Computational Molecular Bioscience

Journal Editorial Board

ISSN: 2165-3445 (Print) ISSN: 2165-3453 (Online)
http://www.scirp.org/journal/cmb

Editor-in-Chief

Dr. Christo Z. Christov

Northumbria University, UK

Editorial Board

Dr. David R. Bevan
Dr. Nicolay Ivanov Dodoff
Prof. Leif A. Eriksson
Prof. Emilio Gallicchio
Prof. Juraj Gregan
Dr. Ian S. Haworth
Prof. Srividhya Jeyaraman
Prof. Cizhong Jiang
Prof. Tatyana Karabencheva-
Christova
Dr. Daisuke Kihara
Prof. Jianyong Li
Dr. Jose L. Medina-Franco
Dr. Sihua Peng
Dr. Olli T. Pentikäinen
Prof. Giulio Rastelli
Prof. Igor A. Topol
Dr. Ivanka Tsakovska Prof. Nagarajan Vaidehi

Dr. Jinhua Wang
Dr. Yanggan Wang
Prof. Arieh Warshel
Prof. Dongqing Wei
Dr. Yasushige Yonezawa

Virginia Polytechnic Institute and State University, USA
Bulgarian Academy of Sciences, Bulgaria
University of Gothenburg, Sweden
Rutgers University, USA
University of Vienna, Austria
University of Southern California, USA
Indiana University, USA
Tongji University, China
Northumbria University, UK

Purdue University, USA
Virginia Polytechnic Institute and State University, USA
Florida Atlantic University, USA
Shanghai Ocean University, China
University of Jyväskylä, Finland
University of Modena and Reggio Emilia, Italy
Frederick National Laboratory for Cancer Research, USA
Institute of Biophysics and Biomedical Engineering, Bulgaria
City of Hope National Medical Center, USA
New York University Langone Medical Center, USA
Emory University, USA
University of Southern California, USA
Shanghai Jiao Tong University, China
Kinki University, Japan

Table of Contents

Volume 6 Number 3September 2016
Application of Graph Entropy in CRISPR and Repeats Detection in DNA Sequences
D. C. Sengupta, J. D. Sengupta. 41

Computational Molecular Bioscience (CMB)
 Journal Information

SUBSCRIPTIONS

The Computational Molecular Bioscience (Online at Scientific Research Publishing, www.SciRP.org) is published quarterly by Scientific Research Publishing, Inc., USA.

Subscription rates:

Print: $\$ 79$ per issue.
To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements

Advertisement Sales Department, E-mail: service@scirp.org
Reprints (minimum quantity 100 copies)
Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.
E-mail: sub@scirp.org

COPYRIGHT

Copyright and reuse rights for the front matter of the journal:
Copyright © 2016 by Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Copyright for individual papers of the journal:
Copyright © 2016 by author(s) and Scientific Research Publishing Inc.
Reuse rights for individual papers:
Note: At SCIRP authors can choose between CC BY and CC BY-NC. Please consult each paper for its reuse rights.

Disclaimer of liability

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements and opinion of Scientific Research Publishing, Inc. We assume no responsibility or liability for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:
E-mail: cmb@scirp.org
http://www.scirp.org/journal/cmb

Application of Graph Entropy in CRISPR and Repeats Detection in DNA Sequences

Dipendra C. Sengupta, Jharna D. Sengupta
Department of Mathematics \& Computer Science, Elizabeth City State University, Elizabeth City, NC, USA
Email: dcsengupta@ecsu.edu, jdsengupta@ecsu.edu

How to cite this paper: Sengupta, D.C. and Sengupta, J.D. (2016) Application of Graph Entropy in CRISPR and Repeats Detection in DNA Sequences. Computational Molecular Bioscience, 6, 41-51.
http://dx.doi.org/10.4236/cmb.2016.63004

Received: January 24, 2016
Accepted: October 23, 2016
Published: October 26, 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

We analyzed DNA sequences using a new measure of entropy. The general aim was to analyze DNA sequences and find interesting sections of a genome using a new formulation of Shannon like entropy. We developed this new measure of entropy for any non-trivial graph or, more broadly, for any square matrix whose non-zero elements represent probabilistic weights assigned to connections or transitions between pairs of vertices. The new measure is called the graph entropy and it quantifies the aggregate indeterminacy effected by the variety of unique walks that exist between each pair of vertices. The new tool is shown to be uniquely capable of revealing CRISPR regions in bacterial genomes and to identify Tandem repeats and Direct repeats of genome. We have done experiment on 26 species and found many tandem repeats and direct repeats (CRISPR for bacteria or archaea). There are several existing separate CRISPR or Tandem finder tools but our entropy can find both of these features if present in genome.

Keywords

CRISPR, Graph Entropy, Tandem Repeats, DNA Sequences

1. Introduction

Deciphering the enormously long nucleotide sequences that are being uncovered in the human genome is one of the major challenges in our days. Along with serious ethical issues, we encounter a series of tremendously hard scientific problems. These problems mainly arise from the fact that although sequencing techniques are almost completely automatic controlled the analysis of the sequenced data is not. Hence, the major goal of the Human Genome Project is the extraction of biologically and medically relevant information from almost automatically sequenced DNA and RNA molecules. In prin-
ciple, biochemical methods are able to do this job, but since they are extremely expensive and time consuming, there is a high demand for alternative approaches to extract the information hidden in genome [1]. In this situation, concepts and techniques from information theory turned out to be welcoming tools to handle the problem of extracting valuable information from biosequences such as DNA, RNA, or amino acid chains. The main goal of our work is the presentation of a concept and method derived from information theory that will apply to problems of analysis of DNA.

The motivation for this study is to analyze DNA sequences to determine interesting sections of genome that has repeating features using information theory tool.

In many organisms, the genomic DNA is highly repetitive accounting for close to 5% of the genome size [2] [3]. Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size [4]. The human genome itself has over two-thirds of the sequence consisting of repetitive elements [5]. The identification of repeats has proven to be of significance, as they provide insight into the functional and evolutionary roles of various organisms [6] [7] [8] [9] [10].

In our study we also focus on a family of repeats known as Clustered Regularly Inter Spaced Palindromic Repeats (CRISPRs) [11]. CRISPRs have attracted a great deal of interest recently in genome editing [12]. CRISPRs have been found only in the genomes of prokaryotes and are composed of short direct repeats currently known to range in sizes from 21-47 base pairs. This family of repeats is unique in that they are interspaced by non-repeating sequences of similar size, called spacers. CRISPRs were found in approximately 40% of bacterial genome investigated [13].

Several software applications are available for identifying various form of repeats in [14] [15] [16].

2. Graph Entropy Algorithm

A graph is an object that consists of a non-empty set of vertices and another set of edges. Vertices are often called nodes, and edges are referred as connections. The set of edges may be empty, in which case the graph is just a collection of points.

We say that two vertices i and j of a directed graph are connected if there is an edge from i to j or from j and i. Suppose we are given a directed graph with n vertices. We construct an $n \times n$ adjacency matrix A associated to it as follows: if there is an edge from vertex i to vertex j, we put 1 as the entry on row i, column j of the matrix A; if there is no edge, we put 0 .

If one can walk from vertex i to vertex j along the edges of the graph then we say that there is a path from i to j. If we walked on k edges, then the path has length k. For matrices, we denote by A^{k} the matrix obtained by multiplying A with itself k times. The entry on row i, column j of A^{2} corresponds to the number of paths of length 2 from vertex ito vertex j in the graph.

Let us consider a directed graph and a positive integer k. Then the number of directed walks from vertex i to vertex j of length k is the entry on row i and column j of the matrix A^{k}, where A is the adjacency matrix.

In this section, we will discuss entropy of such adjacency matrix A. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a set of vertices of a direct graph. Let $A=\left(a_{i j}\right)$ be the $n \times n$ adjacency matrix with at least one positive element.

Let $\sum_{i, j}^{n} a_{i j}=N$. Let $P=\left(P_{i j}\right)$ be the matrix such that $P=\frac{A}{N}$. Hence $\sum_{i, j}^{n} p_{i j}=1$. $p_{i j}$ is the probability of having a path from vertex v_{i} to vertex v_{j}. Adding all elements of each row of P and placing them on the diagonal, we form a diagonal matrix

$$
\theta=\left(\begin{array}{ccccc}
\sum_{k=1}^{n} p_{1 k} & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & \sum_{k=1}^{n} p_{n k}
\end{array}\right)=\left(\theta_{i j}\right)
$$

$1-\theta_{j j}=\left(1-\sum_{k=1}^{n} p_{j k}\right)$ is the probability for a randomly generated path to end at the vertex v_{j}. Let $Q_{i j}(l)$ be the probability for generating a path of length l that begins at v_{i} and ends at v_{j} for any integer 1 . For example, we have $Q_{i j}(1)=p_{i j}\left(1-\sum_{k=1}^{n} p_{j k}\right)$ and $Q_{i j}(2)=\left(p_{i 1}, p_{i 2}, \ldots, p_{i n}\right)\left(\begin{array}{c}p_{1 j} \\ \cdot \\ \cdot \\ \cdot \\ p_{n j}\end{array}\right)\left(1-\sum_{k=1}^{n} p_{j k}\right)$. Let Q_{l} be the matrix whose $i j$ element is $Q_{i j}(l)$. Then we have $Q_{l}=P^{I}(I-\theta)$. Finally, we define the asymptotic walk matrix $\Omega=\left(\Omega_{i j}\right)$ as $\Omega \equiv \sum_{l=1}^{\infty} Q_{l}$, Where $\Omega_{i j}$ is the probability for generating a walk of any length from v_{i} to v_{j}.

Note that $\sum_{i, j} \Omega_{i j}=1 . \quad \Omega \equiv \sum_{l=1}^{\infty} Q_{l}=P(I-\theta)+P^{2}(I-\theta)+\cdots$.
We noticed that the sum of all entrees of the matrix $P^{\lambda}(Q-P)$, for any integer λ, is 0 . Since sum of all entrees of P is 1 , sum of all entrees of Ω is also1. We therefore define the asymptotic entropy

$$
\mathrm{H}(P)=-\sum_{i, j} \Omega_{i j} \log \left(\Omega_{i j}\right)
$$

where $\Omega_{i j} \log \left(\Omega_{i j}\right)$ is defined to be 0 for $\Omega_{i j}=0$. This can also be called the graph entropy of the graph or entropy of the adjacency matrix A. For illustration, Let us consider a short sequence:

ATGCCTGATGCGACGC

Taking 2-letter nodes with one overlap, we can create a graph as following:

$$
\begin{aligned}
& A T \rightarrow T G \rightarrow G C \rightarrow C C \rightarrow C T \rightarrow T G \rightarrow G A \rightarrow \\
& A T \rightarrow T G \rightarrow G C \rightarrow C G \rightarrow G A \rightarrow A C \rightarrow C G \rightarrow G C
\end{aligned}
$$

We draw a graph as in the Figure 1.
For our sequence, graph entropy

$$
\mathrm{H}(P)=-\sum_{i, j} \Omega_{i j} \log \left(\Omega_{i j}\right) \approx 2.9614
$$

3. Results

We have downloaded wide range of genome data, eukaryotes (animals, plants, insects, fungus) and prokaryotes (bacteria, archaea) from Gen Bank:
ftp://ftp.ncbi.nlm.nih.gov/genomes/.
We have implemented the Graph Entropy Algorithm in MATLAB platform and converted data to MATLAB format. Then we have computed graph entropy using our Graph Entropy Algorithm by scanning the data with a typical sample size of 512 base pairs (bp) and step size of 10 bp taking 3 nodes with 1 overlap. We have drawn graphs of entropy versus genome length of Acidovorax bacteria in Figure 2, Salmonella-Typhi CT18 bacteria in Figure 3, Caldicellulosiruptor Kristianssonii bacteria in Figure 4 and Human Chromosome-21 in Figure 5. We have studied the intervals visually where entropy was low and found some repetitive pattern in the sequence. Once we have a string of repetitive pattern we used MATLAB "strfind" command to find out exact positions of the repetitive patterns. We have included few examples in this paper, only the ones we thought important.

In Figure 2 we looked at the lowest drop of entropy which is at: x : genome length $=$ $871,100, y$: entropy $=4.088$. We took an interval $(871,000,871,600)$ around the lowest drop $x=871,100$.

Figure 1. Example of DNA graph.

Figure 2. Acidovorax (bacteria) genome length vs entropy.

Figure 3. Salmonella-typhi CT18 (bacteria).

Figure 4. Caldicellulosiruptor kristianssonii (bacteria).

Figure 5. Human chromosome-21.

The following is the sequence in the interval taken. The colored string is repeating.

> ATAAAAAAACCCGGTGCATGCACCGGGTGGGACCAGCCCCGCGGGCGG GGCGGCTGGCTGCTGTCGTCGCTCAGGGCTTGGTGCCCGTCGGGAAGGG CCATGCGGCCTGCGGGTTCAGCGTGGTCTGTGCTGCGGGTGCAGGCGCA GGGGCAGAGGCCTTGGAGGCCGCCTTTTTCGGGGCAGCCTTCTTCGGTG CAGCGGCCTTGGTCGTGCCGGTGGCCTTCTTCGCCGGTGCAGCTGCCTTC TTGGTGGAGGCTGCGGCCTTCTTTGCCGGTGCAGCTGCCTTCTTGGCGG GGGCTGCGGCCTTCTTCGCCGGTGCAGCTGCCTTCTTGGCGGGGGCTGC GGCCTTCTTTGCCGGTGCAGCTGCCTTCTTGGCAGGAGCTGCGGCCTTCT TTGCCGGTGCAGCTGCCTTCTTGGCGGGGGCTGCGGCCTTCTTTGCCGGT GCAGCTGCCTTCTTGGCAGGAGCTGCGGCCTTCTTTGCCGGTGCAGCTG CCTTCTTGGCAGGAGCTGCGGCCTTCTTTGCCGGTGCAGCTGCCTTCTTG GCGGGGGCTGCAGCCTTCTTCGCCGGAGCGGCCTTCTTCGTCGTGGCGG CGGCCTTCTT

Strfind(g,'GCCGGTGCAGCTGCCTTCTTGG') command gave us the following positions of those repeats in the sequence.

871227	871269	871311	871353	871395	871437	871479	871521

The spacers are almost identical. These are tandem repeats.
Similarly in the Figure 3 we looked at the lowest drop of entropy which is at $x=$ $2926000 y=4.923$.

We looked at the DNA sequence in the interval (2926000:2926650) around $x=$ 2926000. The following is the sequence in the interval taken. The colored string is repeating.

> AAAAATGCATCCTTCCCGAACGGCAATAGCTGGCACGACGTACGGCTTG
> ATAATCAACAGCATATAGACAAGGCGCTGCCAGGGCGGATTGAGCGCCG TAGCCGCGATGTAGTGCGGATAATGCTGCCGTTGGTAAAAGAGCTGGCG AAGGCGGAAAAAACGTCCTGATATGCTGGTGAAACGTGTTTATCCCCGC TGGCGCGGGGAACACGGACAGCAACCCGTGTCGGATATCAGACAGATCG GTTTATCCCCGCTGGCGCGGGGAACACACGCGAATCGCCAATCGCCGCC GCGTGAATTGCGGTTTATCCCCGCTGGCGCGGGGAACACCCACGATGTA TGCCGACCGTGATTTTTACCGCCGGTTTATCCCCGCTGGCGCGGGGAAC ACAGATACGCCTTTACGTCGCCCTCTTTGGCGCGCGGTTTATCCCCGCTG GCGCGGGGAACACTAAAACACCGGTTGCGCAACCTCCGCGGGGATCGGT TTATCCCCGCTGGCGCGGGGATCGGTTTATCCCCGCTGGCGCGGGGATC GGTTTATCCCCGCTGGCGCGGGGAACACTCTAAATCTACCCAATTGAATT TAAATACTTTTTTAGCGCACAAAAAACCCACCAACTTTTCCTAATTTTTA AAGATCTCTAA

We used strfind(g,'CGGTTTATCCCCGCTGGCGCGGGGAACAC') in MatLab and found more repeats outside the interval.
292624329263042926365292642629265392943184 (does not be-
long to this region).
length('CGGTTTATCCCCGCTGGCGCGGGGAACAC')=29
strfind(g,'GTGTTTATCCCCGCTGGCGCGGGGAACAC'): 2926182
strfind(g,'CGGTTTATCCCCGCTGGCGCGGGGATCGG') 29264872926513.
Starts: 2926182 Ends: 2926567.
In the interval $(2926182,2926513)$ we find three strings differing by 2 to 4 letters.
These repeats are called CRISPR. This is only CRISPR so far known for this strain of the bacteria.

Again, we studied the pattern of the DNA sequence of Caldicellulosiruptor Kristianssonii (Bacteria) in intervals around the points of low entropy and found repetitive patterns. In Figure 4, we considered the drop at $x=2,672,000, y=4.46$. Following is the sequence in the interval $(2671900,2672600)$ around this drop. The repeats are shown in red color.

TATTGCAATTATTGTCCTATGCACAGAGTTTGTAGCCTTCCCGTTGGGGA TTGAAACATAGATTTCATTTCGCAGCCAATAGAGCGGTTTATAGTTTGTA GCCTTCCCGTTGGGGATTGAAACCTCAATTTCTGTTTCTCTTTTCTCAATT ATTCTTGAGTTTGTAGCCTTCCCGTTGGGGATTGAAACTATAATAGCCCA TTCATCAAAAACTTTTTCATCGAAGTTTGTAGCCTTCCCGTTGGGGATTG AAACTATAATAGCCCATTCATCAAAAACTTTTTCATCGAAGTTTGTAGCC TTCCCGTTGGGGATTGAAACCACAAAATTATAGTTTGGCGCAATGTAAA CACGAACAGTTTGTAGCCTTCCCGTTGGGGATTGAAACTCTATGTCTTCT TCAAGATACATATCGAGCAGCTTATTGTTTGTAGCCTTCCCGTTGGGGAT TGAAACATACTTTTTTTCTCACGGTCTGTATGGCCTGTTCAGT

We notice repeats and use Matlab to find the exact locations of that string. strfind(g,'GTTTGTAGCCTTCCCGTTGGGGATTGAAAC')
Columns 1 through 61

2666352	2666419	2666484	2666551	2666616	2666682	2666748	2666813
2666879	2666947	2667014	2667081	2667147	2667213	2667278	2667344
2667410	2667476	2667544	2667611	2667676	2667741	2667805	2667872
2667939	2670817	2670882	2670949	2671016	2671081	2671147	2671214
2671279	2671345	2671411	2671476	2671544	2671610	2671675	2671740
2671805	2671871	2671936	2672001	2672070	2672135	2672201	2672267
2672333	2672399	2672466	2672534	2672599	2672666	2672733	2672798
2672864	2672930	2672996	2673523	2673590			

Length ('GTTTGTAGCCTTCCCGTTGGGGATTGAAAC')=30
61 repeats of length of 30 , unique spacers
Starts: 2666352 Ends: 2673620 Period: 65/66/67 Total Length $=7268$
These repeats are CRISPR.
In Figure 5, we considered the drop at $\mathrm{x}=44010000, \mathrm{y}=4.13$ and the interval (44009900, 44010500). Following is the sequence of Human Chromosome-2lin that interval. We also found repeats.

Abstract

CCGTTTATATCCACGCAGGCGTTTCCCCTTACCTGCACCGAGCCTCCATT CCCGTTTATATCCACGCAGGCGTTTCCCCTTACCTGCACCGAGCCTCCCG CCCCGTTTACATCCACGCAGGCGTTTCCCCTTACCTGCACCGAGCCTCCA TTCCCGTTTATATCCACGCAGGCGTTTCCCCTTACCTGCACCGAGCCTCC CGCCCCGTTTACATCCACGCAGGCGTTTCCCCTTACCTGCACCGAGCCTC CATTCCCGTTTATATCCACGCAGGCGTTTCCCCTTACCTGCACCGAGCCT CCCGCCCCGTTTACATCCACGCAGGCGTTTCCCCTTACCTGCACCGAGCC TCCATTCCCGTTTATATCCACGCAGGCGTTTCCCCTTACCTGCACCGAGC CTCCATTCCCGTTTATATCCACGCAGGCGTTTCCCCTTACCTGCACCGAG ССТССАТTСССGTTTATATCCACGCAGGCGTTTCCCCTTACCTGCACCGA GCCTCCCGCCCCGTTTATATCCACGCAGGCGTTTCCCCTTACCTGCACCG GGCCTGCCGCCCCGTTTACATCCACGCATGCGTTTCCCCTTACCTGCACT G

strfind(g,'TTTCCCCTTACCTGCACCGAGCCTCCATTCCCGTTTATATCCACGCA GGCG')

Columns 1 through 18

| 44007626 | 44008952 | 44009105 | 44009156 | 44009258 | 44009360 | 44009462 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 44009513 | 44009615 | 44009717 | 44009819 | 44009870 | 44009921 | 44010023 |
| 44010125 | 44010227 | 44010278 | 44010329 | | | |

The spacers are almost identical with this string except 4 letters (in purple). We also find the spacer string.

Strfind(g,"TTTCCCCTTACCTGCACCGAGCCTCCCGCCCCGTTTACATCCAC GCAGGCG").

Columns 1 through 23

44007575	44007677	44007728	44007779	44007830	44007881	44007983
44008034	44008289	44008493	44008646	44008697	44008799	44008850
44008901	44009207	44009309	44009564	44009666	44009768	44009972
44010074	44010176					

This is a repeat of a string without any gap in the region (44007575, 44010329).

Discussion

The importance of identifying repetitive sequences is clear; however, the considerable size of many genomes makes fast and efficient repeat detection very challenging. In this paper, we have presented a new algorithm for finding repeats in DNA sequences. The algorithm is based on our new measure of entropy for any non-trivial graph. In [15], an algorithm were presented for finding tandem repeats in DNA sequences based on the detection of k-tuple matches. It uses a probabilistic model of tandem repeats and a collection of statistical criteria based on that model. Whereas in [14] and [16] a new tool was introduced for the automatic detection of CRISPR elements in genome. The main advantage of our tool is it will detect both tandem repeats and CRISPR or any other repeats. The main disadvantage of our tool is lack of complete automation and hence it is less efficient compared to the other tools. Our detection technique convert sequences to
an alternative representation (namely, graph as it is given in [17]) in an attempt to make analysis more efficient. Future research plans are to modify the presented algorithm so that it is also able to identify repeats efficiently. Our code will be available to the reader upon request through email to one of the authors.

4. Conclusions

We have studied the following species:
Eukaryotes: Homo sapiens chromosome 19 \& 21, Anopheles gambiae, Caenorhabditis elegans, Plasmodium falciparum Saccharomyces cerevisiae.

Prokaryotes: Acidovorax, Ammonifex, Caldicellulosiruptor kristjanssonii, E.Coli, Salmonella Typhi, Listeria Monocyto genes, Bacillus clausii KSM, Chlamydia muridarum Nigg, Cyanobacterium aponinum, Gluconacetobacter diazotrophicus, Haemophilus influenzae R2866, Mycobacterium tuberculosis, Mycoplasma genitalium, Neisseria meningitidis, Streptococcus pneumoniae, Thermosipho africanus, Truepera radiovictrix (Bacteria), A. fulgidus (Archaea).

Viruses: HIV, Hepatitis B. After analyzing the DNA sequence at the points of low entropy for all these species, we conclude that low entropy in a genome graph corresponds to high repeatability in the sequence. These repeats can be classified as CRISPR or Tandem Repeats or something else.

Acknowledgements

This paper was written while two authors were Summer Faculty Fellow in SPAWARS YSCEN Atlantic, Charleston, SC funded by Office of Naval Research. Authors are thankful to their mentor for his assistance in the work.

References

[1] Grosse, I. (2000) Applications of Statistical Physics and Information Theory to the Analysis of DNA Sequences. Ph.D. Dissertation, Boston University, MA.
[2] Ussery, D.W., Binnewies, T.T., Gouveia-Oliveira, R., Jarmer, H. and Hallin, P.F. (2004) Genome Update: DNA Repeats in Bacterial Genomes. Microbilogy, 150, 3519-3521. http://dx.doi.org/10.1099/mic.0.27628-0
[3] Hofnung, M. and Shapiro, J. (1999) On Bacterial Repeats. Research in Microbiology (Special November-December Double Issue on Bacterial Repeats), 150, 577-578.
[4] Mehrotra, S. and Goyal, V. (2014) Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genomics Protemics Bioinformatics, 12, 164-171. http://dx.doi.org/10.1016/j.gpb.2014.07.003
[5] de Koning, A.P.J., Gu, W., Castoe, T.A., Batzer, M.A. and Pollock, D.D. (2011) Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLoS Genet, 7, Article ID: e1002384. http://dx.doi.org/10.1371/journal.pgen. 1002384
[6] Achaz, G., Coissac, E., Netter, P. and Rocha, E.P. (2003) Associations between Inverted Repeats and the Structural Evolution of Bacterial Genomes. Genetics, 164, 1279-1289.
[7] Rocha, E.P.C., Danchin, A. and Viari, A. (1999) Functional and Evolutionary Roles of Long Repeats in Prokaryotes. Research in Microbiology, 150, 725-733. http://dx.doi.org/10.1016/S0923-2508(99)00120-5
[8] Shapiro, J.A. and von Sternberg, R. (2005) Why Repetitive DNA Is Essential to Genome Function. Biological Review, 80, 227-250. http://dx.doi.org/10.1017/S1464793104006657
[9] van Belkum, A. (1999) Short Sequence Repeats in Microbial Pathogenesis and Evolution. Cellular and Molecular Life Sciences, 56, 729-734. http://dx.doi.org/10.1007/s000180050019
[10] van Belkum, A., Scherer, S., van Alphen, L. and Verbrugh, H. (1998) Short-Sequence DNA Repeats in Prokaryotic Genomes. Microbiology and Molecular Biology Reviews, 62, 275293.
[11] Mojica, F.J., Diez-Villasenor, C., Soria, E. and Juez, G. (2000) Biological Significance of a Family of Regularly Spaced Repeats in the Genomes of Archaea, Bacteria and Mitochondria. Molecular Microbiology, 36, 244-246. http://dx.doi.org/10.1046/j.1365-2958.2000.01838.x
[12] Doudna, J.A. and Charpemtier, E. (2014) Genome Editing: The New Frontier of Genome Engineering with CRISPR-Cas 9. Science, 346, 1258096.
[13] Jansen, R., Embden, J.D., Gaastra, W. and Schouls, L.M. (2002) Identification of Genes That Are Associated with DNA Repeats in Prokaryotes. Molecular Microbiology, 43, 1565-1575. http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x
[14] Bland, C., Ramsey, T.L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N.C. and Hugenholtz, P. (2007) CRISPR Recognition Tool: A Tool for Automatic Detection of Clusetered Regularly Interspaced Palidromic Repeats. BMC Bioinformatics, 8, 209. http://dx.doi.org/10.1186/1471-2105-8-209
[15] Benson, G. (1999) Tandem Repeats Finder: A Program to Analyze DNA Sequences. Nucleic Acids Research, 27, 573-580. http://dx.doi.org/10.1093/nar/27.2.573
[16] Grissa, I., Vergnand, G. and Pourcel, C. (2007) CRISPRFinder: A Web Tool to Identify Clustered Regularly Interspaced Short Palindromic Repeats. Nucleic Acids Research, 35, 52-57. http://dx.doi.org/10.1093/nar/gkm360
[17] Funkhouser, S. (2013) General Formulation for the Entropy of A Graph or Probability Matrix. Unpublished Paper, SPAWAR, SC.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work
Submit your manuscript at: http://papersubmission.scirp.org/
Or contact cmb@scirp.org

Computational Molecular

 Bioscience

Computational Molecular Bioscience

ISSN: 2165-3445 (Print) ISSN: 2165-3453 (Online)

http://www.scirp.org/journal/cmb

Computational Molecular Bioscience (CMB) is an international journal dedicated to the latest advancement of Computational Molecular Bioscience. The goal of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of Computational Molecular Bioscience. All manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review process. Accepted papers will immediately appear online followed by printed hard copy. The journal publishes original papers including but not limited to the following fields:

- Ab Initio and Density Functional Calculations of Biomolecules
- Atomistic and Coarse Grained Molecular Dynamics
- Combined Computational and Experimental Studies of Biomolecular Interactions
- Combined Quantum Mechanical and Molecular Mechanical Methods (QM/MM)
- Computational Chemistry of Biomolecules, Ligands and Drugs
- Computational Drug Design: Structure-Based; Ligand-Based; Rational; De Novo
- Computational Modelling of Biomolecular Structures Interactions and Processes
- Computational Systems Biology and Chemistry
- Development and Applications of Monte Carlo Methods
- Development and Design of New Biological and Chemical Databases and Data Mining Techniques
- Development, Testing and Applications to Biomolecular Systems
- Enzymatic Reaction Mechanisms and Inhibition
- High Performance Computing in Molecular and Biomolecular Sciences
- Ligand Binding and Free Energy Calculations
- Modelling of Membrane Processes and Protein-Membrane Interactions
- Modelling Protein Structure, Conformational Dynamics an Interactions
- Molecular Mechanics, Force Field Development and Evaluation
- Molecular Visualizations and Data Analysis
- Multilevel Computational Simulations
- Nucleic Acids Structure, Dynamics and Interactions with Ligands
- Protein Folding
- Protein Ligand Docking New Algorithm, Codes and Applications
- Protein-Nucleic Acids Interactions
- Quantitative Structure-Activity Relationships (QSAR)
- Semiempirical Electronic Structure Calculations
- Structural Bioinformatics and Homology Modelling

We are also interested in: 1) Short Reports-2-5 page papers where an author can either present an idea with theoretical background but has not yet completed the research needed for a complete paper or preliminary data; 2) Book Reviews-Comments and critiques.

Website and E-Mail

What is SCIRP?

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is currently publishing more than 200 open access, online, peer-reviewed journals covering a wide range of academic disciplines. SCIRP serves the worldwide academic communities and contributes to the progress and application of science with its publication.

What is Open Access?

All original research papers published by SCIRP are made freely and permanently accessible online immediately upon publication. To be able to provide open access journals, SCIRP defrays operation costs from authors and subscription charges only for its printed version. Open access publishing allows an immediate, worldwide, barrier-free, open access to the full text of research papers, which is in the best interests of the scientific community.

- High visibility for maximum global exposure with open access publishing model
- Rigorous peer review of research papers
- Prompt faster publication with less cost
- Guaranteed targeted, multidisciplinary audience

2

