internet con-
sumers frequently report password problems and frustrations, supporting the 
idea that novel forms of biometric authentication provide a more secure alterna-
tive to traditional passwords and usernames [73] [74]. Many users are also hesi-
tant of putting their genome data out into the Internet so a decentralized storage 
solution like Blockchain can prevent data breaches that can compromise tradi-
tional centralized databases [75].  

However, it is important to note that while genome fingerprinting provides a 
unique identifier, there are privacy and ethical concerns associated with the sto-
rage and use of genetic information, particularly in the context of decentralized 
identification [65] [76]. Careful consideration must be given to the security, pri-
vacy, and ethical implications of using genomic information in this manner, and 
appropriate safeguards must be put in place to ensure that the information is 
protected and used responsibly. In addition, the lack of clear regulations of DIDs 
at the moment can create uncertainty for businesses and individuals who want 
to use the technology [77]. This can cause further implications with scalability, 
as the average user might struggle with widespread adoption especially when the 
technology cannot keep up with the demand.  

But with almost every mass technological adoption, society tends to appreciate 
technological revolutions only in hindsight. DIDs carry with it numerous ad-
vantages in comparison to existing forms of identification. First, DIDs enable 
individuals to have a greater degree of control over their personal data due to 
their reduced reliance on centralized intermediaries [78] [79]. Second, DIDs are 
based on open standards, allowing them to be used in a wide range of platforms 
and streamlining password authentication processes [80]. Such benefits are pa-
ramount in modern society because it improves the overall security and privacy 
of digital interactions, a key concern for many new technology innovations.  

5. Conclusion 

With the internet and social networking becoming an integral part of people’s 
daily lives, secure identification and personalization are of utmost importance to 
many consumers and businesses. In this paper, we presented a novel way of se-
curely identifying an individual online by using universal, high allele frequency 
bi-allele human SNP markers to efficiently generate a unique combination code. 
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We also presented real-world use cases for applying a genome-based DID in the 
industry as well as implications and technical challenges. When generating the 
code, it was important to select genetic markers that were common in all popu-
lations, so that any individual, no matter their background, is able to generate an 
identifier unique only to that person. Novel forms of identification and persona-
lization based on genome data can open up new opportunities for personaliza-
tion and offer better security and a better user experience for Internet users in 
the present as well as those in the decentralized future. 
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