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Abstract

eries analys$is of vegetation indices (VIs) (NDVI and EVI) derived from the Mod-
ing Spectrometer (MODIS) sensors to detect seasonal patterns of irrigated

and climate related challenges to agriculture. To improve mapping accuracy
ern, we implemented a participatory iterative ground truthing and mapping ap-
; ored the efficiency of three state-of-the-art machine learning algorithms: Support
\ achlne (SVM), Random Forest (RF), and a classification tree and rule-based model (C5.0).

ected reference data at random locations and run a preliminary supervised classifica-
tion using the SVM algorithm. Based on the preliminary classification outputs, we invited township
agricultural officers to assess the accuracies of the maps based on local knowledge and secondary
statistical data and hence identify areas with high land cover heterogeneity, which enabled us to
allocate more sample sizes in such areas. We compared accuracies achieved by use of increasing
size of predictor layers of VIs (8-days, 16-days and monthly composite stacks of 1 to 3 years). Re-
sults show the combined effects of i) an iterative participatory approach to field data collection
and map classification, ii) identification of superior algorithm and iii) appropriate size and type of
predictor VIs, we were able to substantially improve mapping accuracy; depending on the models
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used, accuracy improvement ranged from 31% to 43%. Among the three algorithms we compared,
SVM with Gaussian Radial Basis kernel function was superior in terms of all accuracy measures.
Particularly, the accuracy difference was statistically significant (p < 0.005) when larger numbers
of VIs layers were used and significance of difference diminishes with the increasing size of train-
ing data. Accuracy achieved by use of NDVI was consistently better than that of EVI. Though the
difference is not significant, 8-days NDVI composite resulted in better accuracy than 16-days
composite. Maximum overall accuracy of 94% was achieved using SVM and 8-days NDVI compo-
sites of three years. In conclusion, our findings highlight the value of participatory field validation
approaches to improve classification accuracy especially in areas where land use patterns are
temporally and spatially complex. We also show that choice of classifiers and size@fpredictor va-
riables are essential and complementary to the participatory field approach j g desired
accuracy of cropping patter mapping in areas where other sources of spatial information a

Keywords

Accuracy, Agriculture, Classification, MODIS, NDVI, Rice, Time-Seri

1. Introduction

Timely detection and monitoring of spatiotemporal dynamfcs in agricultural use are needed for various de-
cision making processes and research works. Remote sghsing technologies afe increasingly being used in pro-
viding a timely and accurate picture of the agricultural ors [1]. Duejto its inherent nature, agricultural sector
change over space and time depending of a number of i
that agricultural plants heavily depend on (e.ggrainfall, tem oil). Food and Agriculture Organization of

Satellite data, such as imagery from Moderate R io” Imaging Spectroradiometer (MODIS), Landsat and
es of information in agricultural sciences. Image classifica-
3 n extracting useful spatial and temporal information using
remotely sensed data [3]. The’po 3 i otely sensed data for crop identification and mapping crop-

detection of seasonal agricultural crop phonology due to its high temporal
in highly heterogeneous agricultural landscapes, application of MODIS in

ith coarse spatial resolution of MODIS data (~250 m pixel size) [7] [11]. In particular,
ing patterns is common in tropical regions of developing countries where small holder

mixture @f irrigated and rainfed systems where two or three crops are grown a year with varying crop rotations,
hence accurate detection and identifying cropping patterns using MODIS data is a challenging task.

Several techniques of improving mapping accuracy have been proposed in the literature, including approaches
to improve spatial resolution of MODIS through integration of data from different sensors [13] [14], and tech-
niques of combining various classification algorithms, and techniques of applying object-based and pixel-based
classification [15] [16]. Though a large number of comparative studies attempted to compare and recommend
most suitable classification methods, the findings are often inconsistent [17] [18]. Studies such as Qian, Zhou
[19], Liu, Wang [20], Shao and Lunetta [16] and Fernandez-Delgado, Cernadas [17] have generally indicated
that machine learning algorithms such as Random Forest (RF) and Support Vector Machine (SVM) are superior
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in accuracy. However, suitability of the classification algorithms depended on several factors including sizes and
purity of training sample [16] [18], parameter tuning [18] [21], whether the classification is pixel-based or ob-
ject-based [19] [21] [22], and performance criteria used in assessing the accuracy performances of the classifiers
[23].

During a study of cropping patterns in the CDZM using field based ground truth data and class labeling of
unsupervised classification of multitemporal MODIS VIs, we encountered problems of accuracy and the chal-
lenges of obtaining representative ground truth points for heterogeneous systems in these areas. This was com-
pounded by the lack of spatially and temporal explicit agricultural information in the CDZM. The objectives in
this study were to develop an accurate cropping pattern classification approach for complex agricultural land-
scapes using MODIS time- serles data and approprlate sources of field and valldatlon inform g undertook a

formance of three different sets of multitemporal VI data classified through three
(RF, SVM and C5.0) using the “caret” package implemented in R language. The
mathematical explanation of these algorithms have been documented in the li

CDZM are highly variable and governed by soil type, topograph rigation. Fields are often
small and choice of crop may be determined by relatively sma i toposequence. This is an area that
has received relatively little research attention in recent iti described in the contemporary
press.

2. Study Area

The study
The study si

IS characterized by small holder crop production systems. In many places of the studied Town-
jation facilities offer the possibility of producing a number of crop through the year. Double and even

tion or supplemental irrigation. In the rainfed upland areas areas two crops per year may be grown in some or
areas comprising sunflower (Helianthus annuus), seasame (Sesamum indicum), groundnut (Arachis hypogaea),
green gram (Vigna radiata), maize (Zea mais) or butter bean (Phaseolus lunatus) or a single crop of pigeon pea
(Cajanus cajan), cotton (Gossypium sp.) or sugar cane (Saccharum officinarum). In the lowland rainfed areas
monsoon rice (Oryza sativa) may be followed by either chickpea (Cicer arietinum), green gram or other pulse.
In irrigated areas two crop of rice may be grown as well as a crop of chickpea, sunflower or other. Double or
triple cropping in purely rainfed system is also possible due to local topography and rainfall resulting in suffi-
cient soil moisture to support low water use crops such as sorghum (Sorghum bicolor), groundnuts and chickpea.

©
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Figure 1. (a) Map showing studied Townships and ext
across in the studied five Townships of CDZM. Location
general land use/cover categories.

Avreas that produce a single crop per year are a ecially during years of low rainfall or late onset

of rainfall.

3. Methods

1-year (2012),
sources:

ipatory and iterative process of additional reference data collection during August
a collected during the field surveys included information such as current crop types,
ch crop, water source for crop production and information regarding incidences of
t, disease and flood. Information about historical cropping patterns were also collected
with local farmers. We identified 10 major copping patterns and 4 non-agricultural land

map classification errors. In order to employ this strategy, we collected an initial reference data at random loca-
tions and based on which we produced a preliminary map of cropping patterns and LULC classes. The initial
map was then used to identify areas dominated by classification errors through involvement of agricultural of-
ficers and farmers in identifying inaccurate areas. This procedure was repeated at least three times at each of the
four visited townships. To further elaborate this procedure, an initial supervised classification was run using
SVM and based on reference data collected through a conventional random sampling procedure and using one
year stack of monthly composite of NDVI. Agricultural officers were then invited to evaluate mapping accuracy
based on group discussions, where the communities were able to identify particular villages where classification

©
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Table 1. Description of major cropping patterns and non-agricultural land use/cover types.

No. LULC/cropping pattern Descriptions

1 Irrigated double rice Irrigated rice in monsoon, followed by rice in winter, fallow in summer

2 Irrigated rice-upland crops Irrigated rice in monsoon, followed by upland crops in winter

3 Irrigated double upland crops Irrigated non-rice crops in monsoon and winter

4 Irrigated rice followed by two upland crops Irrigated rice in monsoon, followed by upland crops in winter and summer

A unique cropping patterns near rivers, where river water cover the crop land
5 Recession crops during monsoon and in dry season as water recedes differe 0
produced using residual moisture

Crop lands that are characterized by heterogeneg

6 Mixed crop class the MODIS pixel size

Rainfed rice during monsoon, followed
winter/summer

7 Rainfed rice-upland crops

8 Rainfed double upland crops
9 Rainfed single rice

10 Rainfed single upland crops
11 Urban/settlements

12 Water bodies
13 Forest/woodlands

14 Barren lands and other non-agricultural lands

3654 reference points in
government agricultur

rns cross across all years (Figure 2) and spectrally different from non-rice cropping
spectral patterns was similar within rice-based category. The lowest separability values

asleiChieved from the 3-year stack of 8-days VI composites data. It was partlcularly clear that the 1
~ of VI composites was not adequately showing spectral separability among classes.

sification and Accuracy Comparisons

We evaluated accuracy among 66 different combinations of four sets of variables: classifiers (SVM, RF and
C5.0), vegetation indices (NDVI and EVI), size of predictors (one year, two years and three years layers of
8-days, 16-days and monthly composite of each VIs, and size of training data (12 sets of incremental reference
data). Using these sets of variables, we compared performances of three state-of-the-art machine learning super-
vised classification algorithms: support vector machine (SVM), Random Forest (RF) and C5.0 (a decision trees
and rule-based model). Model building, parameter tuning, classification and accuracy assessment were performed
using “caret” R-package [30] implemented in R language and statistical software v.3.1.2 [31]. In addition to the

&
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RF is a classifier consi ree-structured classifiers [36] that form an ensemble of classi-
fication and regressio classifiers [37]. The algorithm can handle high-dimensional datasets

SVM, RBF i onable first choice due to its attributes outlined in [38]. Ranges of tuning
parameter the three algorithms and the tuning parameter that yielded the highest accu-
racy was‘o timal value. For the RF model, “number of trees” were set to 500 as a default value

an and Cutler [39].

of thematic maps [40]. User’s and producer’s accuracies were also assessed to examine accuracy of
8. Paired t-test was used to assess statistical differences among accuracies achieved by different algo-
rithms [41] implementing the “caret” R-Package, which is based on Hothorn, Leisch [42] and Eugster, Hothorn
[43]. A summary of classification procedures and accuracy assessment is shown in Figure 3.

4. Results

4.1. Accuracy Improvements through Participatory Iterative Mapping and Model
Comparisons

Figure 4(a) shows class accuracies (user’s and producer’s) and the trends of accuracy changes for each class as

©
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Figure 3. ROV % analysis prgCedures.

ses and the Si2e of predictor layers being constant. The result is based on classification
rs stack of ¥8-days NDVI composite. It should be noted from Figure 4(a) that the
through increasing number of iteration (number of days) was not the same for
ation was observed in non-agricultural land cover category and rice-based
increasing trends of accuracy (Figure 4(a)). When small size of training da-
relatively higher accuracy (Figure 4(b)). The significance of difference tended to
ing data set gets larger. The accuracy difference between the initial classification,
entional random sampling of reference data, and the final reference data collected

size of training data inc

classifiers’depended on size of predictor layers (Figure 5). Highest accuracy was achieved by SVM using 8 days
NDVI composite of 3 years, but not significantly different from RF and C5.0 models. Though the differences
are small, SVM was shown to consistently outperform and in most cases; C5.0 model not only resulted in lowest
accuracy (Figure 4(b)), but also consumed the largest computational time (Figure 7). Accuracy differences
among the three classifiers was clearer and consistent when large number of predictor variables are used com-
pared to comparisons using fewer number of predictors (12 stack layers versus 137 stack layers) (Figure 6(a)
and Figure 6(b)). With largest number of predictors (137 layers), processing time consumed by C5.0 was nearly
8 times that of SVM. In all sets of data, SVM was shown to be computationally most efficient (Figure 7). Sta-
tistical significance of accuracy difference among classifiers was higher when fewer numbers of predictor layers

O,
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Figure 4. Accuracy improvement achieved through participatory iterative mapping procedures.
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Figuré€ 5. Accuracy differences among the three machine learning algorithms compared using NDVI layers. With

increasing numbers of predictor variables, accuracy differences become more obvious; particularly, SVM model
showed significantly higher accuracy as the size of predictor layers increases.

are used. Accuracy of the three models was higher when NDV1 is used compared to same number of EVI layers
and accuracy difference of up to 4% was observed between NDVI and EVI when SVM classifier was used

(Figures 8(a)-(c)).

Accuracy also varied with type of vegetation indices used in the prediction. The lowest accuracy was ob-
served when monthly EVI of 1 year was used and increasing the number of VIs layers (predictor variables) has
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layers of”16-days NDVI composite. Both user’s and producer’s accuracy of all classes exceeded 74% (Table 2).
The smallest producer’s and user’s accuracies were due to large confusion among class “rainfed monsoon rice
and winter/summer upland crops”, “irrigated monsoon rice and winter/summer upland crops”, and “rainfed
monsoon upland crop and winter/summer upland crops” (Table 2).

5. Discussion

Active involvement of local agricultural officers and farmers in the iterative process of mapping was an efficient
procedure for improving accuracy and identifying areas with high classification errors. It not only helped rapid
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meaningfl analyses (Congalton, 1991). Recent study by Mialhe, Gunnell [45] has also highlighted the impor-
tance of participatory mapping approach in data-poor areas, and in areas such as conflict zones. Our approach
signifies the importance of examining mapping accuracy in a participatory process particularly in conditions
where sites are inaccessible or difficult to access. Arguably, participation of local community in the mapping
process enables more efficient way of sampling for substantial accuracy improvements. The approach we ap-
plied has two-fold improvements: first, it minimizes time and resource needed for traveling and collection of
reference data by facilitating an efficient and accurate way of generating data over large areas, and inaccessible
areas; with the help of the discussion with local people, more ground samples were systematically allocated to
areas that are highly heterogeneous, which could be caused by complexity of land cover patterns; second, we
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were able to assess location accuracy of mapping at locations for which we have no prior knowledge/reference
data, which would not be possible through traditional accuracy assessment in remote sensing. This interactive
and iterative process of mapping has resulted in substantial improvement of accuracy ranging from 31% to 43%.
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Figure 8. Accuracy variation with the use of NDVI and EVI as predictors: (a) SVM, (b) RF and (c) C5.0; (d) shows
accuracy differences among the three models using NDVI 16-days composite of 3 years.
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The accuracy performance of all machine learning algorithms compared in this study has increased with in-
creasing size of predictor layers and training sample size, which is in agreement with studies such as Li, Wang
[18]. With limited number of training samples, RF was slightly better in accuracy. This may imply the robust-
ness of RF when reference data are limited. Similar comparative studies that attempted to examine accuracy dif-
ferences among different machine learning algorithms showed different results. Studies by Adam, Mutanga [46]
and Duro, Franklin [22] indicated machine learning algorithms such as SVM and RF performed similarly, and
other studies such as that of Cracknell and Reading [47], Fernandez-Delgado, Cernadas [17] and Kampichler,
Wieland [48] showed RF to be the most accurate algorithm. Our result, which showed SVM to be superior in
accuracy compared to both RF and C5.0, is yet in agreement with studies such as that of Shao and Lunetta [16]
and Maroco, Silva [49] indicated SVM to be superior in accuracy.

larly when classification of large data set over large spatial scales is of inte
Comparisons of accuracy difference between NDVI and EVI are rarghi

1, which could result in more
to the images, varying magni-

ples and predictor layers were examined. Variation in accu-
s, was also explored. In addition to accuracy measures,
processing time was also used on to assess’model performances.

The participation of loc i and farmers people in iterative mapping process substantially
samplmg strategles We were able to substantlally improve accuracy by
up to 43% through

overall accuracy of hieved and 14 major classes of cropping patterns and non-agricultural Iand cover
types were det . r number of VIs stacks increased accuracy by up to 4% compared to the
smallest nu i (one year stack of monthly composite versus 3 years stack of 16-days or

rall accuracy and kappa coefficient shows that consistently higher, though small,
VM compared to RF and C5.0. Statistical significance of accuracy differences de-

g in accuracy. As the number of training sample becomes larger and the size of predictor Iayers
aII of the three algorithms performed well, though SVM was relatively superior. These results provide
o the importance of size of training samples and predictor variables in deciding which classifier may

need to be used in order to achieve high accuracy levels.
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