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Abstract 
Unmanned Aerial Vehicles (UAVs) have become increasingly popular in re-
cent years for agricultural research. High spatial and temporal resolution im-
ages obtained with UAVs are ideal for many applications in agriculture. The 
objective of this study was to evaluate the performance of vegetation indices 
(VIs) derived from UAV images for quantification of plant nitrogen (N) con-
centration of spring wheat, a major cereal crop worldwide. This study was 
conducted at three locations in Idaho, United States. A quadcopter UAV 
equipped with a red edge multispectral sensor was used to collect images dur-
ing the 2016 growing season. Flight missions were successfully carried out at 
Feekes 5 and Feekes 10 growth stages of spring wheat. Plant samples were 
collected on the same days as UAV image data acquisition and were trans-
ferred to lab for N concentration analysis. Different VIs including Normalized 
Difference Vegetative Index (NDVI), Red Edge Normalized Difference Vege-
tation Index (NDVIred edge), Enhanced Vegetation Index 2 (EVI2), Red Edge 
Simple Ratio (SRred edge), Green Chlorophyll Index (CIgreen), Red Edge Chloro-
phyll Index (CIred edge), Medium Resolution Imaging Spectrometer (MERIS) 
Terrestrial Chlorophyll Index (MTCI) and Red Edge Triangular Vegetation 
Index (core only) (RTVIcore) were calculated for each flight event. At Feekes 5 
growth stage, red edge and green based VIs showed higher correlation with 
plant N concentration compare to the red based VIs. At Feekes 10 growth 
stage, all calculated VIs showed high correlation with plant N concentration. 
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Empirical relationships between VIs and plant N concentration were cross va-
lidated using test data sets for each growth stage. At Feekes 5, the plant N 
concentration estimated based on NDVIred edge showed one to one correlation 
with measured N concentration. At Feekes 10, the estimated and measured N 
concentration were highly correlated for all empirical models, but the model 
based on CIgreen was the only model that had a one to one correlation between 
estimated and measured plant N concentration. The observed high correla-
tions between VIs derived from UAV and the plant N concentration suggests 
the significance of VIs deriving from UAVs for within-season N concentra-
tion monitoring of agricultural crops such as spring wheat. 
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1. Introduction 

Nitrogen (N) is one of the essential factors for crop production in terms of plant 
growth and development and crop quality [1] [2]. Adequate supply of N is fun-
damental for optimizing wheat (Triticum aestivum L.) yield and grain quality [3] 
[4]. Nitrogen regulates plant growth processes and plays a vital role in chloro-
phyll (CL) production—the basis for the photosynthesis process [5]. Insufficient 
N supply can negatively affect photosynthesis process and result in crop yield 
and quality penalties [3]. On the other hand, excessive N application to agricul-
tural crops has been associated with nitrate leaching, soil denitrification, ammo-
nia volatilization, and nitrous oxide contamination of aquifers and aggravating 
the climate change [6] [7]. Dynamic and efficient fertilization (appropriate time 
and rate) is very important for optimizing crop yield and maintaining environ-
mental quality [8]. Accurate estimation of crop N concentration is vital for de-
veloping effective fertilizer-N recommendations. 

There is a strong correlation between N concentration and CL content at fo-
liar and canopy scale because most of leaf N is localized within the CL molecules 
[9] [10] [11] [12]. Chlorophyll content is the main elements that govern the crop 
reflectance in the visible (VIS) and near infrared (NIR) regions of spectrum [8]. 
Thus, vegetation reflectance in these parts of spectrum is closely associated with 
N concentration. Remote sensing enables to acquire crop reflectance and pro-
vide diagnostic information on crop N concentration quickly and in a spatial 
context, compared to traditional destructive sampling techniques [13]. During 
the last few decades, scientists have proposed several vegetation indices (VIs) 
calculated from reflectance data to assess CL content and N concentration [8] 
[13] [14] [15]. These VIs are mostly a combination of NIR and VIS spectral 
bands, representing radiation scattering by canopy and radiation absorption by 
CL respectively [16]. Although these VIs accurately estimate CL and N concen-
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tration early in the growing season at lower CL values, they become less sensitive 
as the red spectral band is strongly absorbed by CL. Gitelson and Merzlyak [17] 
showed that red edge region is sensitive to a wide range of CL content values, 
and the use of this part of spectrum in VIs calculation can reduce the saturation 
effect due to lower absorption of the red edge region by CL. Several VIs based on 
this spectral region have been developed and used successfully to estimate CL 
and N concentration. 

Gitelson and Merzlyak [17] replaced the red spectral band (675 nm) with red 
edge spectral band (705 nm) in Normalized Difference Vegetation Index 
(NDVI) and developed a new index called Red Edge Normalized Difference Ve-
getation Index (NDVIred edge). They showed that traditional NDVI had a tendency 
to become saturated at higher CL level of senescing maple and chestnut leaves 
while NDVIred edge continued to show strong linear correlation with CL content 
and observed no saturation issue. In a similar study, Gitelson et al. [18] showed 
that reciprocal of red edge spectral band is closely related to the CL content in 
leaves of all species. They proposed Red Edge Chlorophyll Index (CIred edge) and 
showed that CIred edge is highly correlated with CL content (coefficient of deter-
mination R2 > 0.94). In another study, Dash and Curran [19] developed MERIS 
Terrestrial Chlorophyll Index (MTCI). They used data in three red/NIR wave-
bands centered at 681.25, 708.75 and 753.75 nm (bands 8, 9 and 10 in the MERIS 
standard band setting) to develop MTCI. They determined the relationship be-
tween MTCI and CL content using actual CL content for sites in the New Forest, 
United Kingdom (UK) and for small plots in a greenhouse experiment. Their 
results showed that MTCI is strongly and positively correlated to actual CL con-
tent. Li et al. [5] evaluated red edge based spectral indices for estimating plant N 
concentration and uptake of maize (Zea mays L.). They calculated chlorophyll 
content index (CCCI), NDVIred edge, CIred edge and MTCI from hyperspectral nar-
row bands, simulated Crop Circle ACS-470 active crop canopy sensor bands and 
simulated WorldView-2 satellite broad bands. Their results showed that there is 
a positive strong correlation between red edge based VIs and N concentration in 
maize. Their results also indicated that CCCI performed the best across different 
bandwidths for estimating maize plant N concentration at the V6 and V7 and 
V10 - V12 stages. In another study, Wang et al. [20] compared broad-band and 
red edge based spectral VIs to estimate N concentration in corn, wheat, rice 
(Oryza sativa L.) and soybeans (Glycine max L.). They calculated various VIs 
from images acquired by the Compact Airborne Spectrographic Imager (CASI) 
sensor. Their result showed that NDVI performed the best compared to other 
VIs, and red edge based VIs did not show potential for accurate estimation of 
leaf N concentration data due to spectral resolution.  

Unmanned aerial vehicles (UAVs) are remote sensing systems that can cap-
ture crop reflectance in the VIS-NIR region of spectrum and assess CL and N 
concentration. The UAVs, which have recently gained tractions in number of 
studies, acquire ultra-high spatial resolution images by flying at low altitudes 
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[21] [22]. Operational advantages such as low-cost systems, high flexibility in 
terms of flight planning and acquisition scheduling, and imaging below cloud 
cover make UAVs an appropriate tool to study crop biophysical parameters in-
cluding N concentration [23]. In a few studies, scientists have used reflectance 
data derived from UAVs to estimate CL or N concentration. Lu et al. [24] 
mounted a Mini Multi-Camera Array (Mini-MCA) imaging system on an octo-
copter UAV to estimate rice N status. They examined various VIs to estimate N 
concentration at panicle initiation and stem elongation growth stages in rice. 
Their results showed that MTCI was best for estimating rice N concentration 
with R2 = 0.48. In another study, Caturegli et al. [25] compared the spectral ref-
lectance of three turfgrasses (Cynodon dactylon × transvaalensis (Cdxt) “Pa-
triot”, Zoysia matrella (Zm) “Zeon” and Paspalum vaginatum (Pv) “Salam”) ac-
quired with a UAV and using a ground based instrument. They also tested the 
sensitivity of the two data acquisition sources in detecting induced variation 
among N application levels and for NDVI calculation. Their results showed that 
NDVI obtained with the ground based sensor was highly correlated with UAV 
based NDVI, with correlation coefficient values ranging from 0.83 to 0.97. They 
also showed that UAV based NDVI was strongly correlated with N measured in 
the clipped plant biomass samples (correlation coefficient of 0.95). Similarly, 
Hunt et al. [26] used a UAV to monitor N status of irrigated potato (Solanum 
tuberosum L.). They used a small parafoil-wing UAV to acquire color-infrared 
images. They showed that each of applied N treatments could be precisely dis-
tinguished in the images. Their results also concluded that NDVI and Green 
Normalized Difference Vegetation Index (GNDVI) were not useful for 
in-season N management in potato because the above-ground changes in leaf 
CL were not sufficiently large to be detected by remote sensing early in the 
growing season.  

So far, very few studies have investigated the potential of using red edge based 
VIs from the UAV data for canopy CL or N concentration estimation. To date, 
no studies on comparing red edge based VIs from the UAV data for wheat ca-
nopy CL or N concentration estimation have been reported. The main goal of 
this study was to evaluate the performance of UAV based VIs in estimating plant 
N concentration at canopy scale. Specifically, we analyzed and statistically com-
pared the performance of different red edge based VIs from UAV data to esti-
mate spring wheat plant N concentration. 

2. Materials and Methods 
2.1. Study Area 

The experimental studies were conducted at five different locations in Idaho 
during 2016 growing season (Table 1 and Figure 1). The soil type, mean annual 
temperature, and mean annual precipitation for each study site are presented in 
Table 1. 

Hard red spring wheat (cv. Cabernet) was planted using a Hege 500 series drill 
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Table 1. Latitude, longitude, soil type, mean annual precipitation, and mean annual tem-
perature for five locations in Idaho.). 

Field Lat Lon Soil Type 
Mean annual 

precipitation temperature 

Parma 43.80243 −116.94291 Green leaf-Owyhee silt loams 24 cm 10˚C 

Ashton 44.07127 −111.39983 
Greentimber-Marystown-Robinlee 

silt loams 
43 cm 5˚C 

Rupert 42.72016 −113.50641 Sluka silt loam 28 cm 10˚C 

 

 
Figure 1. Example of a figure caption (figure caption). 

 
at Rupert and Ashton, and soft white spring wheat (cv. Alturas) was planted at 
Parma using H&N Equipment research plot drill, at a density of approximately 
106.5 kg seeds ha−1. Row spacing was set at 17.78 cm using double disk openers. 
The plots were 1.52 wide by 4.27 m long, and then reduced to 3.05 m using gly-
phosate and tillage. Granular urea (46-0-0) was surface broadcasted immediately 
after planting at five different rates (0, 84, 168, 252, and 336 kg N ha−1). Each 
treatment was replicated four times in a randomized complete block design, re-
sulting in a total of 20 plots at each location. Spring planting conditions were 
good for crop establishment. Soil moisture March through April were above av-
erage, which resulted in excellent early season growth and development. Early 
season precipitation provided excellent growing conditions until irrigation be-
came available in April when all sites were irrigated every 7 to 10 days using 
sprinkle irrigation systems. Timely planting dates resulted in excellent tillering 
and a long growing period. 
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2.2. Unmanned Aerial System 

A quadcopter UAV 3DR Solo (3D Robotics, Inc., Berkeley, CA) shown in Figure 
2 was selected to carry camera payloads to acquire ultra-high-resolution im-
agery. Solo is powered by four electric brushless 880 kV motors, two that spin 
clockwise, and two counterclockwise. Solo’s arms are labeled 1 to 4 on the ends 
of the arms. Motors on arms #1 and #2 spin counterclockwise and use clock-
wise-tightening propellers with silver tops. Conversely, motors on arms #3 and 
#4 spin clockwise and use counter-clockwise tightening propellers with black 
tops. Solo’s onboard computers control navigation, attitude, and communica-
tions in flight while sending real-time telemetry and video output and receiving 
control inputs over the 3DR Link secure WiFi network. A 14.8v dc 5200 mAh 
lithium polymer (LiPo) rechargeable battery is located next to the power button. 
The intelligent battery systems on the Solo tracks battery power and informs the 
pilot when the battery needs to be recharged. Solo includes a GoPro® the Frame 
(GoPro, Inc, San Mateo, CA) fixed mount to support a GoPro® HERO camera 
(GoPro, Inc, San Mateo, CA). Alternatively, the fixed mount could be replaced 
by the optional 3-Axis Gimbal (3D Robotics, Inc, Berkeley, CA) (Figure 2). 
Empty weight of the quadcopter is 1.74 kg and weight increased to 1.9 kg with 
compatible camera and Solo Gimbal. 

A MicaSense Red Edge™ 3 Multispectral Camera (MicaSense, Inc, Seattle, 
WA) with an integrated Global Positioning System (GPS) with an accuracy of 2 - 
3 meters, mounted on the UAV was used to obtain the imagery. The camera was 
mounted on a Gimbal and as the camera’s weight was similar to GoPro camera’s 
weight, there was no need to add balance weight. The camera acquires 
1.3-megapixel images in five spectral bands (red edge, near infrared, red, green, 
and blue) with 12-bit Digital Negative (DNG) or 16-bit Tag Image File Format 
(TIFF) radiometric resolution. The ground spatial resolution of resulting images 
from the narrowband imager is 8 cm (per band) at 120 m above ground level. 
The MicaSense Red Edge™ 3 has a Downwelling Light Sensor (DLS) (MicaSense,  

 

 
Figure 2. The Unmanned Aerial System 3DR Solo. 
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Inc, Seattle, WA), which measures the ambient light during a flight for each of 
the five bands and records this information in the metadata of the images cap-
tured by the camera. The gain and exposure settings are automatically optimized 
for each capture and each band to prevent blurring or over-exposure, which re-
sults in properly exposed images.  

2.3. Multispectral Image Acquisition and Processing 

The UAV images were captured within 2.0 hours of solar noon with flight dura-
tion ranging from 15 to 20 minutes in sunny and cloud free conditions. Mission 
planer software [27] was used to design the flight path and choose the flight and 
sensor parameters to ensure there is an adequate overlap between acquired im-
ages for mosaicking. Two flight missions performed at each location to coincide 
with Feekes 5 and Feekes 10 spring wheat growth stages resulted in six flight 
missions per season. These growth stages were chosen because N fertilizer ap-
plied at these growth stages has potential to maximize grain yield and quality.  

Acquired multispectral images were imported to Micasense Atlas software 
(MicaSense, Inc, Seattle, WA) for mosaicking, georeferencing and radiometric 
calibration. Micasense Atlas has a partnership with Pix4D mapper image analy-
sis software (Pix4D SA, Lausanne, Switzerland) to create aligned, mosaicked and 
georeferenced images from multispectral data captured with the MicaSense red 
edge camera. The Pix4D finds hundreds of tie-points between overlapped im-
ages and stiches the individual images together to build one ortho-rectified im-
age of the whole study area. The accuracy of an outputted reconstructed images 
are usually 1-2 times the ground spatial resolution. In this study, we had differ-
ent treatments in the adjacent rows (100 cm row spacing) (well separated plots), 
so a low level of mosaicking error is allowable when using UAV images for our 
purpose [28]. Then, the mosaicked images were radiometrically calibrated using 
the Red Edge Camera Radiometric Calibration Model in Atlas software. Atlas 
software uses the calibration curve associated with a Calibrated Reflectance Pan-
el (CRP) to perform calibration model and convert the raw pixel values of an 
image into absolute spectral radiance values. The CRP was placed adjacent to the 
study area during each flight mission, and an image of the CRP was captured 
immediately before and immediately after each flight. The output of radiometric 
calibration model is a 5-layer, 16-bit ortho-rectified GeoTIFF image. 

2.4. Field Sampling and Measurements 

To obtain a representative plant sample, aboveground biomass was destructively 
sampled at Feekes 5 and Feekes 10 growth stages by cutting three randomly se-
lected plants in the middle of each plot immediately after each UAV flight event. 
Plant samples were dried in the oven for 72 hours at 80˚c and then were trans-
ferred to the lab for N content analysis. Samples’ N content analysis was per-
formed using the AOAC method 990.3 [29] at Brookside Laboratories, Inc (New 
Bremen, OH, USA) with extended uncertainty of ±5%. 
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2.5. Vegetation Indices 

The UAV reflectance data were used for calculating eight VIs, many of which 
have been proposed as surrogates for canopy N concentration estimation. The 
VIs tested include the Normalized Difference Vegetation Index, NDVI [30], the 
Red Edge Normalized Difference Vegetation Index, NDVIred edge [17], the En-
hanced Vegetation Index 2, EVI2 [31], the Red Edge Simple Ratio, SRred edge [32], 
the Green and Red Edge Chlorophyll Indices, CIgreen and CIred edge, respectively 
[18], the MERIS Terrestrial Chlorophyll Index, MTCI [19], and the Core Red 
Edge Triangular Vegetation Index (RTVIcore) [33] (Table 2). For each study plot, 
a region of interest (ROI) was manually established by choosing the central two 
rows and mean of each VI value corresponding to that plot was extracted. 

2.6. Statistical Analysis 

The study plots were randomly divided into test and training data sets. For the 
training data sets, simple regression analysis was performed to find the best rela-
tionship fit between N concentration and each UAV based VI. The determina-
tion coefficient (R2) and Root Mean Squared Error (RMSE) were used to eva-
luate the predictive accuracy of each model. These parameters are widely used to 
evaluate the performance of empirical models. The RMSE are computed as 
shown in Equations (1): 

( )
2

1
ˆM

i ii y y
RMSE

M
=

 − =
 
 

∑                    (1) 

where, ˆiy  is predicted value of N concentration; iy  is measured N concentra-
tion, and M is total number of observations. In the next step, the test data set 
was used to evaluate the performance of developed model in the previous step. 
Predicted values of N concentration were plotted versus corresponding values of 
N concentration measured in the lab. The performance of regression models in 
estimating N for the training data set were evaluated by calculating the R2 and  

 
Table 2. Vegetation indices (VIs) tested in this study to estimate nitrogen (N) content. 

Vegetation Index Equation 

Normalized Difference Vegetation Index (NDVI) (NIR − Red)/(NIR + Red) 

Red Edge Normalized Difference Vegetation Index 
(NDVIred edge) 

(NIR − Red Edge)/(NIR + Red Edge) 

Enhanced Vegetation Index 2 (EVI2) 2.5 × (NIR − Red)/(NIR + 2.4 × Red + 1) 

Red Edge Simple Ratio (SRred edge) (NIR)/ (Red Edge) 

Green Chlorophyll Index (CIgreen) (NIR/Green) − 1 

Red Edge Chlorophyll Index (CIred edge) (NIR/Red Edge) − 1 

Medium Resolution Imaging Spectrometer (MERIS) 
Terrestrial Chlorophyll Index (MTCI) 

(NIR − Red Edge)/(Red Edge + Red) 

Core Red Edge Triangular Vegetation Index (RTVIcore) 100(NIR − Red Edge) − 10(NIR − Green) 
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RMSE. In addition, Student’s t-tests were used to determine if the slope and the 
intercept of the regressions were significantly different from 1 and 0, respective-
ly. If the values of slopes were not significantly different from 1 and the values of 
intercepts were not significantly different from 0, then it was concluded that the 
regression was not significantly different from the 1:1 line, and the empirical 
model could accurately predict N concentration. 

3. Results and Discussions 
3.1. Variation of Plant N Concentration 

Based on different N application rates, a wide range of N concentration (%) 
ranged from 0.76% to 1.58% were obtained at Feekes 5 (Table 3). In Parma and 
Rupert sites, the highest N concentration (%) were obtained at fertilizer N rate of 
336 kg N ha−1 while in Ashton site, the highest N concentration (%) was ob-
tained at fertilizer N rate of 252 kg N ha−1. Similarly, at Feekes 10 a wide range of 
N concentration (%) ranged from 0.33% to 0.70% were obtained. In all sites, the 
highest N concentration (%) were obtained at fertilizer N rate of 336 kg N ha−1. 
Generally, observed variations in N concentration were due to differences in 
climate, inherent soil fertility, and N rate applications. When comparing N ferti-
lizer rate applications, in Parma and Rupert sites at both Feekes 5 and Feekes 10 
growth stages, the rate of N fertilizer significantly affected N concentration. In 
Ashton site at Feekes 5, the rate of N fertilizer did not make significant changes 
in N concentration while at Feekes 10, the rate of N fertilizer made significant 
changes in N concentration. 

Across growth stages, applied N rates and locations, plant N concentration 
decreased at all locations (Table 3 and Table 4). These results indicate the “dilu-
tion effect” as the crop matured, as described in previous studies [34] [35]. Plant 
N concentration was lower for Ashton site at both Feekes 5 and Feekes 10 
growth stages, compared to other sites. As all study sites were irrigated and had 
similar soil type (silt loam), the differences between plant N concentration for 
the same N application rates may be associated with differences in the amount of 
plant available water. Ashton site received 15 cm more precipitation compared  

 
Table 3. Plant N concentration at Feekes 5, as affected by the applied N fertilizer rate 

N rate (kg N ha−1) 
Mean Plant N Concentration (%) 

Parma Ashton Rupert 

0 0.76d 0.76a 1.31.b 

84 1.05c 0.80a 1.41b 

168 1.18b 0.79a 1.44ab 

252 1.17b 0.83a 1.39b 

336 1.32a 0.82a 1.58a 

Means within each column followed by the same letter are not significantly different at p < 0.01, as deter-
mined by the Duncan’s multiple range test. 
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Table 4. Plant N concentration at Feekes 10, as affected by the applied N fertilizer rate. 

N rate (kg N ha−1) 
Mean Plant N Concentration (%) 

Parma Ashton Rupert 

0 0.33c 0.35b 0.33c 

84 0.41bc 0.39ab 0.41bc 

168 0.65a 0.45a 0.65a 

252 0.49b 0.35b 0.49b 

336 0.70a 0.45a 0.70a 

Means within each column followed by the same letter are not significantly different at p < 0.01, as deter-
mined by the Duncan’s multiple range test. 

 
to Rupert, and 17 cm more than Parma. The similar result was obtained for the 
semiarid grassland by Lu [36]. In that study, Lu showed that water additions sig-
nificantly interacted to affect plant N uptake and N concentrations at the com-
munity level. 

3.2. Plant N Concentration Models Development and Validation 

We used the training data set for establishing separate plant N content predictive 
models using UAV based VIs for Feekes 5 and Feekes 10 separately. The training 
data set includes a wide range of plant N content values due to differences in N 
application rates. Eight models were developed using the vegetation indices 
NDVI, NDVIred edge, EVI2, SRred edge, MTCI, CIgreen, CIred edge and RTVIcore. Figure 3 
and Figure 4 show the best relationship fit between N concentration and each 
UAV based VI for Feekes 5 and Feekes 10, respectively. At Feekes 5 (Figure 3), 
the R2 of these models ranged from 0.69 to 0.88 and RMSE ranged from 0.096 to 
0.16. At this growth stage, the highest R2 between VIs and N concentrations was 
obtained for the CIgreen. Also, the developed model based on this index showed 
the lowest RMSE with N concentration. The best relationship fit between N 
concentration and most VIs at Feekes 5 were quadratic (Figure 3). CIgreen and 
MTCI were the only VIs which their best relationship fit with N concentration 
were linear. At Feekes 10 (Figure 4), the R2 of the developed models ranged 
from 0.82 to 0.88 and RMSE ranged from 0.06 to 0.08. At this growth stage, the 
largest R2 between VIs and N concentrations again was obtained for CIgreen while 
the developed model based on NDVIred edge had the lowest RMSE with N concen-
tration. The best relationship fit between N concentration and all VIs (except 
EVI2) at Feekes 10 were quadratic (Figure 4). EVI2 was the only VIs for which 
its’ best relationship fit with N concentration was linear. 

All UAV based VIs used in this study showed strong positive correlations with 
N concentration. In other words, all UAV based VIs used in this study were 
good indicators of spring wheat plant N concentration for both Feekes 5 and 
Feekes 10 growth stages. At Feekes 5 (Figure 3), red radiation based UAV in-
dices (NDVI and EVI2) had lower R2 and higher RMSE as compared with other 
green and red edge based UAV indices. At this stage (lower fractional vegetation  
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Figure 3. Relationships between measured plant N content (%) vs. (a) NDVI, (b) NDVIred edge, (c) EVI2, (d) SRred edge, (e) MTCI, (f) 
CIgreen, (g) CIred edge and (h) RTVIcore at Feekes 5 growth stage. 
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Figure 4. Relationships between measured plant N content (%) vs. (a) NDVI, (b) NDVIred edge, (c) EVI2, (d) SRred edge, (e) MTCI, 
(f) CIgreen, (g) CIred edge and (h) RTVIcore at Feekes 10 growth stage. 
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cover), soil background influence on research plots’ reflectance could be strong 
and could negatively affect the red based VIs accuracy [37]. Red edge based VIs 
could minimize the soil reflectance and isolate crop signal from soil reflectance 
as a function of canopy cover changes [13]. This suggests that applying red edge 
based or green based VIs from UAVs data can improve plant N concentration 
prediction compared to the red based UAV VIs at Feekes 5 of wheat growth 
stage. At this stage, CIgreen showed the highest R2 and lowest RMSE which sug-
gests that the green based VIs can be a better indicator of plant N concentration 
than the red edge based VIs. This result is in consistent with the result of the 
previous study conducted by Li [38] who showed that red edge based VIs were 
more effective for N estimation at earlier growth stage of wheat. In addition, CI-

green showed linear relationship with plant N concentration, which means sensi-
tivity of the model did not change due to the wide range of variation in plant N 
concentration; it is straightforward to invert them between CIgreen and plant N 
concentration to obtain a synoptic measure of N concentration. All the red edge 
based VIs showed comparable performance with similar R2 and RMSE values at 
Feekes 5. At Feekes 10 growth stage (Figure 4), all UAV based VIs used in the 
study performed very well with similar R2 and RMSE values. At this stage, the 
performance of NDVI and EVI2 for plant N concentration improved. All other 
UAV based VIs had similar performance compare to Feekes 5. Similar results 
have been reported by previous studies as well [38]. At Feekes 10, the crop ca-
nopy had fully developed, and soil background effect on research plots’ reflec-
tance had been reduced, so red based and red edge based VIs showed similar 
performance. 

The performance of the developed models in the previous step were evaluated 
using test data set for Feekes 5 and Feekes 10, separately. For this purpose, we 
used the developed models in previous step to estimate the N concentration. Ta-
ble 5 and Table 6 show the results of comparison between measured N concen-
tration and predicted N concentration retrieved from developed model in pre-
vious step for Feeks 5 and Feekes 10, respectively. At Feekes 5 (Table 5), the R2 
of the relationship between measured and predicted N concentration ranged 
from 0.67 to 0.84 and RMSE ranged from 0.147 to 0.196. At this growth stage, 
the lowest RMSE between measured and predicted N concentrations were ob-
tained using the developed models based on RTVIcore and NDVIred edge (Table 5). 
At this growth stage, all the developed models performed similar in terms of R2 
(Table 5). The results of a Student’s t test showed that for the developed models 
based on NDVIred edge, SRred edge and CIred edge the slopes of those regression lines 
were not significantly different from 1 (t = 0.0279; t = 0.43947; t = 0.43706 re-
spectively) (Table 7), while a similar test showed that the intercepts of those 
lines were not significantly different from 0 (t = 1.026; t = 0.730; t = 0.731, re-
spectively) (Table 7). Thus, one could conclude that these regression lines were 
not significantly different from the 1:1 line. These results indicated that the de-
veloped model based on NDVIred edge can predict the plant N concentration at 
Feekes 5 with best accuracy compared to other developed models (Figure 4(a)).  
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Table 5. The results of algorithm cross validation for estimating plant N concentration 
(N%) at Feekes 5 growth stage. Best fit functions, determination coefficients (R2) and root 
mean square errors (RMSE) of plant N concentra-tion estimation are given for eight ve-
getation indices. 

VIs Estimated N% = a (measured N%) + b R2 RMSE (%) 

NDVI 0.7265x + 0.3464 0.67 0.168 

NDVIred edge 1.026x + 0.0815 0.84 0.148 

EVI2 0.8167x + 0.2694 0.78 0.165 

SRred edge 1.0419x + 0.0799 0.84 0.179 

CIgreen 1.2495x − 0.1527 0.84 0.196 

CIred edge 1.0417x + 0.08 0.84 0.179 

MTCI 0.7932x + 0.3497 0.84 0.160 

RTVIcore 0.8434x + 0.2811 0.84 0.147 

 
Table 6. The results of algorithm cross validation for estimating plant N concentration 
(N%) at Feekes 10 growth stage. Best fit functions, determination coefficients (R2) and 
root mean square errors (RMSE) of plant N concentration estimation are given for eight 
vegetation indices. 

VIs Estimated N% = a (measured N%) + b R2 RMSE (%) 

NDVI 0.728x + 0.1509 0.72 0.10 

NDVIred edge 0.769 + 0.143 0.74 0.091 

EVI2 0.7778x + 0.107 0.73 0.095 

SRred edge 0.756x + 0.147 0.75 0.091 

CIgreen 0.891x + 0.03 0.76 0.090 

CIred edge 0.752x + 0.141 0.75 0.091 

MTCI 0.785x + 0.121 0.75 0.090 

RTVIcore 0.778x + 0.163 0.72 0.104 

 
Table 7. Regressions’ analysis parameter, t value, to determine if the slope and the inter-
cept of the regressions were significantly different from 1 and 0, respectively at Feekes 5. 

VIs NDVI NDVIred edge EVI2 SRred edge CIgreen CIred edge MTCI RTVIcore 

Slop −2.53856 0.0279 −2.2772 0.43947 2.1633 0.43706 −1.9776 −1.7958 

Intercept 2.8066 1.026 2.7678 0.730 −1.1557 0.730 2.9279 2.8123 

All t values were determined at 46 df and α = 0.05. 
 

Similarly, at Feekes 10, the R2 of the relationship between measured and pre-
dicted N concentration ranged from 0.72 to 0.73 and RMSE ranged from 0.09 to 
0.104. At this growth stage, the lowest RMSE between measured and predicted N 
concentrations were obtained using the developed models based on CIgreen and 
MTCI (Table 6). At this stage, all developed models had weaker performance in 
term of R2, but all models had smaller RMSE compared to Feekes 5. The results 
of a Student’s t test showed that only for the model developed based on CIgreen, 
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the slope of the regression line was not significantly different from 1 (t = 
−1.15722, 46 df, α = 0.05) (Table 8), while a similar test showed that the inter-
cept of that line was not significantly different from 0 (t = 0.6554, 46 df, α = 0.05) 
(Table 8). Thus, one could conclude this regression line was not significantly 
different from the 1:1 line. These results indicate that the model developed based 
on CIgreen can predict the plant N concentration at Feekes 10 with greatest accu-
racy compared to other models, and can be successfully used to estimate plant N 
concentration of wheat crop in the future (Figure 4(b)). 

In cross-validation process, results showed that at Feekes 5 developed model 
based on NDVIred edge can predict the plant N concentration with best accuracy 
compared to other developed models. The developed model based on NDVIred 

edge slightly underestimated the plant N concentration at lower values while 
overestimated the plant N concentration at higher values (Figure 5(a)). One 
possible reason for this is the soil type that was slightly different for each study 
site; it is possible that the total canopy reflectance was affected by slightly differ-
ent background reflectance values at each location [39]. At Feekes 10, the devel-
oped model based on CIgreen predicted the plant N concentration with highest 
accuracy compared to other models. The developed model based on CIgreen at 
this growth stage did not have over- or underestimation issue as the crop canopy 
had been fully developed, which minimized the effect of different background 
reflectance soil values (Figure 5(b)).  

At different growth stages, UAV based VIs showed different behaviors for  
 

Table 8. Regressions’ analysis parameter, t value, to determine if the slope and the inter-
cept of the regressions were significantly different from 1 and 0, respectively at Feekes 5. 

VIs NDVI NDVIred edge EVI2 SRred edge CIgreen CIred edge MTCI RTVIcore 

Slop −2.9701 −2.9269 −2.7852 −3.2624 −1.1572 −2.876 −2.6159 −2.4721 

Intercept 2.8194 3.1016 2.2996 3.3815 0.6554 2.809 2.5192 3.1225 

All t values were determined at 46 df and α = 0.05. 
 

 
Figure 5. Cross validation of developed algorithms based on (a) NDVIred edge at Feekes 5 and (b) CIgreen at Feekes 10 in estimating 
plant N concentration of wheat crop in test data sets. 
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estimating plant N concentration. Therefore, growth stage-specific models 
would be preferred for estimating plant N concentration. Mid-season plant N 
content estimation could significantly improve the opportunity for farmers to 
intervene with strategic fertilizer management. Ideally, the choice of an index for 
canopy N measurement should not depend on the geographical location where 
measurements are made. The VIs that minimize the soil reflectance, such as red 
edge based VIs, have the best performance across different locations with dif-
ferent soil type. These kinds of VIs could be used to map N content across far-
mer fields without calibrations, allowing them to target N applications. The re-
sults mean that adding red edge band to UAV sensors can improve plant N con-
centration monitoring and estimation. The main concern about developed mod-
els for plant N concentration estimation is that these models are crop-specific. 
Each crop has its’ own unique spectral signature; thus, the same models cannot 
be used for various crops. Changes in plant characteristics (such as breeding im-
provements) may require the development of additional algorithms. Mixed re-
sults about the effect of wheat cultivars on spectral reflectance have been re-
ported in literature. Sembiring et al [40] found that wheat varieties did not have 
significant effect on spectral measurements. On the other hand, Sultana et al [41] 
documented that spectral reflectance (NDVI) values have varied significantly for 
a wide range of cultivars treated with the same N rates. 

Remotely sensed VIs have been extensively used to quantify wheat crop N 
status. The UAV technology appears to provide a good complement to the cur-
rent remote sensing platforms for N monitoring in wheat by capturing low-cost, 
high resolution images. These UAV technologies can bring a unique perspective 
to N management in wheat by providing valuable information on wheat N sta-
tus. Time, labor and money can be saved using UAV data in crop monitoring.  

Results presented in this paper show that high resolution images acquired 
with UAVs are a useful data source for in-season wheat crop N concentration 
estimation. At Feekes 5 growth stage, red edge and green based VIs had higher 
correlation with plant N concentration compared to red based VIs because red 
edge based VIs can reduce the soil background effect on crop reflectance. At 
Feekes 10 growth stage, all calculated VIs showed high correlation with plant N 
concentration, and there were no significant differences between red and red 
edge based VIs’ performance. At this stage, crop canopy has been fully devel-
oped, and soil reflectance did not have strong effect on the reflectance of re-
search plots. At Feekes 5, the plant N concentration estimated based on NDVIred 

edge showed 1:1 correlation with N concentration measured in the lab. At Feekes 
10, the estimated and measured N concentration were highly correlated for all 
developed models, but the model based on CIgreen was the only model that had a 
1:1 correlation between estimated and measured plant N concentration. The ob-
served high correlation between UAV based VIs with plant N concentration in-
dicates the applicability of UAV for in-season data collection from agricultural 
fields. 
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4. Conclusions 

Remotely sensed VIs have been extensively used to quantify wheat crop N status. 
The UAV technology appears to provide a good complement to the current re-
mote sensing platforms for N monitoring in wheat by capturing low-cost, high 
resolution images. These UAV technologies can bring a unique perspective to N 
management in wheat by providing valuable information on wheat N status. 
Time, labor and money can be saved using UAV data in crop monitoring.  

Results presented in this paper show that high resolution images acquired 
with UAVs are a useful data source for in-season wheat crop N concentration 
estimation. At Feekes 5 growth stage, red edge and green based VIs had higher 
correlation with plant N concentration compared to red based VIs because red 
edge based VIs can reduce the soil background effect on crop reflectance. At 
Feekes 10 growth stage, all calculated VIs showed high correlation with plant N 
concentration, and there were no significant differences between red and red 
edge based VIs’ performance. At this stage, crop canopy has been fully devel-
oped, and soil reflectance did not have strong effect on the reflectance of re-
search plots. At Feekes 5, the plant N concentration estimated based on NDVIred 

edge showed 1:1 correlation with N concentration measured in the lab. At Feekes 
10, the estimated and measured N concentration were highly correlated for all 
developed models, but the model based on CIgreen was the only model that had a 
1:1 correlation between estimated and measured plant N concentration. The ob-
served high correlation between UAV based VIs with plant N concentration in-
dicates the applicability of UAV for in-season data collection from agricultural 
fields. 
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