
Agricultural Sciences, 2015, 6, 571-585 
Published Online May 2015 in SciRes. http://www.scirp.org/journal/as 
http://dx.doi.org/10.4236/as.2015.65056   

How to cite this paper: Deonikar, P., et al. (2015) Discovery of Key Molecular Pathways of C1 Metabolism and Formalde-
hyde Detoxification in Maize through a Systematic Bioinformatics Literature Review. Agricultural Sciences, 6, 571-585.  
http://dx.doi.org/10.4236/as.2015.65056  

 
 

Discovery of Key Molecular Pathways  
of C1 Metabolism and Formaldehyde  
Detoxification in Maize through a  
Systematic Bioinformatics  
Literature Review 
P. Deonikar1, S. Kothandaram1, M. Mohan1, Cori Kollin2, Phoebe Konecky2,  
Rachael Olovyanniko2, Zachary Zamore2, Brian Carey2, V. A. S. Ayyadurai1* 
1International Center for Integrative Systems, Cambridge, MA, USA 
2Livingston High School, Livingston, NJ, USA 
Email: *vashiva@integrativesystems.org     
 
Received 7 May 2015; accepted 25 May 2015; published 29 May 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Computational systems biology approaches provide insights to understand complex molecular 
phenomena in living systems. Such understanding demands the need to systematically interrogate 
and review existing literature to refine and distil key molecular pathways. This paper explores a 
methodological process to identify key molecular pathways from systematic bioinformatics lite-
rature review. This process is used to identify molecular pathways for a ubiquitous molecular 
process in all plant biological systems: C1 metabolism and formaldehyde detoxification, specific to 
maize. The C1 metabolism is essential for all organisms to provide one-carbon units for methyla-
tion and other types of modifications, as well as for nucleic acid, amino acid, and other biomole-
cule syntheses. Formaldehyde is a toxic one-carbon molecule which is produced endogenously and 
found in the environment, and whose detoxification is an important part of C1 metabolism. This 
systematic review involves a five-part process: 1) framing of the research question; 2) literature 
collection based on a parallel search strategy; 3) relevant study selection based on search refine-
ment; 4) molecular pathway identification; and 5) integration of key molecular pathway mechan-
isms to yield a well-defined set molecular systems associated with a particular biochemical func-
tion. Findings from this systematic review produced three main molecular systems: a) methionine 
biosynthesis; b) the methylation cycle; and c) formaldehyde detoxification. Specific insights from 
the resulting molecular pathways indicate that normal C1 metabolism involves the transfer of a 
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carbon group from serine through a folate-mediated pathway to methionine, and eventually the 
methylation of a biomolecule. In photosynthetic tissues, C1 metabolism often proceeds in reverse 
towards serine biosynthesis and formate oxidation. C1 metabolism, in maize, appears to be pre- 
sent in the developing embryo and endosperm indicating that these cells are vulnerable to per-
turbations in formaldehyde detoxification. These insights demonstrate the value of a systematic 
bioinformatics literature review process from a broad spectrum of domain literature to specific 
and relevant molecular pathways. 
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1. Introduction 
Computational systems biology approaches provide insights to understand complex molecular phenomena in 
living systems. Such understanding demands the need to systematically interrogate and review existing literature 
to refine and distil key molecular pathways. Systematic literature review is a powerful way to summarize the 
available scientific literature on a question [1]. In such a review, a comprehensive search is followed by a care-
ful filtering of results, providing a quality set of scientific studies, which are used as evidence in the review. In 
this paper, this process is further refined to not just review the literature but to identify molecular pathways.  

In agricultural research, there is a growing need to utilize such a process towards bridging hands-on research 
in the field with a molecular systems understanding. The support for this research through the Rodale Institute, 
which has been supporting independent agricultural research for 30 years to provide farmers the tools and 
knowledge to increase soil health, crop quality and yields while simplifying farm management, exemplifies this 
trend and growing need. In this research, as a use case, this process is tested to identify molecular pathways for a 
ubiquitous molecular process in all plant biological systems: C1 metabolism and formaldehyde detoxification, 
specific to maize. Results from this use case yield a valuable and coherent set of molecular pathways that may 
be used for future effort in the computational modelling of C1 metabolism and formaldehyde detoxification. 

The systematic bioinformatics literature review process herein involves a five-part process: 1) framing of the 
research question; 2) literature collection based on a parallel search strategy; 3) relevant study selection based on 
search refinement; 4) molecular pathway identification; and 5) integration of key molecular pathway mechan-
isms to yield a well-defined set molecular systems associated with a particular biochemical function. This pro- 
cess involves the use of the CytoSolve® Collaboratory™ and bioinformatics platform [2] for managing the en-
tire systematic review process from literature review to molecular pathway identification. Findings from this 
systematic review produced three main molecular systems: a) methionine biosynthesis; b) the methylation cycle; 
and c) formaldehyde detoxification. 

1.1. C1 Metabolism 
C1 metabolism is perhaps the most important molecular processes in living systems. The C1 metabolism pro-
vides one-carbon units for proteins, nucleic acids, methylated compounds, and other biomolecules and is found 
in plants, bacteria, yeast, and mammals [3] [4]. In higher plants this pathway serves to synthesize many impor-
tant molecules, including methionine, formylmethionine-tRNA, pantothenate, thymidylate, adenosine, and se-
rine, while also providing one-carbon units for important modifications such as DNA methylation. 

1.2. Formaldehyde in C1 Metabolism 
Formaldehyde has been classified as a mutagen, suspected carcinogen, and a highly toxic compound because of 
its ability to react with proteins, nucleic acids, and lipids [5]. Formaldehyde detoxification, therefore, is vital to 
the functioning and survival of living systems, and is an important part of C1 metabolism by which higher plants 
are able to metabolize formaldehyde from the environment [6] [7]. Detoxification of formaldehyde in C1 meta-
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bolism occurs via its conversion to formate and eventually to carbon dioxide and water [5].  
The major source of formaldehyde generation in plants is via dissociation of 5, 10-CH2-tetrahydrofolate (THF) 

and oxidation of methanol, derived mainly from pectin demethylation. Other potential sources of endogenous 
formaldehyde are other oxidative demethylation reactions, glyoxylate decarboxylation, and cytochrome P-450- 
dependent oxidation of herbicides such as glyphosate [8] [9]. Since there is significant crosstalk between C1 
metabolism and other essential pathways such as serine biosynthesis, adenosine metabolism, and tetrahydrofo-
late biosynthesis, plants have established complex regulatory mechanisms [10]. The formation and detoxifica-
tion reactions of formaldehyde are tightly regulated in order to prevent its accumulation [5]. 

1.3. Perturbation of C1 Metabolism in Maize 
Maize is an important staple crop whose C1 metabolism has not been fully characterized. The maize kernel is 
mostly made up of the endosperm and embryo, tissues which are known to express C1 metabolism genes during 
their development [11]. If formaldehyde detoxification, which is an important part of C1 metabolism, is per-
turbed then it is possible that formaldehyde may accumulate in the kernel, which is bound for human or animal 
consumption. 

1.4. Importance of Systematic Literature Review to Understand C1 Metabolism and  
Formaldehyde Detoxification in Maize 

A systematic literature review that identifies core molecular systems can be of immense value to an integrative 
understanding of C1 metabolism and formaldehyde detoxification. For example, formaldehyde levels about 200 
times higher than accepted were observed in wild type corn plants grown with a conventional herbicide [5]. 
However, in such empirical observations, there is lack of clarity on the foundational molecular systems that 
could give rise to such perturbations of formaldehyde. A systematic review of the existing literature and the 
identification of molecular systems may provide the basis for future computational modelling to yield a detailed 
understanding and insights of the effect of any such perturbations, at the molecular level, on C1 metabolism and 
eventually on detoxification of formaldehyde in plants.  

In this research, therefore, there are four key practical systems biological objectives for conducting this sys-
tematic review. These are outlined below. 

1.4.1. Review the Pathways and Compartments Involved in C1 Metabolism in Plants 
C1 metabolism is essential to all organisms and it provides necessary one-carbon units for proteins, nucleic acids, 
methylated compounds, and other molecules. In plants C1 metabolism also plays a role in detoxification of 
harmful one-carbon molecules. This review will reveal the pathways and enzymes involved in one-carbon me-
tabolism and the compartments where it happens. 

1.4.2. Describe the Regulation of C1 Metabolism in Plants 
Such vital functions as protein synthesis and nucleic acid synthesis are highly regulated, and since C1 metabol-
ism plays a role in these processes it too must be regulated. This review will describe how the plant cell controls 
one-carbon metabolism and the signaling involved in the regulation. 

1.4.3. Summarize Formaldehyde’s Role in C1 Metabolism in Plants 
Formaldehyde is a toxic substance, yet it has been shown to be an intermediate in one-carbon metabolism. This 
review will determine the role of formaldehyde in this essential process and describe the mechanisms involved 
in formaldehyde detoxification. 

1.4.4. Elucidate Mechanisms of Formaldehyde Detoxification and Accumulation in Maize 
Maize is a very important staple crop which requires C1 metabolism as does all plants, and presumably uses 
formaldehyde as an intermediate in this process. This review will summarize the formaldehyde detoxification 
and accumulation mechanisms specific to maize, and also explore tissue-specific differences within maize. 

2. Methods 
The systematic bioinformatics literature review involves the five steps: 1) framing of the research question; 2) 
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literature collection of an initial set based on a parallel search strategy; 3) search refinement to discover relevant 
set; 4) detection of papers for the study set with molecular pathway information; and 5) aggregation to organize 
key molecular pathway systems associated with a particular biochemical function. 

This process was enabled through the use of the CytoSolve® Collaboratory™, a bioinformatics platform [2], 
which provides a cloud-based infrastructure for: 1) conducting and archiving search results from disparate data 
sources including PubMed, Google Scholar, and multiple online databases; 2) managing and annotating the 
identification of the molecular pathway diagrams; 3) integrating molecular pathway diagrams to create large 
scale molecular systems; 4) managing and identifying modeling parameters such as rate constants, initial condi-
tions, etc.; 5) creating and simulating component molecular pathway models; and 6) integrating component 
models to create large scale functional and predictive models of biological phenomena. For the purpose of this 
research, features 1 through 3 were critical. 

2.1. Framing of the Research Question 
This systematic review paper frames the research question as follows: “What are the characteristics of C1 meta-
bolism in plants, especially maize, and what is the role and fate of formaldehyde in this biological process?” 
This framing motivates the selection of critical search criteria for literature collection. 

2.2. Literature Collection of Initial Set Based on a Parallel Search Strategy 
Literature collection from an informatics standpoint was executed to ensure high recall to acquire the initial set. 
Based on the research question posed, 24 search criteria were developed as detailed in Appendix A. The 
PubMed and Google Scholar databases were searched using the search criteria. This resulted in executions of 24 
parallel independent searches to produce the initial set. 

2.3. Search Refinement to Discover Relevant Set 
Search refinement was executed to ensure increased precision to find relevant set of papers. A precision search 
was performed, by constraining the initial set to C1 metabolism and/or formaldehyde within Titles or Abstracts, 
to acquire the relevant set. 

2.4. Detection of Papers for Study Set with Molecular Pathway Information 
The relevant papers were reviewed by domain experts through the CytoSolve user interface, as shown in Figure 
1, to determine the study set, papers which from the relevant set that contained molecular pathway information 
such as:  
1) description of species and reactions of C1 metabolism  
2) cellular compartments containing species and reactions 
3) relevant enzymes 
4) flux through C1 metabolism 
5) perturbations of C1 metabolism 
6) molecular pathways in C1 metabolism; and, 
7) accumulation of formaldehyde 

In this detection process, priority was given to those articles which were the most recent and which contained 
information and/or studies on maize or closely related grasses. 

2.5. Aggregation to Organize Key Molecular Pathways 
In this systematic review, the final process was the aggregation of the molecular pathway information from the 
study set to create a final set of key molecular pathway systems associated with the dynamics of C1 metabolism 
and formaldehyde detoxification. In Figure 2 is an example, from the CytoSolve user interface, of the methio-
nine biosynthesis molecular pathway system (one of the three molecular pathway systems), aggregated from the 
study set. 

3. Results 
The systematic review of literature yielded three significant results, which are described in sections 3.1, 3.2, and  
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Figure 1. CytoSolve user interface to identify literature study set containing molecular pathway information on C1 metabol-
ism and/or formaldehyde pertinent to maize and grasses.                                                                
 
3.3 respectively. In Section 3.1, the processing results are summarized from the five-step process described in 
the Methods. In Section 3.2, the three major molecular pathway systems aggregated from the study set for C1 
metabolism are described and discussed in detail. In Section 3.3, additional critical insights were identified con-
cerning the regulation of C1 metabolism and role of formaldehyde in C1 metabolism. 

3.1. Results from the Systematic Review of Literature 
The final results of the systematic review are summarized in Figure 3. Based on the framing of the research 
question and the application of the search criteria through a parallel strategy, the literature collection of an initial 
set of 11,597 papers was derived from online databases such as PubMed and Google Scholar. Based on a Paral-
lel Search Strategy, a comprehensive look at C1 metabolism and formaldehyde detoxification in plants was 
conducted. 

The precision search performed on the initial set was constrained to C1 metabolism and/or formaldehyde 
within Titles or Abstracts of the papers from initial set and yielded the relevant set consisting of 216 papers. The 
relevant set was reviewed by the domain experts using CytoSolve user interface to identify 64 papers that 
formed the study set, which forms the basis of this systematic review. A final set of three molecular pathway  
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Figure 2. The methionine biosynthesis molecular pathway system aggregated from the study set of papers relevant to C1 
metabolism and formaldehyde detoxification.                                                                           

 

 
Figure 3. Systematic Review Results. There were 11,597 scientific papers (initial set), which met our search criteria. Of 
those, 216 (relevant set) appeared to be interesting based on the title and abstract. Upon further review, 64 papers (study set) 
were chosen as the quality studies upon which this systematic review is based. We identified three major molecular pathway 
systems (final set) from the study set.                                                                                 

 
systems in the C1 metabolism was identified from the study set. Figure 3 summarizes the results from the 
search, collection, and relevance determination. 
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3.2. Molecular Pathway Systems Derived from the Systematic Review of C1 Metabolism 
C1 metabolism is necessary to provide one-carbon units for biosynthetic reactions. The main sources of the one 
carbon units are formate, glycine, and serine. Methylation reactions involving S-adenosylmethionine (AdoMet) 
appear to be the destination for most one carbon units passed through this pathway. This reaction provides a 
methyl group to nucleic acids, proteins, lipids, and secondary metabolites. Other common products include pan-
tothenates, adenosine, adenylates, and formylmethionine tRNA [3] [4]. The systematic literature review of the 
study set yielded three major molecular systems in the C1 metabolism of plants that consisted of 98 biochemical 
species, 111 reaction kinetic parameters and 68 total biochemical reactions. The three molecular systems in C1 
metabolism are: 1) methionine biosynthesis; 2) activated methyl cycle; and 3) formaldehyde detoxification. In 
total, these pathways consisted of 98 biochemical species and 111 reaction kinetic parameters and 68 total bio-
chemical reactions and are discussed in detail below. 

3.2.1. Methionine Biosynthesis 
One carbon units are transferred through the pathway mostly by tetrahydrofolate (THF) which are complex mo-
lecules present mostly in the cytosol [12]-[14], but there is evidence that THF-mediated C1 metabolism also oc-
curs in the mitochondria and chloroplast [15]. The THF molecule goes through many interconversions with the 
typical starting point being the addition of a serine or formate molecule and the typical ending point being the 
synthesis of methionine. Studies on sycamore reveal that serine is the most common source of C1 units and it 
typically donates one C1 group [16]. A study in Petunia appeared to support the assertion that methionine is the 
top destination for the C1 group: moderate levels of exogenous labeled formaldehyde mostly ended up in me-
thionine [17]. Formate is another possible source of C1 units (Hourton-Cabassa et al., 1998), although it can be 
oxidized to yield carbon dioxide and NADH [18], or two molecules of formate can combine to form glyoxylate 
[19].  

Serine hydroxymethyltransferase (SHMT) catalyzes the conversion of serine and THF to glycine and 5,10- 
methylene-THF, effectively passing a carbon group from serine to THF [20] [21]. This reaction is very impor-
tant since serine is the most common source of carbon groups in C1 metabolism. There are multiple SHMT iso-
forms in higher plants and these genes are active in different compartments [22]. For example, in Arabidopsis 
there are two active isoforms targeted to the mitochondria, and they work together to handle an increased work-
load in non-photosynthetic tissues during times of increased demand for C1 metabolism [23]. Glycine decar-
boxylase (GDC) is an important regulatory enzyme for photosynthesis and photorespiration [24] as well as being 
involved in C1 metabolism by donating a carbon group from glycine to the pathway. GDC often works in con-
cert with serine hydroxymethyltransferase (SHMT), with whom it has a complex relationship as both are in-
volved in several pathways [25] [26].  

Overall, the folate-mediated reactions in C1 metabolism (shown in Figure 4) normally move from formate or 
serine to methionine. The synthesis of methionine is an important final step in this part of C1 metabolism. Me-
thionine is made from homocysteine and a THF derivative in a reaction catalyzed by a methionine synthase in 
either the cytosol or chloroplast [27]. C1 metabolism does not always lead to methionine synthesis. Many 
branches of the pathway include conversion of a THF derivative to formylmethionine tRNA, formylglycinamide 
ribonucleotide (FGAR), formamidoimidazole carboxamide ribonucleotide (FAICAR), or panthothenate. 

One branching of the pathway occurs when 5,10-methylene-THF is converted to thymidylate and then the 
remaining dihydrofolate (DHF) is reduced to THF [28] [29]. These reactions are catalyzed by the same enzyme 
which has thymidylate synthase and dihydrofolate reductase activity [30]-[33]. This branching is one way that 
methionine biosynthesis can be avoided and THF recycled.  

Since THF is such an important molecule, it is important to know how it is synthesized. THF synthesis in-
volves the chloroplast, cytosol, and mitochondrion. The precursors dihydropterin and p-aminobenzoic acid are 
synthesized in the cytosol and chloroplast, respectively, and then are imported into the mitrochondrion where 
THF synthesis is completed [34] [35]. 

3.2.2. Activated Methyl Cycle  
Methionine is the starting point for the Activated Methyl Cycle (shown in Figure 5), although not all methio-
nine is dedicated to this cycle. In Lemnapencicostata (common Duckweed), Giovanelli et al. (1985) [36] showed 
that 20% of methionine becomes incorporated in proteins. If methionine remains in the pathway it is converted  
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Figure 4. Methionine Biosynthesis. Tetrahydrofolate (THF) molecules (purple) carry the carbon group from the sources 
(orange) to the biosynthesis of methionine (cyan). Abbreviations: FMet-tRNA, formylmethionine tRNA; FGAR, formylgly-
cinamide ribonucleotide; FAICAR, formamidoimidazole carboxamide ribonucleotide; DHF, dihydrofolate.                         
 

 
Figure 5. Methylation Cycle. A one-carbon molecule is passed from methionine (cyan) to a methyl group acceptor (CH3 
Acceptor; gray) via a methyltransferase enzyme. The carrier molecule is eventually converted to homocysteine, which is 
converted to methionine (reaction not shown). The s-methylmethionine (SMM) cycle is shown as the conversion of s-ade- 
nosylmethionine (SAM) to SMM to S-Adenosylhomocysteine (SAH).                                                       
 
to S-adenosylmethionine(SAM) in the cytosol [27] [37] [38] [62]. There is no such conversion in the chloroplast 
so SAM must be imported from the cytosol to function in the chloroplast [27]. 

SAM can then bind to methyltransferase enzymes [39], and the SAM-bound enzymes can then go on to me-
thylate DNA, RNA, proteins, and other biomolecules. After the methylation, the resulting S-adenosylhomo- 
cysteine is converted to homocysteine (with adenosine as a byproduct) which is then converted back to methio-
nine [40].  

Another part of activated methyl cycle is the s-methylmethylation cycle. Studies in angiosperms show that the 
s-methylmethionine (SMM) Cycle short-circuits the Activated Methyl Cycle by converting methionine and 
SAM into SMM and s-adenosylhomocysteine (SAH) [41] [42]. This cycle appears to consume half the SAM 
and its purpose is to limit SAM levels to avoid over-methylation [42] [43]. 

3.2.3. Formaldehyde Detoxification 
The folate-independent reactions are mainly concerned with the detoxification of formaldehyde (shown in Fig-
ure 6). Endogenous formaldehyde may come from methanol or sarcosine [44]. The detoxification of formalde-  
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Figure 6. Formaldehyde Detoxification. Formaldehyde (gray) is synthesized and detoxified into either formate or a THF de-
rivative. Abbreviations: Formyl-GSH, formylglutathione; HM-GSH, S-hydroxymethylglutathione.                               
 
hyde results in either formate or a THF derivative [4]. Formate is normally oxidized into carbon dioxide in Ara-
bidopsis [45], but it also known to be a carbon source in C1 metabolism. 

In vivo formaldehyde quickly binds to an adduct, either glutathione to form hydroxyl methylglutathione 
(HM-GSH) [46], or a THF derivative. Formaldehyde dehydrogenase catalyzes the conversion of HM-GSH to 
formylglutathione, and then s-formylglutathione hydrolase catalyzes the conversion of formylglutathione to 
formate and glutathione [47]-[50] [61]. 

3.3. Critical Insights in Regulation of C1 Metabolism and Formaldehyde’s Role in C1  
Metabolism 

In addition to identification of the three major molecular pathway systems in C1 metabolism, the systematic re-
view also revealed critical insights in: 1) regulation of C1 metabolism in plants; 2) formaldehyde’s role in C1 
metabolism; 3) effect of perturbation of C1 metabolism on formaldehyde detoxification and its accumulation in 
maize. 

3.3.1. Regulation of C1 Metabolism in Plants 
Since C1 metabolism is so important, it follows that plants have established a reversible mechanism, so there are 
situations in which this pathway appears to proceed in reverse. Li et al. (2003) [45] showed in Arabidopsis that 
although serine is not normally synthesized through the C1 metabolism, if its normal synthesis, via glycolate and 
glycine, is blocked, then it can be a product of one-carbon metabolism. Also in Arabidopsis, Loizeau et al. (2007) 
[51] showed that during folate starvation, the C1 flux is increased to nucleotides and decreased to methionine 
synthesis. When THF biosynthesis was inhibited in Arabidopsis, serine levels decreased, even though it could be 
synthesized without THF [52]. 

During photorespiration the C1 metabolic pathway appears to go backwards, with the oxidation of THF and 
formate [53]. Also, during photorespiration it was shown in pea leaf mitochondria that THF is often heavily po-
lyglutamated, lowering its affinity in SHMT and thus favoring the formation of serine, rather than the coversion 
of serine to glycine which is expected to be the normal course in C1 metabolism [22]. 

Finally, in a study using an Arabidopsis SFGH, s-formylglutathione hydrolase (SFGH) was inactivated, via 
enzyme modification, under oxidizing conditions [54]. This is an interesting feature given the fact that SFGH is 
important in formaldehyde detoxification. 

3.3.2. Formaldehyde’s Role in C1 Metabolism in Plants  
C1 metabolism plays a key role in metabolism of formaldehyde [6] [7]. We have identified the molecular path-
ways that involve detoxification of formaldehyde, that lead to removal of formaldehyde in the plants. We also 
analyzed consequences of possible perturbation in the formaldehyde detoxification pathway and the chance of 
accumulation of formaldehyde in corn. The details are as follows. 
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3.3.3. Effect of Perturbation of C1 Metabolism on Formaldehyde Detoxification and Its  
Accumulation in Maize 

Formaldehyde detoxification appears to have many paths, but the oxidation to formate is the most well-charac- 
terized. Glutathione-dependent formaldehyde dehydrogenase (FDH) is the most important enzyme in this path 
of formaldehyde detoxification. A study of the Arabidopsis FDH showed that the capacity of formaldehyde de-
toxification was proportional to FDH activity [8]. The next enzyme on this formaldehyde detoxification path is 
SFGH, which is known to be regulated [54]. Perturbations which hindered the functions of either of these en-
zymes would certainly hinder formaldehyde detoxification. 

Studies in spider plants and soybeans showed that plants detoxify formaldehyde through the C1 metabolic 
pathway [6] and subsequently Fliegmann and Sandermann (1997) [55] cloned the maize glutathione-dependent 
formaldehyde dehydrogenase (FDH). The FDH enzyme steers formaldehyde detoxification towards the forma-
tion of formate, which then enters the C1 metabolic pathway [55] [56]. 

Although C1 metabolism is not a high priority in the developing embryo and endosperm in maize [57], C1 
metabolism genes are expressed and their proteins are present in these cell types [11] [58]-[60], so a perturbation 
in this development may affect C1 metabolism, including formaldehyde detoxification and possible accumula-
tion of formaldehyde. 

4. Discussion 
A systematic review of literature is the crucial step towards identification of critical molecular pathway systems 
for developing predictive computational systems biology models of biological processes. In this paper, a syste-
matic bioinformatics literature review process is used to identify the critical molecular pathway systems in-
volved in C1 metabolism and its role in formaldehyde detoxification. 

C1 metabolism in plants is an essential biological process. This review has identified three molecular pathway 
systems in C1 metabolism: methionine biosynthesis, methylation cycle, and formaldehyde detoxification. Two 
major insights have also emerged from this systematic review. One insight is that C1 metabolism normally 
proceeds from serine to methionine and then the carbon group is donated to a biomolecule in a methylation reac-
tion. However, in photosynthetic tissues C1 metabolism appears to proceed in reverse, synthesizing serine and 
oxidizing formate. The second major insight is that formaldehyde detoxification pathway can be blocked by a 
modification to s-formylglutathione hydrolase, which may cause the accumulation of formaldehyde if there is no 
alternative detoxification path. 

5. Future Directions 
The molecular pathway systems identified in this systematic review can be used to develop computational sys-
tems biology models of C1 metabolism. Such computational models may be valuable in understanding complex 
biomolecular phenomena such as: perturbation to formaldehyde detoxification, the effect of increased oxidative 
stress, the effect of increase activity of anti-oxidative enzymes, and others. Such modelling may prove valuable 
in expanding our knowledge of formaldehyde detoxification in maize. Formaldehyde is a toxic molecule, but 
this review confirms that C1 metabolism is active in maize embryo and endosperm to detoxify formaldehyde 
and provide carbon for the synthesis of important compounds, such as proteins, nucleic acids, and amino acids. 
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