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Abstract 
Conducting genomic selection in admixed populations is challenging and its 
accuracy in this case largely depends on the persistence of linkage disequili-
brium between single nucleotide polymorphisms (SNP) and quantitative trait 
loci (QTL). Inferring linkage disequilibrium (LD) between SNP markers and 
QTLs could be important in understanding the change of SNP marker effects 
across different breeds. Predicting the change in linkage disequilibrium be-
tween markers and QTLs across two divergent breeds was explored using in-
formation from the genotype data. Two different models (M1, M2) that differ 
in the definition of the explanatory variables were used to infer the level of 
LD between SNP markers and QTLs using all markers in the panel or win-
dows of fixed number of markers. Three simulation scenarios were conducted 
using different number of SNPs and QTLs. In the first scenario, the resulting 
coefficient of determination (R2) was 0.65 and 0.52 using M1 and M2, respec-
tively. In the second scenario, average R2 equaled 0.12 using all markers in the 
panel and 0.25 using 100 marker windows. Across the three simulation sce-
narios, it was clear that a significant portion of the variation in the change in 
LD between SNP markers and QTLs could be explained by information al-
ready available in the observed SNP marker data.  
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1. Introduction 

Genomic selection is a type of marker assisted selection which involves the esti-
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mation of genomic breeding values (GEBV) based on a large number of markers 
across the genome [1]. Genomic selection relies on the assumption that all rele-
vant quantitative loci (QTL) are in linkage disequilibrium (LD) with genotyped 
SNP markers. Thus, linkage disequilibrium or the non-random association of 
alleles at different loci [2] across genotyped markers and between the later and 
QTLs will fundamentally condition the efficiency of the association analysis and 
it is of great importance in QTL mapping, genomic selection and genome wide 
association studies. Although the strength of LD between genotyped SNP mark-
ers is easy to calculate, inferring the level of LD between SNP markers and QTLs 
is a complex problem due to the unavailability of QTL genotypes in the majority 
of genomic association studies. Although the knowledge of the QTL(s) geno-
types or their LD with SNP markers in the panel is not needed in association 
studies, such information could be of great interest in some applications such as 
multi-breed and crossbred genomic selection.  

Genomic selection has been successful in prediction of genomic breeding val-
ues. However this success did not extend to admixed breeds or crossbreds. Sev-
eral studies showed that the structure of the reference population strongly im-
pacts the accuracy of genomic predictions [3] [4] [5] [6]. Moreover, SNP marker 
estimates derived from one breed have little to no predictive power of GEBVs of 
animals in a different breed [4] [7]. A potential solution would be to use a 
pooled multi-breed reference population to predict GEBV of animals in other 
breeds or crossbred animals [8] [9] [10] [11] [12]. This method showed promis-
ing results in improving prediction accuracy in the case when a breed has a li-
mited number of records. However, the performance of this approach, as ex-
pected, depends largely on the genetic similarity between components of the 
admixed population.  

Although simple in its concept, the multi-breed reference population ap-
proach makes strong genetic and population structure assumptions. In its most 
basic formulation, it assumes a genetically homogenous population where SNP 
marker effects are constant across sub-populations or breeds. Further, it assumes 
that linkage disequilibrium (LD) between SNPs and QTLs is the same across the 
reference and validation populations. Although that is the case for within breed 
genomic selection, such assumption is often violated when breeds with different 
genetic structure and background are being considered. This genetic difference 
between breeds is manifested by varying allele frequencies for markers and 
QTLs, change in LD strength and structure, and linkage phase [13] [14] [15] 
[16]. Furthermore, several studies have evaluated LD blocks in various popula-
tion structures and reported differences in the extent of LD. For example, Shif-
man et al. (2003) showed that LD was several folds higher in isolated population 
than out bred populations very likely due to higher inbreeding [17]. Similarly, 
Lindbladtoh et al. (2005) reported, as expected, larger LD blocks within breeds 
than across breeds [18]. Hay and Rekaya (2015) showed that accommodating the 
potential change in SNP effects between the different components of an admixed 
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population, increased accuracies of genomic prediction [19] [20]. When change 
in SNP effects was directly modeled, substantial increase in accuracies was ob-
served compared to the classical pooled data approach. Unfortunately, such 
model suffers from high dimensionality and numeral instability especially in 
presence for large number of SNPs. Their indirect approach to account for 
change in SNP effects was based on heuristically developed structural model us-
ing available information on marker genotypes. Although it remedies the prob-
lems associated with the direct approach and yields better results than the clas-
sical pooled data model, its performance are significantly lower than the direct 
approach. These results indicate that change in the distribution of SNP marker 
genotypes between sub-populations is likely to carry relevant information about 
change of LD structure and strength between markers and QTLs across compo-
nents of the admixed population that could be garnished to account for change 
in SNP effects. Since genomic selection largely depends on LD structure, it is of 
great importance to be able to evaluate and infer the magnitude of change in LD 
between SNP markers and QTLs in different populations. This information 
might shed some light on the change of SNP effects across different breeds or 
lines and how to adjust for this change. The objective of this study is to evaluate 
and infer the change of LD between markers and QTLs across two breeds using 
simulated data sets.  

2. Materials and Methods 

As indicated in the introduction section, genetic heterogeneity between 
sub-populations leads to change in estimates of SNP effects due to change in LD 
between observed markers and putative QTLs. The foundation of genome wide 
associations is that QTL effects can be inferred indirectly through their correla-
tion with genotyped markers. Across sub-population, LD structure between 
markers ( M MLD − ) as well between markers and QTLs ( M QLD − ). changes. Con-
sequently, it is reasonable to postulate that change in LD between SNP markers 
across two sub-populations ( M MLD −∆ ) could explain, at least partially, the 
change in LD between markers and QTLs ( M QLD −∆ ). 

In order to evaluate this hypothesis, several small-scale simulations were car-
ried out. In these simulations, the genotypes of the QTL(s) and associated SNPs 
markers were all assumed known. Thus, LD between SNP markers and QTL(s) 
was available. In all cases our goal was to test the ability of M MLD −∆  to predict 

M QLD −∆ . 
Simulation scenarios: Three simulation scenarios with varying number of 

SNP markers and QTLs were carried out to test the postulated hypothesis. In all 
cases, two divergent sub-populations for a trait with heritability equal to 0.5 were 
generated. A full description of the simulation parameters are presented in the 
next section. Two models (M1, M2) were evaluated in their ability to predict the 
change in M QLD −∆ : 

0 1 2kM Q k k kLD a a M a S e−∆ = + + +                   (M1) 
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0 1 2kM Q k k kLD b b MR b SR e−∆ = + + +                 (M2) 

where 
kM QLD −∆  is the difference of LD between marker k and the QTL across 

the two sub-populations, kM  and kS  are the mean and standard deviation of 
the difference of LD between marker k and all the remaining SNPs or a 100 ad-
jacent SNP markers, respectively. kMR  and kSR  are the same as kM  and 

kS , except they represent the relative mean and standard deviation of the dif-
ference in LD, ja  and ( )0,1, 2jb j =  are unknown regression coefficients. To 
evaluate the fit of the model, the coefficient of determination R2 was calculated.  

Linkage disequilibrium across SNP markers and between SNP markers and 
QTLs in both lines was calculated using the 2r  coefficient as proposed by [2] 
using the following general equation.  

( ) ( ) ( ) ( )
2

2 Dr
f A f a f B f b

=  

where D is calculated as ( ) ( ) ( )D f AB f A f B= −  and ( ) ( ) ( ), ,f AB f A f a , 
( )f B  and ( )f b  are observed frequencies of haplotype AB and of alleles A, a, 

B, and b, respectively. The higher r2, the stronger the linkage disequilibrium.  
For all cases and for both models, unknown coefficients were estimated using 

the proc glm of SAS software [21]. 
Data simulation: QMSim software [22] was used for data simulation. A his-

torical population of unrelated individuals was simulated and used as a base 
population for two pure breeds (A and B). Breeds A and B consisted of 1677 and 
1668 individuals respectively. The simulated genome consisted of 1 chromo-
some, with varying number of QTLs and varying number of SNP markers with 
equal spacing of an average 50 Kb. Minor allele frequency was set to 0.05. QTL 
additive effects were sampled from a gamma distribution with shape and scale 
parameter equal to 0.4. Phenotypes were simulated based on a heritability of 0.5. 
Three simulation scenarios were carried out. In the first scenario, 10 SNP mark-
ers and 1 QTL were considered. The QTL was positioned in close proximity to 
SNP marker 5. In the second scenario the number of markers was increased to 
300 SNP markers and also increased the number of QTLs to 3. Finally, in the last 
simulation scenario, the number of SNP markers was increased to 3000 SNPs 
and the number of QTLs increased to 30. These QTLs were randomly positioned 
across the genome. All SNP markers were used in the inference of M QLD −∆ . In 
both statistical models (M1, M2), LD between marker k and all the remaining 
SNPs or 100 adjacent SNP marker windows were implemented. 

3. Results and Discussion 

Linkage disequilibrium between the SNP markers and the QTL for lines A and B 
as well as M QLD −∆  for the first simulation scenario are presented in Table 1. 
Since the QTL was placed in the center of the simulated segment, the M QLD −  
was, as expected, higher for markers 4, 5 and 6. Figure 1 shows the trend of LD 
between the SNP markers and QTL for the two lines. Similarly, the LD between  
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Figure 1. Linkage disequilibrium between markers and QTL for breeds A and B. 

 
Table 1. Linkage disequilibrium between markers and QTL for breed A and B in the first 
simulation scenario. 

LDM-Q(A)1 LDM-Q(B)2 ∆LDM-Q
3 

0.131 0.101 0.029 

0.107 0.008 0.026 

0.107 0.008 0.024 

0.758 0.333 0.419 

0.999 0.649 0.350 

0.622 0.363 0.259 

0.296 0.222 0.074 

0.132 0.195 −0.063 

0.128 0.172 −0.043 

0.005 0.106 −0.051 

1LD between marker and QTL for breed A; 2LD between marker and QTL for breed B, 3Difference in mark-
er and QTL LD between breed A and B. 

 
markers ( M MLD − ) for the two lines as well as the difference in LD M MLD −∆  
were calculated. To infer M QLD −∆  between the two breeds, the mean and 
standard deviation of M MLD −∆  were calculated and later used as explanatory 
variables in the regression model (Table 2). Fitting model M1 resulted in an R2 
of 0.65; indicated that the mean and standard deviation of M MLD −∆  explained 
around two thirds of the variation in M QLD −∆  between breeds A and B. On the 
other hand, fitting model M2 resulted in 25% decrease in R2 (0.52). Although M2 
resulted in a decrease in R2, the model still was able to explain a significant por-
tion of the variation in M QLD −∆  across the two breeds. When the number of 
SNP markers and QTLs were increased to 30 and 3, respectively (second simula-
tion scenario), the coefficients of determination tended to decrease using either 
all the SNP markers (300) or fixed size widows of 100 SNPs to calculate the pa-
rameters of the regression model. Table 3 shows the resulting coefficients of  
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Table 2. Mean and standard deviation of change of LD between markers in the first si-
mulation scenario1. 

∆LDM-M
1 

mean SD 

0.010 0.187 

0.018 0.166 

0.019 0.167 

−0.044 0.198 

0.014 0.259 

−0.091 0.225 

−0.134 0.197 

−0.082 0.095 

−0.087 0.088 

−0.072 0.120 

1Difference in LD of marker and marker between breeds A and B. 

 
Table 3. Coefficient of determination for models M1 and M2 in the second simulation 
scenario. 

∆LDM-Q 
M1 M2 

All markers 100 marker window All markers 100 marker window 

QTl_1 0.14 0.26 0.07 0.03 

QTL_2 0.12 0.24 0.02 0.02 

QTL_3 0.12 0.27 0.01 0.01 

 
determination (R2) for models M1 and M2 using all markers and using fixed 
windows of 100 SNPs. Using M1 resulted in R2 equal to 0.14, 0.12 and 0.12 for 
QTLs 1, 2 and 3 respectively using all 300 markers. In the case of using 100 
marker windows, R2 increased to 0.26 for QTL 1, 0.24 for QTL 2, and 0.27 for 
QTL 3. This increase in R2 is due for at least two reasons: 1) a QTL was posi-
tioned in each 100 SNP marker window, and 2) including all 300 SNP markers 
where a large portion of them has no LD with the QTL, resulted in a less infor-
mative mean and standard deviation of M MLD −∆  to explain variation in 

M QLD −∆ . The highest increase in R2 was for QTL 3, from 0.12 to 0.27. Using 
M2, a substantial decrease in R2 was observed across all QTLs using either 100 
marker windows or all markers. Table 4 shows the average R2 across all 3 mark-
ers, it is clear that M1 performed better than M2 in this simulation scenario.  

In the third simulation scenario, a larger SNP panel (3000 SNPs), and a higher 
number of QTLs (30) were simulated. Table 4 shows the average R2 obtained 
using M1and M2. Clearly, M1 performed notably better than M2 using either all 
markers or 100 marker windows. For example, fitting M1 using all markers re-
sulted in an average R2 of 0.27 compared to 0.01 for M2. It should be mentioned  
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Table 4. Average coefficient of determination over all QTLs for models M1 and M2 in the 
second and third simulation scenarios. 

Genome 
M1 M2 

All markers 100 marker window All markers 100 marker window 

300 SNP,3 QTLs 0.12 0.25 0.05 0.03 

3000 SNP, 30 QTLs 0.27 0.10 0.03 0.01 

 
that M2 did not explain any variation in the change of M QLD −∆  across breed A 
and B.  

Across the three simulation scenarios, it is clear that a significant portion of 
the variation in variation in M QLD −∆  could be explained by information al-
ready available in the observed SNP marker data. Furthermore, the statistical 
model as well as the extent of the window of SNPs considered in the calculation 
of the parameters of the regression line plays a crucial role in estimating change 
in LD between markers and QTLs in both breeds. Based on the results of this 
simulation study and the structure of LD generated, it seems that small windows 
are preferable. This is true because including large number of SNPs with little to 
no LD with the QTL(s) will render the mean and standard deviation non-informative 
about the variation in M QLD −∆ . Using real data, the situation will be more 
complex due to a larger number of SNP markers and QTLs where the latter have 
a random and unknown distribution. In such case, information about LD blocks 
should be used in determining the length of SNP windows to be used. Addition-
ally, the relationship between M QLD −∆  and the observed information in the 
SNP genotypes could be non-linear and cannot be approximated well with sim-
ple regression models.  

4. Conclusion 

In this simulation study, inferring change of linkage disequilibrium between 
marker and QTL between two pure breeds proved to be possible. This might 
help in inferring the change of SNP marker effects when having different breeds 
or lines in the population. Whether or not this could be used in genomic selec-
tion in the case of admixed populations, further testing and research is required. 
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