

Isolation of Mannooligosaccharides Corresponding to Antigenic Determinants of Pathogenic Yeast *Candida catenulata* Cell Wall Mannan

Hidemitsu Kobayashi¹, Susumu Kawakami¹, Yukiko Ogawa¹, Nobuyuki Shibata², Shigeo Suzuki³

¹Laboratory of Microbiology, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki, Japan

²Department of Infection and Host Defense, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan

³Sendai Research Institute for Mycology, Sendai, Miyagi, Japan

Email: h-kobaya@niu.ac.jp

Received March 11, 2013; revised April 14, 2013; accepted May 14, 2013

Copyright © 2013 Hidemitsu Kobayashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

To investigate the chemical structure of cell wall mannan of pathogenic yeast, *Candida catenulata* IFO 0745 strain, which possess the epitopes of antigenic factors 1, 9, and 34 to genus *Candida*, we previously performed the two-dimensional nuclear magnetic resonance (NMR) analysis of this mannan, Fr. C, without the need for harsh procedures. In this study, three oligosaccharides, biose, triose, and tetraose, and mannose were isolated from Fr. C by acetolysis. The results of NMR analysis indicate that the chemical structures of these oligosaccharides were identified to Man α 1-2Man, Man α 1-2Man α

Keywords: Cell Wall Mannan; Antigenic Factor; Candida catenulata; Acetolysis; Oligomannosidic Epitope

1. Introduction

Ten rabbit antibodies to antigenic factors of genus Candida (abbreviated as FAbs) were developed to identify clinical isolates from the patients with candidiasis by Fukazawa et al. [1] and Tsuchiya et al. [2,3]. We have reported the structure of cell wall mannans of genus Candida, for examples, C. albicans [4,5], C. tropicalis [6], C. guilliermondii [7], C. glabrata [8], and C. lusitaniae [9]. The determinants of antigenic factors 1, 9, and 34 to genus *Candida* were linear α -1,2-linked oligomannosyl side chains [10], linear backbone consisting of α -1,6 linkage [11,12], and linear oligomannosyl side chains containing a non-reducing terminal α -1,3 linkage [12], respectively. On the other hand, the antigenic determinants of factors 5 and 6 correspond to two kinds of β -1,2 linkage-containing side chains, a homologous series of β -1,2-linked oligomannosyl side chains [13], side chains composed of β -1,2 and α -1,2 linkages [14], respectively.

In carbohydrate chemistry, acetolysis is the one of the important procedures for the selective cleavage of glycolsidic linkages, and was frequently used for the structural and immunochemical studies of various yeast mannans [15,16], and for the preparation of various substrates for enzymes in biosynthetic study of yeast mannans [17,18].

Candida catenulata is an opportunistic pathogen for responsible for candidiasis, and its cell wall mannan assumes the antigenicity of the cell surface. In the previous paper [19], the purified mannan obtained from NBRC 0745 (formerly IFO 0745) strain of this species, was utilized for the complete assignment of the nuclear magnetic resonance chemical shifts of all mannose residues in this molecule. In the present immunochemical study of *C. catenulata* mannan, we adopted acetolysis to obtain oligosaccharides corresponding to determinants of antigenic factors from the parent mannan.

2. Materials and Methods

2.1. Strains and Culture

Candida catenulata NBRC 0745 (formerly IFO 0745)

was obtained from the Biological Resource Center, National Institute of Technology and Evaluation, Japan. This strain was cultivated in the yeast extract-Sabouraud's liquid medium [0.5% (w/v) yeast extract, 1% (w/v) peptone, and 2% (w/v) glucose] at 27° C for 72 hr on a reciprocal shaker.

2.2. Preparation of Mannans

Mannan were extracted with hot-water and precipitated with Fehling solution [4]. The purified mannan obtained from the cells of the *C. catenulata* strain was designated Fr. C. The yields of Fr. C was 8.0% of the dry cell weight.

2.3. Acetolysis of Fr. C

Acetolysis under conventional conditions was carried out as described previously [20] by modifying the method of Kocourek and Ballou [15]. Namely, mannan, 150 mg, was dissolved in 3 ml of anhydrous formamide in 300-ml glass-stoppered round-bottomed flask, and the solution was added a 1:1 (v/v) mixture of (CH₃CO)₂O and anhydrous pyridine, 100 ml. The clear solution was kept at 40°C for 24 hr. The resultant solution was then evaporated in vacuo to dryness to an oil diffusion pump. The residue was dissolved in a 10:10:1 (v/v/v) ratio of mixture of (CH₃CO)₂O, CH₃COOH, and H₂SO₄, 150 ml, and the resultant solution was kept at 40°C for 13 hr. This solution was evaporated in vacuo to a thick syrup after addition of pyridine, 15 ml. The residue was extracted by CHCl₃, 50 ml, and the extract was washed with water, 100 ml at three times. The CHCl₃ layer was separated and dried over anhydrous Na2SO4. After filtration, the solution was evaporated in vacuo to dryness, and the residue was dissolved in anhydrous CH₃OH, 2 ml. To the solution was added a few drops of 1 M methanolic CH₃ONa solution, and the mixture was left at room temperature until the precipitation of free sugars was accomplished. The mixture was then neutralized with 50% CH₃COOH and evaporated in vacuo to dryness. The residue was dissolved in 2 ml of water, applied to a column $(2.5 \times 100 \text{ cm})$ of Bio-Gel P-2 (-400 mesh), and eluted with water (0.25 ml/min). Aliquots (10 µl) of eluates were assayed for carbohydrate content by the phenol- H_2SO_4 method [21]. Eluate corresponding to each peak was combined and concentrated in vacuo. In order to remove small amounts of contaminated oligosaccharides of lower and higher molecular weight, the solution was rechromatographed on the same column of Bio-Gel P-2, and eluates containing a homogeneous oligosaccharide were combined and lyophilized after concentration in vacuo.

2.4. Calculation of Average Length of Side Chains and the Branching Frequency Value of Fr. C

The average length of side chains (X) and the branching frequency value (Y) of Fr. C were calculated by using the following formula in accordance with previous descriptions [6]:

$$X = \left[(A \times 1) + (B \times 2) + (C \times 3) + (D \times 4) \right] / (A + B + C + D),$$

and
$$Y = \left[(B + C + D) \times 100 \right] / (A + B + C + D),$$

respectively, where A through D represent the molar proportions of mannose, biose, triose, and tetraose in the gel-filtration profile of the acetolysis products, and the numbers 1 through 4 indicate the degrees of polymerization of the mannose (M_1) and the three oligosaccharides, M_2 through M_4 , respectively.

2.5. ¹H-Nuclear Magnetic Resonance (¹H-NMR) Spectroscopy

The NMR spectra conducted on a JEOL JNM-GSX 400 spectrometer at 400 MHz. It was recorded using a 0.5% (w/v) solution of each oligosaccharides in 0.7 ml of D₂O at 45°C. Acetone (2.217 ppm) was used as an internal standard.

2.6. Inhibition Test of Slide Agglutination Assay Using Oligosaccharides

The inhibition assay of slide agglutination of *C. catenulata* cells with factor antibodies (FAbs) was conducted as previously described [13]. FAbs 1, 9, and 34 were prepared by Fukazawa *et al.* [1]. The inhibitor oligosaccharides, M_2 , M_3 and M_4 , were obtained from Fr. C by acetolysis.

3. Results and Discussion

The oligosaccharides mixture obtained from Fr. C by acetolysis were fractionated with water by gel-chromatography of Bio-Gel P-2 (**Figure 1**). The large amounts of oligosaccharides, tetraose (M₄) and triose (M₃), and the small amounts of oligosaccharides, biose (M₂) and mannose (M₁), were eluted. No product eluted at the position of void-volume (Vo) indicates that all α -1,6 linkages in Fr. C were completely cleaved by the acetolysis. The chemical structures of resultant oligosaccharides were analyzed by ¹H-NMR spectroscopy. The H-1 region signals of these oligosaccharides were shown in **Figure 2**. All spectra were identical to those of M₂, M₃, and M₄, which were previously isolated from the cell wall mannans of *Saccharomyces cerevisiae* wild-type [22] and *Candida glabrata* [8]. The structure of M₂ and M₃ were

Figure 1. Elution profile of oligosaccharides obtained from *C. catenulata* mannan, Fr. C, by conventional acetolysis. Vo refers void-volume region. M_4 , M_3 , M_2 and M_1 indicate the eluted positions of standard monnooligosaccharides, tetraose, triose, and biose, and mannose, respectively.

Figure 2. ¹H-NMR spectra of oligosaccharides obtained from *C. catenulata* mannan, Fr. C, by conventional acetolysis. Simbols are the same as in Figure 1.

identified to Man α 1-2Man and Man α 1-2Man α 1-2Man, respectively. The H-1 signal at 5.144 ppm in the spectrum of M₄ indicates the presence of non-reducing terminal α -1,3-linked mannose residue linked to α -1,2linked oligomannosyl unit. Therefore, the structure of M₄ was identified to Man α 1-3Man α 1-2Man α 1-2Man. The chemical structure of all oligosaccharides and the assignment result of chemical shifts of all mannose residues based on the results of previous reports [8,23] were shown in **Table 1**.

As shown in **Table 2**, to identify the antigenic determinants in *C. catenulata* mannan corresponding to antigenic factor, we performed an inhibition assay of agglutination between *C. catenulata* cells and factor antibodies, FAbs 1, 9, and 34, with three inhibitor oligosaccharides, M_4 , M_3 , and M_2 and M_1 (mannose) obtained from Fr. C

oligosaccharide		Sugar residue ^a				Chemical shft (ppm) ^b			
	D	С	В	$A(\alpha)^{c}$	D	С	В	$A(\alpha)$	
				$A(\beta)$				$A(\beta)$	
M ₂			Mal	-2M(α)		5.047	5.350		
			Mαl	-2M(β)		5.139	4.893		
M ₃		Mal-	2Mα1	-2M(α)		5.050	5.260	5.333	
		Mal-	-2Mα1	-2M(β)		5.050	5.260	4.891	
M_4	Ma1	-3Mα1-	2Mα1	-2M(α)	5.144	5.041	5.264	5.337	
	Mαl	-3Mα1-	2Mal	-2M(β)	5.144	5.041	5.264	4.892	

^aM denotes a mannose residue; ^bThis was measured at 45°C using acetone (2.217 ppm) as a standard; ^cConfiguration of reducing terminal residue.

Table 2. Inhibition of agglutination of *Candida catenulata* cells with FAbs 1, 9, and 34 by mannooligosaccharides obtained from *C. catenulata* mannan, Fr. C.

Agglutination ^a with inhibitor amt (µmol)										
Oligosaccharide										
	2 ¹	2^{0}	2^{-1}	2^{-2}	2^{-3}	0				
With FAb 1										
M_1	+3	+3	+3	+3	+3	+3				
M ₂	+2	+2	+2	+2	+3	+3				
M ₃	+1	+1	+1	+2	+3	+3				
M_4	+2	+2	+3	+3	+3	+3				
With FAb 9										
M ₁	+2	+2	+2	+2	+2	+2				
M ₂	+2	+2	+2	+2	+2	+2				
M ₃	+2	+2	+2	+2	+2	+2				
M_4	+2	+2	+2	+2	+2	+2				
With FAb 34										
M_1	+3	+3	+3	+3	+3	+3				
M ₂	+3	+3	+3	+3	+3	+3				
M ₃	+3	+3	+3	+3	+3	+3				
M_4	+1	+1	+2	+2	+3	+3				

^aAgglutination was scored from high (+3) to low (+1).

by acetolysis. The fact that the antigen determinant of factor 9 could not be found in this experiment indicates this epitope does not reside in the side chains of Fr. C. On the other hand, the result with FAb 1 clearly indicates that two α -1,2-linked oligomannosyl side chains corresponding to Man α 1-2Man and Man α 1-2Man α 1-2Man possess antigenic determinant of factors 1. In contrast, FAb 34 unable to recognize α -1,2-linked oligomannosyl side chain possessing terminal α -1,3-linked mannose, Man α 1-3Man α 1-2Man α 1-2Man α 1-2Man.

The chemical structure of the cell wall mannan obtained from C. catenulara IFO 0745 strain (Fr. C) and the recognition sites of factor antibodies 1, 9, and 34 were proposed as shown in Figure 3. The side chain distribution was calculated using the peak-dimensions in the gel-filtration profile of the acetolysis products (Figure 3(a)). The molar ratios of tetraosyl side chain were distinctly lower than that previously calculated from the dimension of H-1 signals in the ¹H-NMR spectrum of the same mannan (Figure 3(b)) [19]. The average length of side chains, 2.6, and the value of branching frequency, 77.1%, calculated from the peak-dimension of elution pattern of acetolysates (Figure 1) were lower than comparison with those calculated by the signal dimension of NMR spectrum (average length: 3.0, branching frequency: 91.3%). These findings showed that the acetolysis conditions make to cleave not only α -1,6 linkage of backbone but also non-reducing terminal part of the relatively longer α -linked side chains. In conclusion, although acetolysis is useful for the preparation of the oligosaccharides corresponding to side chains as haptens of immunochemical or biological function, the NMR analysis without using harsh procedure is useful for the detailed analysis for the distribution of side chains in the parent mannan.

In the previous study [10,12], we demonstrated that the α -1,2-linked mannooligosaccharides and the oligosaccharides containing a non-reducing terminal α -1,3linked mannose residue corresponding to the epitopes of antigenic factors 1 and 34, respectively. In this study, we could prepare three oligosaccharides corresponding to the antigenic factors 1 and 34, Man α 1-2Man, Man α 1-2Man α 1-2Man, and Man α 1-3Man α 1-2Man, Man α 1-2Man α 1-2Man, and Man α 1-3Man α 1-2Man α 1-2Man, which were isolated from α -1,6-linked polymannosyl backbone of Fr. C by the selective cleavage method, acetolysis. Though Fr. C reacted weakly with FAb 9, we could not find the oligosaccharide which functions as an antigenic epitope of this antibody (**Table 2**). This pheno-

Figure 3. Structure of *C. catenulata* mannan, Fr. C, and recognition sites of factor antibodies, FAbs 1, 9, and 34. (a) Side chain distribution was calculated based on the peak-dimensions in the gel-filtration profile of the acetolysis products; (b) Side chain distribution was calculated based on the dimensions of characteristic H1 signals of each side chain in the ¹H-NMR spectroscopy map [19]. Side chain sequence is not specified. M denotes a mannose residue.

menon can explain that the site of factor 9 antibody is α -1,6-linked polymannosyl backbone of yeast mannan in accordance with previous finding [12]. Namely, it is concluded that the most of mannose (M₁) released by acetolysis arose from the backbone part that is not connected by the side chain.

REFERENCES

- Y. Fukazawa, T. Shinoda and T. Tsuchiya, "Response and Specificity of Antibodies for *Candida albicans*," *Journal of Bacteriology*, Vol. 95, No. 3, 1968, pp. 754-763.
- [2] T. Tsuchiya, Y. Fukazawa and S. Kawakita, "A Method for the Rapid Identification of the Genus *Candida*," *Mycopathologia*, Vol. 10, No. 3, 1959, pp. 191-206. <u>doi:10.1007/BF02053014</u>
- [3] T. Tsuchiya, Y. Fukazawa, M. Taguchi, T. Nakase and T. Shinoda, "Serologic Aspects on Yeast Classification," *My-copathologia*, Vol. 53, No. 1-4, 1974, pp. 77-92. doi:10.1007/BF02127199
- [4] H. Kobayashi, N. Shibata, H. Mitobe, Y. Ohkubo and S. Suzuki, "Structural Study of Phosphomannan of Yeast-Form Cells of *Candida albicans* J-1012 Strain with Special Reference to Application of Mild Acetolysis," *Archives of Biochemistry and Biophysics*, Vol. 272, No. 2, 1989, pp. 364-375. doi:10.1016/0003-9861(89)90230-0
- [5] N. Shibata, K. Ikuta, T. Imai, Y. Satoh, R. Satoh, A. Suzuki, C. Kojima, H. Kobayashi, K. Hisamichi and S. Suzuki, "Existence of Branched Side Chains in the Cell Wall Mannan of Pathogenic Yeast, *Candida albicans*. Structure-Antigenicity Relationship between the Cell Wall Mannans of *Candida albicans* and *Candida parapsilosis*," *Journal of Biological Chemistry*, Vol. 270, No. 3, 1995, pp. 1113-1122. doi:10.1074/jbc.270.3.1113
- [6] H. Kobayashi, H. Oyamada, K. Matsuda, N. Shibata and S. Suzuki, "Distribution of Antigenic Oligomannosyl Side Chains in the Cell Wall Mannans of Several Strains of *Candida tropicalis*," *Archives of Microbiology*, Vol. 180, No. 1, 2003, pp. 76-80. doi:10.1007/s00203-003-0550-7
- [7] N. Shibata, R. Akagi, T. Hosoya, K. Kawahara, A. Suzuki, K. Ikuta, H. Kobayashi, K. Hisamichi, Y. Okawa and S. Suzuki, "Existence of Novel Branched Side Chains Containing β-1,2 and α-1,6 Linkages Corresponding to Antigenic Factor 9 in the Mannan of *Candida guilliermondii*," *Journal of Biological Chemistry*, Vol. 271, No. 16, 1996, pp. 9259-9266. doi:10.1074/jbc.271.16.9259
- [8] H. Kobayashi, H. Oyamada, N. Iwadate, H. Szuki, H. Mitobe, K. Takahashi, N. Shibata, S. Suzuki and Y. Okawa, "Structural and Immunochemical Characterization of β-1,2-Linked Mannobiosyl Phosphate Residue in the Cell Wall Mannan of *Candida glabrata*," *Archives of Microbiology*, Vol. 169, No. 3, 1998, pp. 188-194. doi:10.1007/s002030050559
- [9] N. Shibata, H. Kobayashi, Y. Okawa and S. Suzuki, "Existence of Novel β-1,2-Linkage-Containing Side Chain in the Mannan of *Candida lusitaniae*, Antigenically Related to *Candida albicans* Serotype A," *European Journal of Biochemistry*, Vol. 270, No. 12, 2003, pp. 2565-2575. doi:10.1046/j.1432-1033.2003.03622.x

- [10] H. Kobayashi, M. Komido, M. Watanabe, K. Matsuda, M. Suzuki, T. Ikeda, H. Oyamada, N. Shibata and S. Suzuki, "Structure of Cell Wall Mannan of *Candida kefyr* IFO 0586," *Infection and Immunity*, Vol. 62, No. 10, 1994, pp. 4425-4431.
- [11] H. Ataoglu, J. Zueco and R. Sentandrew, "Characterization of Epitopes Recognized by *Candida* Factor 1 and 9 Antisera by Use of *Saccharomyces cerevisiae mnn* Mutants," *Infection and Immunity*, Vol. 61, No. 8, 1993, pp. 3313-3317.
- [12] H. Kobayashi, H. Oyamada, A. Suzuki, N. Shibata, S. Suzuki and Y. Okawa, "Identification of the Antigenic Determinants of Factors 8, 9, and 34 of Genus *Candida*," *FEBS Letters*, Vol. 395, No. 2-3, 1996, pp. 109-112. doi:10.1016/0014-5793(96)01013-7
- [13] N. Shibata, M. Arai, E. Haga, T. Kikuchi, M. Najima, T. Satoh, H. Kobayashi and S. Suzuki, "Structural Identification of an Epitope of Antigenic Factor 5 in Mannans of *Candida albicans* NIH B-792 (Serotype B) and *C. albicans* J-1012 (Serotype A) as β -1,2-Linked Oligomannosyl Residues," *Infection and Immunity*, Vol. 60, No. 10, 1992, pp. 4100-4110.
- [14] H. Kobayashi, N. Shibata and S. Suzuki, "Evidence for Oligomannosyl Residues Containing both β-1,2 and α-1,2 Linkages as a Serotype A—Specific Epitope(s) in Mannans of *Candida albicans*," *Infection and Immunity*, Vol. 60, No. 5, 1992, pp. 2106-2109.
- [15] J. Kocourek and C. E. Ballou, "Method for Fingerprinting Yeast Cell Wall Mannans," *Journal of Bacteriology*, Vol. 100, No. 3, 1969, pp. 1175-1181.
- [16] N. Shibata, H. Kobayashi and S. Suzuki, "Immunochemistry of Pathogenic Yeast *Candida* Species, Focusing on Mannan," *Proceeding of the Japanese Academy Series B Physical and Biological Sciences*, Vol. 88, No. 6, 2012, pp. 250-265. doi:10.2183/pjab.88.250
- [17] A. Suzuki, N. Shibata, M. Suzuki, F. Saitoh, Y. Takata, A. Oshie, H. Oyamada, H. Kobayashi, S. Suzuki and Y. Okawa, "Characterization of α -1,6-Mannosyltransferase

Responsible for the Synthesis of Branched Side Chains in *Candida albicans* Mannan," *European Journal of Biochemistry*, Vol. 240, No. 1, 1996, pp. 37-44. doi:10.1111/j.1432-1033.1996.0037h.x

- [18] N. Shibata, and Y. Okawa, "Enzymatic Synthesis of New Oligosaccharides using Mannosyltransferases from *Candida* Species and Their NMR Assignment," *Biological & Pharmaceutical Bulletin*, Vol. 33, No. 5, 2010, pp. 895-899. doi: 10.1248/bpb.33.895
- [19] H. Kobayashi, J. Suzuki, S. Tanaka, Y. Kiuchi, H. Oyamada, N. Iwadate, H. Suzuki, N. Shibata, S. Suzuki and Y. Okawa, "Structure of a Cell Wall Mannan from the Pathogenic Yeast, *Candida catenulata*: Assignment of ¹H Nuclear Magnetic Resonance Chemical Shifts of the Inner α -1,6-Linked Mannose Residues Substituted by a Side Chain," *Archives of Biochemistry and Biophysics*, Vol. 341, No. 1, 1997, pp. 70-74. doi:10.1006/abbi.1997.9939
- [20] H. Oyamada, Y. Ogawa, N. Shibata, Y. Okawa, S. Suzuki and H. Kobayashi, "Structural Analysis of Cell Wall Mannan of *Candida sojae*, a New Yeast Species Isolated from Defatted Soybean Flakes," *Archives of Microbiol*ogy, Vol. 189, No. 5, 2008, pp. 483-890. doi:10.1007/s00203-007-0339-1
- [21] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith, "Colorimetric Method for Determination of Sugars and Related Substances," *Analytical Chemistry*, Vol. 28, No. 3, 1956, pp. 350-356. <u>doi:10.1021/ac60111a017</u>
- [22] H. Kobayashi, N. Shibata, M. Watanabe, M. Komido, N. Hashimoto, K. Hisamichi and S. Suzuki, "Mild Acetolysis and NMR Studies of the D-Mannan of *Saccharo*myces cerevisiae X2180-1A Wild-Type Strain," *Carbo*hydrate Research, Vol. 231, 1992, pp. 317-323. doi:10.1016/0008-6215(92)84028-Q
- [23] N. Shibata, A. Suzuki, Y. H. Kobayashi and Y. Okawa, "Chemical Structure of the Cell-Wall Mannan of *Candida albicans* Serotype A and Its Difference in Yeast and Hyphal Forms," *Biochemical Journal*, Vol. 404, No. 3, 2007, pp. 365-372. <u>doi:10.1042/BJ20070081</u>