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Abstract 
Light Detection And Ranging (LiDAR) is a well-established active remote 
sensing technology that can provide accurate digital elevation measurements 
for the terrain and non-ground objects such as vegetations and buildings, etc. 
Non-ground objects need to be removed for creation of a Digital Terrain 
Model (DTM) which is a continuous surface representing only ground surface 
points. This study aimed at comparative analysis of three main filtering ap-
proaches for stripping off non-ground objects namely; Gaussian low pass fil-
ter, focal analysis mean filter and DTM slope-based filter of varying window 
sizes in creation of a reliable DTM from airborne LiDAR point clouds. A 
sample of LiDAR data provided by the ISPRS WG III/4 captured at Vaihingen 
in Germany over a pure residential area has been used in the analysis. Visual 
analysis has indicated that Gaussian low pass filter has given blurred DTMs of 
attenuated high-frequency objects and emphasized low-frequency objects 
while it has achieved improved removal of non-ground object at larger win-
dow sizes. Focal analysis mean filter has shown better removal of nonground 
objects compared to Gaussian low pass filter especially at large window sizes 
where details of non-ground objects almost have diminished in the DTMs 
from window sizes of 25 × 25 and greater. DTM slope-based filter has created 
bare earth models that have been full of gabs at the positions of the 
non-ground objects where the sizes and numbers of that gabs have increased 
with increasing the window sizes of filter. Those gaps have been closed 
through exploitation of the spline interpolation method in order to get conti-
nuous surface representing bare earth landscape. Comparative analysis has 
shown that the minimum elevations of the DTMs increase with increasing the 
filter widow sizes till 21 × 21 and 31 × 31 for the Gaussian low pass filter and 
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the focal analysis mean filter respectively. On the other hand, the DTM 
slope-based filter has kept the minimum elevation of the original data, that 
could be due to noise in the LiDAR data unchanged. Alternatively, the three 
approaches have produced DTMs of decreasing maximum elevation values 
and consequently decreasing ranges of elevations due to increases in the filter 
window sizes. Moreover, the standard deviations of the created DTMs from 
the three filters have decreased with increasing the filter window sizes howev-
er, the decreases have been continuous and steady in the cases of the Gaussian 
low pass filter and the focal analysis mean filters while in the case of the DTM 
slope-based filter the standard deviations of the created DTMs have decreased 
with high rates till window size of 31 × 31 then they have kept unchanged due 
to more increases in the filter window sizes. 
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DSM/DEM/DTM, Airborne LiDAR Point Clouds, DSM Filtering, Gaussian 
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1. Introduction 

Digital Terrain Model (DTM) of a specific area represents the ground surface 
elevations in that area. This is a very important surface model for modelling of 
the ground landscape in addition to the wide ranges of engineering and envi-
ronmental applications that require a DTM. Also, DTM is crucial in planning of 
different types of infrastructure projects such as irrigation or sewerage systems. 
It is also, very important in the optimum design and building of road and trans-
portation networks. These important applications and many others require the 
creation of an accurate DTM. Light Detection and Ranging (LiDAR) is a 
well-established active remote sensing technology that can provide accurate dig-
ital elevation measurements for the terrain and non-ground objects [1] [2] [3]. 
Also, it can collect measurements at wide ranges of resolutions that can suit wide 
ranges of applications through creation of high accurate and high-resolution 
Digital Surface Models (DSMs). It is also, important to note that the DSMs 
created from airborne LiDAR data are usually more detailed compared to those 
obtained from other types of data such as ground surveying or GPS measure-
ments [4] [5]. Airborne LiDAR enjoys a wide range of applications such as map-
ping of corridors, rapid mapping, damage assessment following natural disas-
ters, forest canopy height mapping and three-dimensional city modeling [6]. 
The most common process for such applications is extraction of DTMs through 
filtering of Airborne LiDAR measurements [7] since introduction of airborne 
LiDAR that also known airborne laser scanning has caused a revolution in topo-
graphic terrain capturing especially in extraction of DTM [8]. However, airborne 
LiDAR data usually contain measurements for non-ground objects such as ve-
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getation cover, buildings, etc., that need to be efficiently removed for creation of 
a reliable DTM representing the actual ground surface as if it is a bare earth sur-
face [9]. The Extracted DTMs from airborne LiDAR measurements through 
stripping off non-ground objects can be employed in many applications such as 
mapping of the earth’s surface and hydrodynamic modeling for flood risk as-
sessments [1]. Thus, since the availability of airborne LiDAR measurements ex-
traction of bare earth DTMs have become attainable with high accuracy through 
filtering of non-ground point from the high-density airborne LiDAR data 
termed as point cloud data [10]. Also, automated DTM extraction from remotely 
sensed data gained a wide range of areas of applications due to improvements in 
sensor resolution [11]. 

The majority of the approaches for extraction of DTMs from LiDAR mea-
surements have been based on the concept of searching for the lowest points in a 
user-defined neighborhood by using morphological filters using curvature me-
thods and identifying them as bare earth [4]. Different filtering algorithms have 
been developed to classify LiDAR point clouds into ground and non-ground 
points but challenges to identify complex objects such as bridges and eccentric 
roofs are still not overcome [6] [12]. Wang and Tseng, 2014 [10] state that, more 
recently, airborne LiDAR has been gradually replacing photogrammetry to be-
come the chief method in extraction of DTMs as it has been a time and 
cost-effective method. This is motivated by the ability of a laser beam to pene-
trate a tree canopy making LiDAR a superior tool for DTM generation in forest 
areas. However, filtering of ground points is a crucial step for most applications 
of airborne LiDAR point clouds. Full-waveform LiDAR is an active technology 
of photogrammetry and remote sensing that can provide more detailed informa-
tion about objects through laser pulse path compared to the discrete-return to-
pographic LiDAR where point cloud and waveform information can be obtained 
by waveform decomposition [13]. 

Baligh et al. 2008 [14] carried out a research to determine the performance of 
three different filters and application of wavelets for minimizing noise in the 
LiDAR data. They acknowledged that the performances of the examined filters 
depend on the complexity of the landscapes while they found that wavelet de-
noising performed well. Zhang and Whitman 2005 [15] presented three methods 
for removing non-ground points from airborne LiDAR measurements including 
elevation threshold with expanding window, maximum local slope, and progres-
sive morphological filters. They analyzed data points basing on variations of lo-
cal slope and elevation in a test site of varied elevations and varied densities of 
trees, houses, and sand dunes. They acknowledged that the three filters can ef-
fectively remove most of the non-ground points in low-elevation urban and high 
elevation forested areas, however, the morphological filter achieved the best re-
sults in coastal barrier island areas, while the other filters tended to remove the 
tops of steep sand dunes. Chen et al. 2017 [16] reviewed the different methods 
for DTM generation from airborne LiDAR data. They acknowledged that extrac-
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tion of DTMs is the fundamental application of airborne laser scanning namely; 
airborne LiDAR, however, although big progress has been made in this objec-
tive, DTM generation from airborne LiDAR in specific terrain situations, re-
mains a challenging issue. They introduced the general principles of DTM gen-
eration and reviewed DTM generation methods and classified them into six cat-
egories; 1) surface-based adjustment methods; 2) morphology-based filtering 
methods, 3) triangulated irregular network (TIN)-based refinement methods, 4) 
segmentation and classification methods, 5) statistical analysis methods and 6) 
multi-scale comparison methods. They recommend that DTM generation me-
thods show similar difficulties when performed in sharply changing terrain, 
areas with high densities of non-ground objects and complicated landscapes 
however, they suggested that fusion of multi-sources of data with integration of 
different methods could be effective to overcome DTM extraction difficulties in 
different landscapes. Chang et al. 2008 [17] presented a strategy for automatic 
terrain extraction from LiDAR data based on the assumption that sudden eleva-
tion changes usually correspond to non-ground objects and cause relief dis-
placements in perspective views where the introduced relief displacements oc-
clude neighboring ground points. They generated a DSM through resampling 
irregular LiDAR point clouds to a regular grid, then by using synthesized projec-
tion centers located above the DSM and analyzing the visibility maps in perspec-
tive images the DSM can be classified into non-ground and ground hypotheses. 

Classification of ground and non-ground points is an important issue for 
many applications of airborne LiDAR measurements. Hui et al. 2019 [18] pre-
sented a threshold-free filtering algorithm based on what they called expecta-
tion–maximization and on the assumption that point clouds are seen as a mix-
ture of Gaussian models. They used mixed Gaussian model for partitioning of 
point clouds for separation of ground points and non-ground points from point 
clouds with the application of the expectation-maximization to realize the sepa-
ration, which calculates the maximum likelihood estimates of the mixture para-
meters. Yunfei et al. 2008 [3] stated that extraction of accurate DTMs is one of 
important applications of airborne LiDAR so many different approaches have 
been developed to separate ground points from non-ground points, including 
mathematical morphology, adaptive and robust filtering, and unsupervised seg-
mentation basing on geometric characteristics of LiDAR points. They presented 
an approach to separate vegetation points from ground points in a mountainous 
area mostly based on skewness change of LiDAR intensity information from 
both all laser returns and they recommended that such method can efficiently 
separate ground points from non-ground points in forested areas. Silva et al., 
2018 [1] carried out a study that aimed to evaluate the performance of four 
ground filtering algorithms for DTM extraction from airborne LiDAR mea-
surements in a forest environment of distinct classes of land use and land cover 
(e.g., shrubland, grassland, bare soil, and three forest types according to tree 
density and silvicultural interventions; closed-canopy forest, intermediate-canopy 
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forest, and open-canopy forest), where the tested four ground filtering tech-
niques are: weighted linear least squares, multi-scale curvature classification, 
progressive morphological filter and progressive triangulated irregular network. 
They recommend that the four algorithms performed well across the land cover 
but the progressive morphological filter yielded the least number of points clas-
sified as ground. 

Sharma et al. 2010, [4] acknowledged that the topography and land cover de-
termine infiltration, runoff, and erosion processes on watershed, however, time 
modeling and routing of surface water and erosion are determined by the digital 
elevation data that can be obtained from high-resolution ground-based LiDAR. 
They used a slope threshold and a focal mean filter method to remove vegetation 
and create bare earth DTMs and recommend that validations of the methods show 
vertical error of ±7.5 mm in the final DTM. Sulaiman et al. 2010 [5] presented a 
study aimed to analyze the suitability of filtering method in Open-Source soft-
ware to the extract DTM from airborne LiDAR measurements through a filter-
ing process using Airborne LiDAR Data Processing and Analysis Tools 
(ALDPAT) which is an open source software. They used five different filters in 
ALDPAT to filter the same LiDAR data in addition to the use of TerraScan 
commercial software to process the same data. They evaluated the DTMs gener-
ated by ALDPAT through comparing them with the DTMs obtained from the 
TerraScan and recommended that Elevation Threshold with Expand Window 
filter has produced almost similar DTM as the one produced by TerraScan. 
Wang and Tseng, 2014 [10] state that Numerous automatic filters have been de-
veloped to remove non-ground data from airborne LiDAR measurements where 
a slope threshold is to be specified to classify points into ground and 
non-ground which lead to frequent over-filtering problems in cliff-like terrains. 
They proposed using a dual-directional slope-based filter originating from a 
conventional slope-based filter to overcome this problem where that filter was 
designed as a directional filter in one dimension and performed on every profile 
of LiDAR point where, a directional filter is first applied to the profile, and 
another directional filter is then applied at an angle of 180˚ from the first one. 
The directional slope-based filters are complementing each other’s for avoiding 
over-filtering. They recommend that the result showed that the proposed me-
thod gave a classification accuracy that was as good as most of the compared 
methods. 

Rashidi and Rastiveis, 2018 [6] introduced an algorithm for ground filtering of 
LiDAR data based on the Slope and Progressive Window Thresholding (SPWT) 
through utilizing the slope between adjacent points and the elevation informa-
tion of points in a local window to detect non-ground points. They evaluated the 
performance of the algorithm using low- and high-resolution datasets where 
they recommended that irrespective of data resolution, slope and progressive 
window thresholding filter could effectively remove non-ground points from 
airborne LiDAR data. Meng et al. 2010 [19] reviewed LiDAR ground filtering 
algorithms for creating DTMs with discussions of critical issues for implementa-
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tion of LiDAR ground filtering techniques such as filtering procedures for dif-
ferent landscapes, and site selection criteria, accuracy assessment and procedure 
classification. Their review highlighted three types of landscapes for which cur-
rent ground filtering algorithms are suboptimal that can be refined in future 
studies including: surfaces with rough terrain or discontinuous slope, dense for-
est areas where laser pulses cannot penetrate in addition to regions with low ve-
getation that usually ignored by ground filters. Özcan et al. 2018 [11] presented a 
ground filtering and segmentation method that starts with extracting DSM fea-
ture points which are used to generate a non-ground object maps in a spatial 
domain to be used as seed points in a segmentation method based on morpho-
logical operations which lead to ground filtering and DTM generation. They 
recommended that their method enjoy robustness in handling urban areas of 
different properties with few parameters that need to be adjusted.  

Hu et al. 2017 [20] exploited full-waveform LiDAR data to detect weak returns 
backscattered by the bare terrain underneath vegetation canopies for improve-
ment of DTM generation. Also, they proposed an integrated approach where 
echo detection, terrain identification, and TIN generation were carried out itera-
tively. After testing the approach, they recommended that more terrain points 
under shrubs could be recognized and the generated DTMs provided more de-
tails in the terrain than those obtained using the progressive TIN method. Xing, 
et al. 2017 [13] proposed a surface fitting filtering method with waveform in-
formation through resolving discrete point clouds and waveform parameters 
followed by selecting ground seed points and detected by waveform parameters 
and robust estimation. Then, fitting terrain surface with height difference thre-
shold determination in consideration of window size and mean square error. 
After that, the points ware classified gradually with rising of window size where 
the filtering process is not finished until window size is larger than the threshold. 
They stated that the accuracy of point cloud filtering was improved. Liu al. 2012 
[21] presented a filtering algorithm based on grid partition using dynamic quad 
tress and moving least squares where points were partitioned and corresponding 
dynamic quad trees indices were established. Then, points in grids were em-
ployed to fit a DTM reference plane using moving least square technology. At 
the end, ground points were separated from non-ground ones if they were posi-
tioned above the reference plane and have a distance to the plane bigger than the 
threshold value. They recommended that the algorithm is of high precision and 
determined ground points effectively without losing detailed information of the 
terrain. Abdullah et al. 2012 [22] undertaken an assessment to examine the per-
formance of seven different LiDAR filtering algorithms and to evaluate their 
suitability for urban flood modelling applications since they acknowledged that 
none of these algorithms can be regarded as fully suitable to support the job in 
its current form. They gave the augmentation of progressive morphological fil-
tering algorithm for processing raw LiDAR data to be modified to incorporate 
buildings with basement, passage buildings and solid buildings. They recom-
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mended that differences in flood depths of 40% were noticed between a model 
basing on a DTM extracted by the progressive morphological filtering algorithm 
and the predictions of other models. 

2. Research Aims and Objectives 

This research aimed at exploration of the different approaches for filtering of 
Airborne LiDAR measurements for removal of non-ground objects in order to 
create a Digital Terrain Model (DTM) that can be employed in a wide range of 
engineering and environmental applications. In addition, it aimed at applying 
a comparative study of the application of three main filtering techniques 
namely; Gaussian low pass filter, focal analysis mean filter, and DTM 
slope-based filter on airborne LiDAR DSMs in urban residential landscape at 
varying filter window sizes for creation of a reliable DTM in addition to evalu-
ation of the effects of the sizes of user-defined windows of Gaussian low pass 
filter, focal analysis mean filter, and DTM slope-based filter on the qualities 
the created DTMs. 

3. Test Site, Test Data and Methodology 

A sample of LiDAR data of the ISPRS WG III/4 Test Project on Urban Classifi-
cation and 3D Building Reconstruction has been provided by ISPRS WG III/4 
and the German Association of Photogrammetry and Remote Sensing (DGPF) 
[23]. The data set was captured over Vaihingen in Germany over a pure residen-
tial area with small detached houses on 21 August 2008 by Leica Geosystems us-
ing a Leica ALS50 system of 45˚ field of view and average flying height of 500 
m above ground. The whole airborne laser scanning data set of DGPF com-
prises 10 strips with average strip overlap of 30% and median point density of 
6.7 points/m2. However, point density varies considerably over the whole block 
depending on the overlap, but in the areas covered by only one strip, the mean 
point density is about 4.0 points/m2 (Rottensteiner et al. 2013) [24]. In this 
study, the file Vaihingen _Strip_03.las has been used for creation and analysis of 
DTMs through filtering of airborne LiDAR DSM in urban residential landscape. 
As shown in Figure 1, Vaihingen _Strip_03.las test data file represents a com-
plete Airborne laser scanning (ALS) strip and covers an area of about 725,000 m2 
of average dimensions of about 500 meters in swath width by about 1450 meters 
as the swath length. The sample data consists of 3,774,279 LiDAR data mea-
surements giving LiDAR point cloud density of 5.2059 points per one meter 
squared (pts/m2). This means that one LiDAR measurement has been recorded 
for every 0.1921 square meters in average. The statistical analysis of the data set 
has shown a minimum elevation of 165.203 meters and a maximum elevation of 
298.932 meters giving a range of elevations of 133.729 meters, see Figure 1. Ad-
ditionally, the mean elevation of the dataset is 265.441 meters and the standard 
deviation is 7.921 meters. 

A Digital Surface Model (DSM), see Figure 2 has been created from  
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Figure 1. Point cloud airborne LiDAR dataset of the file Vaihingen_Strip_03.las 
 

 

Figure 2. DSM created from point cloud airborne LiDAR dataset of the file 
Vaihingen_Strip_03.las 

 
Vaihingen_Strip_03.las LiDAR data file using SAGA 6.4 open source GIS soft-
ware where the Inverse Distance Weighting (IDW) interpolation method with 
power of four and grid resolution of half a meter has been used as the interpola-
tion parameters. The generated DSM in Figure 2 has been subjected to filtering 
operations with different three filtering approaches, namely, the Gaussian low 
pass filtering approach, the focal analysis mean filtering method and the DTM 
slope-based filtering technique for the purpose of removal of non-ground ob-
jects and creation of Digital Terrain Models in the residential landscapes. The 
DTM filtering approach of the LiDAR DSM have been performed using different 
window sizes of 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 15 × 15, 21 × 21, 25 × 25, 31 × 
31, 35 × 35 and 41 × 41 under SAGA 6.4 open source GIS software and the Sur-
fer 15 commercial software packages in order assess how the filter window size 
affects the removal of non-ground objects in creation of a reliable DTM. The 
generated DTMs from Gaussian low pass filter, focal analysis mean filter and 
DTM slope-based filter at varying filter window sizes have been subjected to 
visual and statistical analysis. 

4. Creation and Analysis of Digital Terrain Models with the  
Use of Gaussian Low Pass Filter 

Low pass filtering is a spatial filtering process based on using low pass filters de-
signed to emphasize low spatial frequency features and deemphasize high spatial 
frequency features of an image in a spatial domain [25] [26]. Low-frequency in-
formation of an image represents the background patterns of the image. The 
output from low pass filtering of a digital image is an image of much of details in 
the original image are smoothed or removed. Thus, low pass filtering operation 
can be identified as a process of smoothing or blurring the digital image [27] 
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[28]. Gaussian low pass filter is a smoothing filter used to blur or soften data and 
to remove details and noise from DSMs and raster images. The amount of 
smoothing is determined by the standard deviation where for higher standard 
deviations a larger search radius is required [18] [29] [30]. 

In this study Gaussian low pass filter has been performed on the LiDAR DSM, 
Figure 2 with varying window sizes for the purpose of removal of non-ground 
features and exploring how successful is the Gaussian low pass filter in creation 
of a reliable DTM. Also, assessment of the effects of the filter window size on the 
characteristics of the produced DTMs has been a main objective of the study. 
Figures 3-8 depict DTMs created from Gaussian low pass filtering of Airborne 
LiDAR DSM with window sizes of 3 × 3, 7 × 7, 15 × 15, 25 × 25, 35 × 35 and 41 
× 41 respectively. Compared to the DSM Figure 2, the DTM in Figure 3 is less 
detailed referring to removal of some noise and some of non-ground features as 
a result of applying Gaussian low pass filter with 3 × 3 window size. With in-
creasing the window size of the filter to 7 × 7, no much differences can be ob-
served between Figure 4 and Figure 3. A blurred DTM has been obtained in 
Figure 5 due to increasing the filter window size to 15 × 15 which is an indica-
tion of attenuation of some high frequencies representing non-ground objects 
with emphasizing of low frequencies pointing to the ground surface. With in-
creasing the window size of Gaussian low pass filter much blurrier DTMs have 
been obtained as shown in Figures 6-8 depicting DTMs created with window 
sizes of 25 × 25, 35 × 35 and 41 × 41 respectively which refer to better removal of 
non-ground objects. 

Table 1 depicts the statistical analysis of the DTMs created from filtering of 
LiDAR DSM with Gaussian low pass filter of varying window sizes of 3 × 3, 7 × 
7, 15 × 15, 21 × 21, 25 × 25, 31 × 31, 35 × 35 and 41 × 41 in addition to the sta-
tistical analysis results of the airborne LiDAR DSM. From Table 1 it can be no-
ticed that the minimum elevations, maximum elevations, ranges of elevation, 
standard deviations of elevation in addition to skewness and kurtosis of the 
DTMs have decreased with increasing the window size of Gaussian low pass fil-
ter due to attenuation of the high frequencies and emphasizing of the low fre-
quencies. In the meantime, the mean, median and root mean square of the 
DTMs have not been affected much due to application of the Gaussian low pass 
filter of varying window sizes. 

 

 

Figure 3. DTM created from low pass Gaussian filtering of Airborne LiDAR 
DSM with window size of 3 × 3. 
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Figure 4. DTM created low pass from Gaussian filtering of Airborne LiDAR 
DSM with window size of 7 × 7. 

 

 

Figure 5. DTM created from low pass Gaussian filtering of Airborne LiDAR 
DSM with window size of 15 × 15. 

 

 

Figure 6. DTM created from low pass Gaussian filtering of Airborne LiDAR 
DSM with window size of 25 × 25. 

 

 

Figure 7. DTM created from low pass Gaussian filtering of Airborne LiDAR 
DSM with window size of 35 × 35. 

 

 

Figure 8. DTM created fromlow pass Gaussian filtering of Airborne LiDAR 
DSM with window size of 41 × 41. 
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Table 1. Statistical analysis of the DTMs created from filtering of LiDAR DSM with Gaussian low pass filter of varying window 
sizes. 

Gaussian low  
pass filter  

window size 
Airborne 
LiDAR  
DSM 

DTM from 
filter 3 × 3 

DTM from 
filter 7 × 7 

DTM from 
filter 15 × 15 

DTM from 
filter 21 × 21 

DTM from 
filter 25 × 25 

DTM from 
filter 31 × 31 

DTM from 
filter 35 × 35 

DTM from 
filter 41 × 41 

Statistical  
quantity 

Min. (m) 165.259 165.858 182.825 223.183 236.151 242.958 245.415 245.517 245.644 

Max. (m) 292.764 291.445 289.265 289.079 287.991 286.884 285.822 284.944 283.984 

Range (m) 127.504 125.588 106.440 65.896 51.840 43.926 40.408 39.426 38.339 

Mean (m) 265.289 265.289 265.289 265.289 265.289 265.289 265.290 265.290 265.290 

Median (m) 265.381 265.393 265.455 265.550 265.606 265.654 265.689 265.710 265.746 

Root Mean  
Square (m) 

265.425 265.425 265.423 265.419 265.417 265.415 265.413 265.412 265.411 

Standard  
Deviation (m) 

8.487 8.468 8.406 8.297 8.223 8.156 8.097 8.062 8.015 

Skewness (m) −0.318 −0.321 −0.332 −0.354 −0.372 −0.387 −0.401 −0.408 −0.417 

Kurtosis (m) 2.595 2.585 2.524 2.464 2.444 2.428 2.414 2.405 2.394 

5. Creation and Analysis of Digital Terrain Models with the  
Use of Focal Analysis Mean Filter 

Focal analysis mean filter has been acknowledged by some authors as a method 
for smoothing of the DSMs and attenuation of the high frequencies [4] [9]. In 
this study focal analysis mean filter is performed on airborne LiDAR DSM, Fig-
ure 2 with varying window sizes for the purpose of removal of non-ground fea-
tures and assessment of how successful is the focal analysis mean filter in crea-
tion of a reliable DTM in addition to uncover the effects of the filter window size 
on the characteristics of the produced DTMs. Figures 9-17 depict DTMs created 
from focal analysis mean filtering of Airborne LiDAR DSM, Figure 1 with win-
dow sizes of 3 × 3, 7 × 7, 15 × 15, 25 × 25, 35 × 35 and 41 × 41 respectively. 
Compared to the DSM in Figure 2, the DTM in Figure 9 does not show much 
differences which means that a focal analysis mean filter of 3 × 3 has not left 
much changes on the visual analysis of the created DTM. With increasing the 
window size to 7 × 7 a bit blurred DTM, see Figure 10 has been obtained com-
pared to Figure 9. However, a blurred DTM has been obtained in Figure 11 due 
to increasing the filter window size to 15 × 15 which is an indication of removal 
of considerable numbers of non-ground objects. With increasing the window 
sizes of the focal analysis mean filter more than 15 × 15 much-blurred DTMs 
have been obtained as shown in Figures 12-14 which depict DTMs that have 
been obtained with the use of focal analysis mean filter of window sizes of 25 × 
25, 35 × 35 and 41 × 41 respectively. This refers to better removal of most of 
non-ground objects. 
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Figure 9. DTM created from focal analysis mean filtering of Airborne LiDAR 
DSM with window size of 3 × 3. 

 

 

Figure 10. DTM created from focal analysis mean filtering of Airborne 
LiDAR DSM with window size of 7 × 7. 

 

 

Figure 11. DTM created from focal analysis mean filtering of Airborne 
LiDAR DSM with window size of 15 × 15. 

 

 

Figure 12. DTM created from focal analysis mean filtering of Airborne 
LiDAR DSM with window size of 25 × 25. 

 

 

Figure 13. DTM created from focal analysis mean filtering of Airborne 
LiDAR DSM with window size of 35 × 35. 
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Figure 14. DTM created from focal analysis mean filtering of Airborne 
LiDAR DSM with window size of 41 × 41. 

 

 

Figure 15. Bare earth modelextracted from DTM slope-based filtering of 
Airborne LiDAR DSM with window size of 3 × 3. 

 

 

Figure 16. Bare earth modelextracted from DTM slope-based filtering of 
Airborne LiDAR DSM with window size of 7 × 7. 

 

 

Figure 17. Bare earth modelextracted from DTM slope-based filtering of 
Airborne LiDAR DSM with window size of 15 × 15. 

 
Table 2 depicts the statistical analysis results of the DTMs created from fil-

tering of LiDAR DSM with focal analysis mean filter of varying window sizes of 
3 × 3, 7 × 7, 15 × 15, 21 × 21, 25 × 25, 31 × 31, 35 × 35 and 41 × 41 respectively 
in addition to the statistical analysis results of the airborne LiDAR DSM. Similar 
to the case of DTM creation from Gaussian low pass filter and from Table 2, it 
can be noticed that the minimum elevations, maximum elevations, ranges of 
elevations, standard deviations of elevations in addition to skewness and kurtosis 
of the DTMs have decreased with increasing the window sizes of the focal analy-
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sis mean filter. However, the mean, median and root mean square of the created 
DTMs have not been affected much with the use of focal analysis mean filter of 
varying window sizes. 

6. Creation and Analysis of Digital Terrain Models with the  
Use of DTM Slope-Based Filter 

DTM slope-based filter is a grid filtering approach that works under the open 
source GIS software, SAGA (System for Automated Scientific Analysis) and can 
be used to filter a DSM to classify the grid cells into a bare earth layer and a re-
moved object layer that also known as ground layer and non-ground layer re-
spectively. The filtering approach is based on the concepts described by Vossel-
man, 2000 [31] assuming that a big elevation difference between two neighbor-
ing grid cells is unlikely to be caused by a steep slope in the terrain (Wichmann, 
2010, Vosselman, 2000) [30] [32]. Thus, the probability that the higher elevation 
value grid cell could be a ground point decreases if the distance between the two 
grid cells decreases. In addition, the filter defines the acceptable height difference 
between the two grid cells as a function of the distance between them. Then, the 
grid cell is classified as ground if there is no other grid cell within the filter 
search radius such that the height difference between these grid cells is larger 
than the allowed maximum height difference at the distance between these grid 
cells. Moreover, an approximate ground surface slope variable is used to modify 
the filter function to match the overall slope in the whole DSM area. Further-
more, a confidence interval could be applied for omission of blunders [32] [33] 
[34]. 
 

Table 2. Statistical analysis of the DTMs created from filtering of LiDAR DSM with focal analysis mean filter of varying window 
sizes. 

Focal mean  
filter window  

size Airborne 
LiDAR DSM 

DTM from 
filter 3 × 3 

DTM from 
filter 7 × 7 

DTM from 
filter 15 × 15 

DTM from 
filter 21 × 21 

DTM from 
filter 25 × 25 

DTM from 
filter 31 × 31 

DTM from 
filter 35 × 35 

DTM from 
filter 41 × 41 

Statistical  
quantity 

Min. (m) 165.259 168.355 200.914 239.984 245.254 245.435 245.553 245.636 245.750 

Max. (m) 292.764 290.246 289.328 288.654 286.975 286.516 284.712 283.665 282.209 

Range (m) 127.504 121.890 88.414 48.670 41.720 41.081 39.159 38.028 36.459 

Mean (m) 265.289 265.289 265.289 265.289 265.290 265.290 265.290 265.289 265.289 

Median (m) 265.381 265.417 265.495 265.605 265.667 265.698 265.744 265.768 265.801 

Root Mean  
Square (m) 

265.425 265.424 265.421 265.417 265.414 265.413 265.411 265.410 265.408 

Standard  
Deviation (m) 

8.487 8.441 8.368 8.228 8.140 8.089 8.023 7.986 7.937 

Skewness (m) −0.318 −0.326 −0.339 −0.370 −0.391 −0.403 −0.416 −0.423 −0.430 

Kurtosis (m) 2.595 2.561 2.493 2.445 2.425 2.413 2.397 2.388 2.377 
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Figures 15-20 depict bare earth models extracted from DTM slope-based fil-
tering of airborne LiDAR DSM with window sizes of 3 × 3, 7 × 7, 15 × 15, 25 × 
25, 35 × 35 and 41 × 41 respectively. As shown in the figures the DTM 
slope-based filter has removed non-ground object leaving bare earth models that 
can be DTMs of the test area but with clear gaps of no data at the positions of the 
removed non-ground objects. In Figure 15 which is a bare earth model from the 
DTM slope-based filter of window size of 3 × 3 the filter has removed some of 
the non-ground objects but many of them are still there in the bare earth model. 
The numbers and sizes of the removed objects have increased with increasing 
the window size of the DTM slope-based filter to 7 × 7 as shown Figure 16, 
where increasing of numbers of bigger white color patches at the positions of the 
non-ground objects can be interpretable in the bare earth model. Also, it can be 
interpretable that the ground areas are represented with same color tones in the 
Figures 15-20. Also, the DTM slope-based filter has achieved better removal of 
the non-ground objects at larger window sizes which is clear in Figures 18-20 
which represent bare earth models obtained from the application of the DTM 
slope-based filter with window sizes of 25 × 25, 35 × 35 and 41 × 41 respectively 
on the LiDAR DSM. 

Table 3 shows the statistical analysis of results of the bare earth models ob-
tained from DTM slope-based filtering of the airborne LiDAR DSM, Figure 2 
with varying window sizes of 3 × 3, 7 × 7, 15 × 15, 21 × 21, 25 × 25, 31 × 31, 35 × 
35 and 41 × 41 respectively in addition to the statistical analysis results of the 
airborne LiDAR DSM. Form Table 3 and different from the cases of DTM  
 

Table 3. Statistical analysis results of the bare earth models created from filtering of airborne LiDAR DSM with DTM slope-based 
filter of varying window sizes. 

Slope based  
filter window  

size 
Airborne 
LiDAR  
DSM 

DTM from 
filter 3 × 3 

DTM from 
filter 7 × 7 

DTM from 
filter 15 × 15 

DTM from 
filter 21 × 21 

DTM from 
filter 25 × 25 

DTM from 
filter 31 × 31 

DTM from 
filter 35 × 35 

DTM from 
filter 41 × 41 

Statistical  
quantity 

Min. (m) 165.259 165.259 165.259 165.259 165.259 165.259 165.259 165.259 165.259 

Max. (m) 292.764 289.281 289.252 286.208 286.179 285.617 285.538 280.444 280.444 

Range (m) 127.504 124.022 123.993 120.949 120.920 120.358 120.279 115.185 115.185 

Mean (m) 265.289 263.873 263.467 262.912 262.677 262.590 262.530 262.502 262.470 

Median (m) 265.381 263.947 263.654 263.263 263.137 263.088 263.049 263.029 263.008 

Root Mean  
Square (m) 

265.425 264.002 263.592 263.030 262.792 262.703 262.643 262.615 262.583 

Standard  
Deviation (m) 

8.487 8.265 8.116 7.872 7.762 7.727 7.714 7.710 7.707 

Skewness (m) −0.318 −0.267 −0.269 −0.295 −0.313 −0.315 −0.307 −0.301 −0.293 

Kurtosis (m) 2.595 2.443 2.436 2.403 2.371 2.357 2.350 2.348 2.347 
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Figure 18. Bare earth modelextracted from DTM slope-based filtering of 
Airborne LiDAR DSM with window size of 25 × 25. 

 

 

Figure 19. Bare earth modelextracted from DTM slope-based filtering of 
Airborne LiDAR DSM with window size of 35 × 35. 

 

 

Figure 20. Bare earth modelextracted from DTM slope-based filtering of 
Airborne LiDAR DSM with window size of 41 × 41. 

 
extraction from Gaussian low pass filter and focal analysis mean filter the mini-
mum elevations of the created bare earth models have kept unchanged with all 
the applied window sizes of the DTM slope-based filter. This means that the 
DTM slope-based filter keeps the minimum elevation of the original DSM un-
changed. On the other hand, the maximum elevations, ranges of elevations, 
means of elevations, medians of elevations, root mean squares of elevations, the 
standard deviations of elevations and kurtosis of the created bare earth models 
decreased with increasing the window sizes of the DTM slope-based filter. 
However, the skewness of the created bare earth models has increased with in-
creasing the window size of the DTM slope-based filter. 

As shown in Figures 15-20 the created bare earth models from the applica-
tion of the DTM slope-based filter of varying window sizes are full of no data 
gaps at the positions of the removed objects that affect their exploitation as 
DTMs in various applications. So, these bare earth models need to be subjected 
to an interpolation technique to fill the gaps and obtain a continuous surface 
representing the earth’s surface as a DTM. In this study, the created bare earth 
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models, Figures 15-20 have been subjected the tool “close the gaps with spline” 
under SAGA-GIS software package to fill all gaps in the bare earth models and 
obtain continuous DTMs as depicted in Figures 21-26. In Figure 21 which is a 
DTM after filling the gap of the bare earth model from 3 × 3 it can be noticed 
that small numbers of non-ground objects have been removed, however, in-
creasing numbers of removed non-ground objects can be observed in Figure 22 
which is a closed gab DTM from 7 × 7 DTM slope-based filter but many 
non-ground objects yet have not been removed. 

Better removal of non-ground objects can be observed in Figure 23 which is a 
closed gab DTM from 15 × 15 DTM slope-based filter but considerable numbers 
of non-ground objects yet have not been removed. However, increased removal 
of non-ground objects has been achieved with filter size of 25 × 25 but fewer 
numbers of sparse non-ground objects are still there, see Figure 24. With in-
creasing the window sizes of the DTM slope-based filter to 35 × 35 and 41 × 41 it 
can be interpretable that most of the non-ground objects have been removed as 
depicted in Figure 25 and Figure 26 respectively of views that can be close to a 
real DTM of a topographical bare earth surface. 

 

 

Figure 21. DTM created from DTM slope-based filtering of Airborne LiDAR 
DSM with window size of 3 × 3 after closing the gaps. 

 

 

Figure 22. DTM created from DTM slope-based filtering of Airborne LiDAR 
DSM with window size of 7 × 7 after closing the gaps. 

 

 

Figure 23. DTM created from DTM slope-based filtering of Airborne LiDAR 
DSM with window size of 15 × 15 after closing the gaps. 
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Figure 24. DTM created from DTM slope-based filtering of Airborne LiDAR 
DSM with window size of 25 × 25 after closing the gaps. 

 

 

Figure 25. DTM created from DTM slope-based filtering of Airborne LiDAR 
DSM with window size of 35 × 35 after closing the gaps. 

 

 

Figure 26. DTM created from DTM slope-based filtering of Airborne LiDAR 
DSM with window size of 41 × 41 after closing the gaps. 

7. Comparative Analysis of the Results 

Figures 27-32 depict charts that show comparative analysis of the DTMs pro-
duced from the three filters; the Gaussian low pass filter, the focal analysis mean 
filter and the DTM slope-based filter. In Figure 27 the minimum elevations of 
the DTMs from the Gaussian low pass filter and those from the focal analysis 
mean filter have increased with increasing the widow sizes of the filters which 
has not been the case with bare earth models produced from the DTM 
slope-based filter since this filtering approach has kept the minimum elevation 
of the original DSM unchanged despite increasing the window sizes of the filter. 
Also, from the chart Figure 27, the minimum elevations of the created DTM 
from the Gaussian low pass filter has kept unchanged with window sizes bigger 
than 21 × 21 while it has kept unchanged with window sizes bigger than 31 × 31 
in the case of the focal analysis mean filter. This can be observed as the two 
curves of the Gaussian low pass filter and the focal analysis mean filter coincide 
together with same values of the minimum elevations of the produced DTMs 
from both filtering approaches. This has not been the case in Figure 28 which 
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depict the maximum elevations of the produced DTMs against the window sizes 
of the examined three filtering approaches. The three filtering approaches have 
produced DTMs of maximum elevations that have decreased due to increases in  

 

 

Figure 27. The relationship between the minimum elevations of the created DTMs from 
different filtering techniques and the filter window size. 

 

 

Figure 28. The relationship between the maximum elevations of the created DTMs from 
different filtering techniques and the filter window size. 

 

 

Figure 29. The relationship between the ranges of elevations of the created DTMs from 
different filtering techniques and the filter window size. 
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Figure 30. The relationship between the standard deviations of elevations of the created 
DTMs from different filtering techniques and the filter window. 

 

 

Figure 31. The relationship between the skewness of the created DTMs from different 
filtering techniques and the filter window size. 

 

 

Figure 32. The relationship between the kurtosis of the created DTMs from different 
filtering techniques and the filter window size. 
 
the window sizes of the different filtering approaches. Such decreases in the 
maximum elevations of the produced DTMs from Gaussian low pass filter and 
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those from the focal analysis mean filter due to increases in the window sizes of 
the filters have been almost steady while the corresponding decreases in the 
maximum elevation have been irregular in the case of the bare earth models 
produced from the DTM slope-based filter. The composite behaviors of the 
minimum elevations and the maximum elevations have been reflected in Figure 
29 which is a chart that depicts the relationship between the ranges of elevations 
of the created DTMs from the three filtering approaches against the filter win-
dow sizes since the ranges of elevations in a specific DTM is calculated as the 
difference between the maximum elevation minimum elevation in that DTM. In 
Figure 29 the ranges of elevations in the DTMs from Gaussian low pass filter 
and those from the focal analysis mean filter have decreased with increasing the 
filter window sizes till 31 × 31 where they nearly have kept nearly unchanged 
with larger window sizes. However, the ranges of elevations in the bare land 
models from the DTM slope-based filter have decreased with smaller rates due 
to increases in the window sizes of the filter till 35 × 35 where they have become 
unchanged with more increases in the window sizes. The situation is a bit dif-
ferent when studying the standard deviation of the extracted DTMs from differ-
ent filtering techniques against the window size of the filter since the standard 
deviations of the created DTMs have decreased with increasing the window sizes 
of the three filters as presented in Figure 30. Thus, the decreases of the standard 
deviations have been continuous and steady in the DTMs from Gaussian low 
pass filter and those from the focal analysis mean filter while in the case of bare 
earth models produced from the DTM slope-based filter the decreases have oc-
curred with high rates till a filter window size of 31 × 31. However, more in-
creases in the window size of the DTM slope-based did not leave noticeable 
changes on the standard deviation of the produced bare earth models. Figure 31 
depicts the relationship between the skewness of the created DTMs from differ-
ent filtering techniques and the filter window sizes. Increases in the window size 
of the Gaussian low pass filter and the focal analysis mean filter have produced 
DTMs of less skewness and more symmetrical Gaussian curves. This has not 
been always the case in the bare earth models from the DTM slope-based filter 
where increasing of the window size of the DTM slope-based filter has produced 
bare earth models of fluctuated skewness values. However, the DTMs produced 
from Gaussian low pass filter and from focal analysis mean filter in addition to 
the bare earth models obtained from the DTM slope-based filter have recorded 
decreases in the kurtosis due to increases in the window sizes of the filters as 
shown in Figure 32. This means that application of these filters with increases in 
the window sizes has produced better removal of noise and outliers giving more 
consistent DTMs and bare earth models. 

8. Conclusions 

Three filtering approaches for stripping off above ground objects namely; Gaus-
sian low pass filter, focal analysis mean filter and DTM slope-based filter at va-

https://doi.org/10.4236/ars.2019.82004


F. F. F. Asal 
 

 

DOI: 10.4236/ars.2019.82004 72 Advances in Remote Sensing 
 

rying window sizes have been applied on airborne LiDAR DSM for creation of a 
reliable DTM since a DTM can be involved a wide range of environmental and 
engineering applications. A dataset of airborne LiDAR data of the ISPRS WG 
III/4 Test Project on Urban Classification and 3D Building Reconstruction that 
was captured over Vaihingen in Germany over a pure residential area with small 
detached houses on 21 August 2008 by Leica Geosystems has been used in the 
study. Visual analysis has indicated that Gaussian low pass filter with varying 
window sizes has produced blurred DTMs which has been indications of attenu-
ation of high frequencies that refer to non-ground objects with emphasizing of 
low frequencies pointing to the ground surface points. With increasing the win-
dow size of the Gaussian low pass filter much blurrier DTMs have been obtained 
referring to better attenuation of high frequencies and consequently better re-
moval of non-ground objects. This has been clarified by the outcomes of the sta-
tistical analysis of the DTMs from the Gaussian low pass filters which has re-
ferred to decreases in the minimum elevations, maximum elevation , ranges of 
elevations , standard deviations of the DTMs in addition to skewness and kurto-
sis of DTMs, due to increasing the window sizes of the Gaussian low pass filter 
resulting in attenuation of increasing amounts of the high frequencies and em-
phasizing of the DSM low frequencies. On the other hand, visual analysis of the 
DTMs created from the application of the focal analysis mean filter has shown 
better removal of the above ground objects compared to that from Gaussian low 
pass filter especially at large window sizes. Thus, details of the non-ground ob-
jects have been almost diminished in the DTMs produced from the focal analysis 
filter of window sizes of 25 × 25, 35 × 35 and 41 × 41 although the statistical 
analysis results of the DTMs from focal analysis mean filter resemble to great 
extent those of the DTMs from Gaussian low pass filter of varying window sizes. 
Visual analysis of the bare earth models extracted through the use of the DTM 
slope-based filter has shown very different results compared to those from the 
other two filters. The bare earth models obtained from the application of the 
DTM slope-based filter have been full of gabs of no data values at the positions 
of the removed non-ground objects. The sizes and numbers of the no-data gabs 
have increased with increasing the window sizes of the DTM slope-based filter. 
With the application of the tool; “close the gap with spline” working under 
SAGA GIS software clear views pointing to bare earth models that can be DTMs 
have been obtained referring to efficient removal of non-ground objects from 
the LiDAR DSM especially at large window sizes of the filter. 

Comparative analysis of the three filters together has shown that the mini-
mum elevation of the DTMs from Gaussian low pass filter and those from the 
focal analysis mean filter have increased with increasing the widow sizes of the 
filter till window sizes of 21 × 21 and 31 × 31 in the case of Gaussian low pass 
filter and focal analysis mean filter respectively. On the other hand, the DTM 
slope-based filtering approach has kept the minimum elevation of the original 
DSM unchanged. However, the three filtering approaches have produced DTMs 
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of decreasing maximum elevations due to increases in the filter window sizes. 
Also, the standard deviations of the created DTMs have decreased with increas-
ing the window sizes of the three filters however, the decreases have been conti-
nuous and steady in the cases of Gaussian low pass and the focal analysis mean 
filters. This has not been the case for the bare earth models created from DTM 
slope-based filter where decreases in the standard deviations have been at high 
rates till window sizes of 31 × 31 in the mean while the standard deviation has 
kept unchanged with more increases in the filter window sizes. Also, increases in 
the window size of the Gaussian low pass filter and the focal analysis mean filter 
have produced DTMs of decreasing skewness and more symmetrical Gaussian 
curves while increasing of the window size of the DTM slope-based filter has 
produced bare earth models of fluctuated skewness values. However, the DTMs 
produced from Gaussian low pass filter and from focal analysis mean filter in 
addition to the bare earth models obtained from the DTM slope-based filter 
have recorded decreases in the kurtosis due to increases in the window sizes of 
the filters. This means that application of these filters with increases in the win-
dow sizes has produced better removal of noise and omission of outliers giving 
more consistent DTMs and bare earth models. More investigation could be ne-
cessary to improve the efficiency of the three filtering approaches in removal of 
non-ground objects and creation of reliable DTMs. 
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