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Abstract 
We applied time-series analysis of vegetation indices (VIs) (NDVI and EVI) derived from the Mod-
erate Resolution Imaging Spectrometer (MODIS) sensors to detect seasonal patterns of irrigated 
and rainfed cropping patterns in five townships in the central dry zone of Myanmar, an important 
agricultural region of the country, that is both poorly mapped for cropping practices and which 
faces environmental and climate related challenges to agriculture. To improve mapping accuracy 
of cropping pattern, we implemented a participatory iterative ground truthing and mapping ap-
proach and explored the efficiency of three state-of-the-art machine learning algorithms: Support 
Vector Machine (SVM), Random Forest (RF), and a classification tree and rule-based model (C5.0). 
We first collected reference data at random locations and run a preliminary supervised classifica-
tion using the SVM algorithm. Based on the preliminary classification outputs, we invited township 
agricultural officers to assess the accuracies of the maps based on local knowledge and secondary 
statistical data and hence identify areas with high land cover heterogeneity, which enabled us to 
allocate more sample sizes in such areas. We compared accuracies achieved by use of increasing 
size of predictor layers of VIs (8-days, 16-days and monthly composite stacks of 1 to 3 years). Re-
sults show the combined effects of i) an iterative participatory approach to field data collection 
and map classification, ii) identification of superior algorithm and iii) appropriate size and type of 
predictor VIs, we were able to substantially improve mapping accuracy; depending on the models  
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used, accuracy improvement ranged from 31% to 43%. Among the three algorithms we compared, 
SVM with Gaussian Radial Basis kernel function was superior in terms of all accuracy measures. 
Particularly, the accuracy difference was statistically significant (p < 0.005) when larger numbers 
of VIs layers were used and significance of difference diminishes with the increasing size of train-
ing data. Accuracy achieved by use of NDVI was consistently better than that of EVI. Though the 
difference is not significant, 8-days NDVI composite resulted in better accuracy than 16-days 
composite. Maximum overall accuracy of 94% was achieved using SVM and 8-days NDVI compo-
sites of three years. In conclusion, our findings highlight the value of participatory field validation 
approaches to improve classification accuracy especially in areas where land use patterns are 
temporally and spatially complex. We also show that choice of classifiers and size of predictor va-
riables are essential and complementary to the participatory field approach in achieving desired 
accuracy of cropping patter mapping in areas where other sources of spatial information are scarce. 

 
Keywords 
Accuracy, Agriculture, Classification, MODIS, NDVI, Rice, Time-Series 

 
 

1. Introduction 
Timely detection and monitoring of spatiotemporal dynamics in agricultural land use are needed for various de-
cision making processes and research works. Remote sensing technologies are increasingly being used in pro-
viding a timely and accurate picture of the agricultural sectors [1]. Due to its inherent nature, agricultural sector 
change over space and time depending of a number of factors including the changes in physical environment 
that agricultural plants heavily depend on (e.g. rainfall, temperature, soil). Food and Agriculture Organization of 
the United Nations (FAO) [2] stresses the importance of timeliness and accuracy of agricultural information as a 
major factor underlying agricultural statistics and associated monitoring systems (FAO, 2011).  

Satellite data, such as imagery from Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat and 
SPOT satellite sensors have become important sources of information in agricultural sciences. Image classifica-
tion is among the most widely applied image analysis in extracting useful spatial and temporal information using 
remotely sensed data [3]. The potentials of using remotely sensed data for crop identification and mapping crop-
ping patterns over large areas has been widely explored [4]-[6]. The basis for remote sensing of cropping pat-
terns is mainly the unique temporal patterns of crop phonology which could be characterized through analysis of 
spectral patterns of vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and En-
hanced Vegetation Index (EVI) [4] [6]-[8].  

MODIS data is highly suitable for detection of seasonal agricultural crop phonology due to its high temporal 
resolution [5] [9] [10]. However, in highly heterogeneous agricultural landscapes, application of MODIS in 
identifying crop types and cropping patterns is a challenging task, and the usability of information extracted 
from MODIS is constrained by low accuracies. This is mainly due to spectral confusions among various land 
cover types associated with coarse spatial resolution of MODIS data (~250 m pixel size) [7] [11]. In particular, 
heterogeneity of cropping patterns is common in tropical regions of developing countries where small holder 
farming is dominated by diverse crop types [12]. The Central Dry Zone of Myanmar (CDZM), where we have 
undertaken this study, is a typical example of diverse cropping system. The area we studied is characterized by 
small land holding (often plots are less than half hectare) and cropping patterns is highly heterogeneous with a 
mixture of irrigated and rainfed systems where two or three crops are grown a year with varying crop rotations, 
hence accurate detection and identifying cropping patterns using MODIS data is a challenging task. 

Several techniques of improving mapping accuracy have been proposed in the literature, including approaches 
to improve spatial resolution of MODIS through integration of data from different sensors [13] [14], and tech-
niques of combining various classification algorithms, and techniques of applying object-based and pixel-based 
classification [15] [16]. Though a large number of comparative studies attempted to compare and recommend 
most suitable classification methods, the findings are often inconsistent [17] [18]. Studies such as Qian, Zhou 
[19], Liu, Wang [20], Shao and Lunetta [16] and Fernández-Delgado, Cernadas [17] have generally indicated 
that machine learning algorithms such as Random Forest (RF) and Support Vector Machine (SVM) are superior 
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in accuracy. However, suitability of the classification algorithms depended on several factors including sizes and 
purity of training sample [16] [18], parameter tuning [18] [21], whether the classification is pixel-based or ob-
ject-based [19] [21] [22], and performance criteria used in assessing the accuracy performances of the classifiers 
[23].  

During a study of cropping patterns in the CDZM using field based ground truth data and class labeling of 
unsupervised classification of multitemporal MODIS VIs, we encountered problems of accuracy and the chal-
lenges of obtaining representative ground truth points for heterogeneous systems in these areas. This was com-
pounded by the lack of spatially and temporal explicit agricultural information in the CDZM. The objectives in 
this study were to develop an accurate cropping pattern classification approach for complex agricultural land-
scapes using MODIS time-series data and appropriate sources of field and validation informan. We undertook a 
participatory field data collection and field campaign mapping approach that combined assessment of the per-
formance of three different sets of multitemporal VI data classified through three machine learning algorithms 
(RF, SVM and C5.0) using the “caret” package implemented in R language. The underlying theory and detailed 
mathematical explanation of these algorithms have been documented in the literature [24]-[28]. Our approach 
combined the analyses of the remote sensing data with detailed knowledge possessed by the farmers and local 
agricultural officers. The local knowledge held by these individuals can provide an overview, and able to indi-
cate cropping patterns that occur in one area as distinct from another while, at the same time, able to describe 
crops and practices at particular locations and how this might change over time. The cropping patterns of the 
CDZM are highly variable and governed by soil type, topography and the presence of irrigation. Fields are often 
small and choice of crop may be determined by relatively small changes in the toposequence. This is an area that 
has received relatively little research attention in recent decades and it is poorly described in the contemporary 
press.  

2. Study Area  
The CDZM covers 55,000 km2 and comprises Magway, Mandelay and lower Sagaing regions. The area is tran-
sected north to south by the Chindwin and Ayeyarwady rivers, and the topography is gently undulating and 
about 300 masl. Most streams are dry for much of the year. The CDZM is tends to be resource poor, water is 
scarce and crop losses to drought are frequent, vegetation cover is thin and there is severe soil erosion. In some 
areas, in addition to drought, soil alkalinity is a constraint. There is a dearth of detailed current information on 
the cropping systems and agricultural potential of the CDZM. This presents a major challenge to the develop-
ment of technologies which are likely to be well adapted to particular locations (e.g. upland or alkaline soil con-
ditions ) and certain cropping systems (e.g. short duration rice varieties for the rainfed monsoon crop to followed 
by legume). Greater information on the current cropping patterns in the region is required in order to support 
adaptive research and targeting of improved options for the farmers. 

The study was undertaken in five townships of the CDZM; Ye’u, Monywa, Pakokku, Wundwin and Pyawbe. 
The study sites lie between 20.39 to 23.04 N latitude and 94.67 to 96.34 E longitude (Figure 1(a)) and the area 
is characterized by low rainfall, receiving an average annual rainfall of 833 mm across townships. In the CDZM, 
the monsoon season is divided into; the pre-monsoon season which starts in May, and the major monsoon sea-
son which starts in August and ends in October (Figure 1(b)). Average minimum and maximum temperatures 
are 21˚C and 31.9˚C, respectively (source: local agro-meteorological stations of each Township). The altitude 
ranges between 62 to 658 meters above sea level.  

The CDZM is characterized by small holder crop production systems. In many places of the studied Town-
ships, irrigation facilities offer the possibility of producing a number of crop through the year. Double and even 
triple cropping systems are common in many villages of the studied areas, which could benefit from full irriga-
tion or supplemental irrigation. In the rainfed upland areas areas two crops per year may be grown in some or 
areas comprising sunflower (Helianthus annuus), seasame (Sesamum indicum), groundnut (Arachis hypogaea), 
green gram (Vigna radiata), maize (Zea mais) or butter bean (Phaseolus lunatus) or a single crop of pigeon pea 
(Cajanus cajan), cotton (Gossypium sp.) or sugar cane (Saccharum officinarum). In the lowland rainfed areas 
monsoon rice (Oryza sativa) may be followed by either chickpea (Cicer arietinum), green gram or other pulse. 
In irrigated areas two crop of rice may be grown as well as a crop of chickpea, sunflower or other. Double or 
triple cropping in purely rainfed system is also possible due to local topography and rainfall resulting in suffi-
cient soil moisture to support low water use crops such as sorghum (Sorghum bicolor), groundnuts and chickpea.  
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Figure 1. (a) Map showing studied Townships and extent of the processing window; (b) Mean monthly rainfall 
across in the studied five Townships of CDZM. Locations of reference data are shown in points and grouped into 
general land use/cover categories.                                                                     

 
Areas that produce a single crop per year are also common; especially during years of low rainfall or late onset 
of rainfall. 

3. Methods 
3.1. Data Types and Sources 
MODIS vegetation indices (NDVI and EVI) in 8-day, 16-day and monthly composites were acquired from 
http://earthexplorer.usgs.gov data portal. Each of the composite vegetation indices (VIs) was layer-stacked into 
1-year (2012), 2-years (2012-2013) and 3-years (2012-2014). We collected reference data from three main 
sources:  

1) An initial field surveys were undertaken in March 2013, based on which a preliminary map was produced. 
This was followed by participatory and iterative process of additional reference data collection during August 
2014 and Nov 2015. The data collected during the field surveys included information such as current crop types, 
cropping calendars for each crop, water source for crop production and information regarding incidences of 
stresses such as drought, disease and flood. Information about historical cropping patterns were also collected 
through discussions with local farmers. We identified 10 major copping patterns and 4 non-agricultural land 
cover types (Table 1); we implemented a participatory mapping approach where we involved township officers 
from the Ministry of Agriculture and Irrigation and farmers in assessments of classified maps produced incre-
mentally during the field data collection campaign and in the guided collection of field reference data to address 
map classification errors. In order to employ this strategy, we collected an initial reference data at random loca-
tions and based on which we produced a preliminary map of cropping patterns and LULC classes. The initial 
map was then used to identify areas dominated by classification errors through involvement of agricultural of-
ficers and farmers in identifying inaccurate areas. This procedure was repeated at least three times at each of the 
four visited townships. To further elaborate this procedure, an initial supervised classification was run using 
SVM and based on reference data collected through a conventional random sampling procedure and using one 
year stack of monthly composite of NDVI. Agricultural officers were then invited to evaluate mapping accuracy 
based on group discussions, where the communities were able to identify particular villages where classification  
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Table 1. Description of major cropping patterns and non-agricultural land use/cover types.                                  

No. LULC/cropping pattern Descriptions 

1 Irrigated double rice Irrigated rice in monsoon, followed by rice in winter, fallow in summer 

2 Irrigated rice-upland crops Irrigated rice in monsoon, followed by upland crops in winter 

3 Irrigated double upland crops Irrigated non-rice crops in monsoon and winter 

4 Irrigated rice followed by two upland crops Irrigated rice in monsoon, followed by upland crops in winter and summer 

5 Recession crops 
A unique cropping patterns near rivers, where river water cover the crop land 
during monsoon and in dry season as water recedes different crops are  
produced using residual moisture 

6 Mixed crop class Crop lands that are characterized by heterogeneous cropping patterns less than 
the MODIS pixel size 

7 Rainfed rice-upland crops Rainfed rice during monsoon, followed by non-rice crops during  
winter/summer 

8 Rainfed double upland crops Rainfed non-rice crops during monsoon and winter/summer 

9 Rainfed single rice Rainfed rice during monsoon and fallow during winter and summer 

10 Rainfed single upland crops Rainfed non-rice crops during monsoon and fallow during winter and summer 

11 Urban/settlements varying sizes of towns and cities, villages where built-up surfaces predominate 

12 Water bodies Large rivers, lakes, dams 

13 Forest/woodlands Forest reserves, plantation forests, woodlands dominated by scattered trees and 
grasslands, with no crop production 

14 Barren lands and other non-agricultural lands Dry river beds, exposed rocky surfaces, with no/low vegetation cover 

 
errors were large. On subsequent days, we incorporated more reference data from areas where major errors were 
spotted by local people. Ground-based reference data of 1868 points were collected, out of which 542 samples 
were various cropping patterns and 1326 were non-agricultural land cover types. 2) High spatial resolution data 
made available by Google® were used to identify non-agricultural land use/cover types such as water bodies, 
forests and settlement areas. 1786 points were identified from high resolution images; this resulted in total of 
3654 reference points in the final dataset. 3) We obtained estimates of area coverage of major crop types from 
government agricultural statistics. 

3.2. Spectral Profiles and Separability Analysis of Reference Data 
Spectral separability of reference data was assessed through the Transformed Divergence separability index in 
ENVI v5.2 [29]. Non-agricultural land uses such as urban, forest/rangeland and water were easily separable 
from each other and from different cropping patterns of agricultural land uses. Rice-based cropping patterns fol-
lowed similar spectral patterns cross across all years (Figure 2) and spectrally different from non-rice cropping 
systems but the temporal spectral patterns was similar within rice-based category. The lowest separability values 
were observed between rainfed double upland crops and irrigated double upland crops. Generally, the highest 
separability was achieved from the 3-year stack of 8-days VI composites data. It was particularly clear that the 1 
year stack of VI composites was not adequately showing spectral separability among classes. 

3.3. Classification and Accuracy Comparisons  
We evaluated accuracy among 66 different combinations of four sets of variables: classifiers (SVM, RF and 
C5.0), vegetation indices (NDVI and EVI), size of predictors (one year, two years and three years layers of 
8-days, 16-days and monthly composite of each VIs, and size of training data (12 sets of incremental reference 
data). Using these sets of variables, we compared performances of three state-of-the-art machine learning super-
vised classification algorithms: support vector machine (SVM), Random Forest (RF) and C5.0 (a decision trees 
and rule-based model). Model building, parameter tuning, classification and accuracy assessment were performed 
using “caret” R-package [30] implemented in R language and statistical software v.3.1.2 [31]. In addition to the  
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Figure 2. Temporal NDVI profile of cropping patterns and non-agricultural land cover types. IR = Irrigated, 
RF = Rainfed, TC = Triple crop, DC = Double crops, and SC = Single crop patterns. Upland crops are 
mainly pigeon pea, chickpea and sesame. DOY is referring to day of year.                                   

 
“caret” package, a number of other packages were used for image processing and geospatial analysis: the “raster” 
package [32], “rgdal” [33], “lattice” [34] and “ggplot2” [35].  

RF is a classifier consisting of a collection of tree-structured classifiers [36] that form an ensemble of classi-
fication and regression tree (CART)-like classifiers [37]. The algorithm can handle high-dimensional datasets 
and because of its Law of Large Numbers principle, it doesn’t suffer from over-fitting [36]. The SVM algorithm 
is a classification using the Radial Basis Function (RBF) kernel. Although there are various kernels for use in 
SVM, RBF is considered to be a reasonable first choice due to its attributes outlined in [38]. Ranges of tuning 
parameters were tested for each of the three algorithms and the tuning parameter that yielded the highest accu-
racy was considered to be optimal value. For the RF model, “number of trees” were set to 500 as a default value 
based on suggestion by Breiman and Cutler [39].  

The “optimal” tuning parameters of the three models compared in this study (SVM, RF and C5.0) were de-
termined by applying 3-fold cross validation repeated six times. In order to evaluate and compare performances 
the three models, the predicted classes were compared against the “hold-out” test data. Kappa coefficient and 
overall accuracy were used as measures of accuracies, which are two of commonly used measures of assessing 
the accuracy of thematic maps [40]. User’s and producer’s accuracies were also assessed to examine accuracy of 
each class. Paired t-test was used to assess statistical differences among accuracies achieved by different algo-
rithms [41] implementing the “caret” R-Package, which is based on Hothorn, Leisch [42] and Eugster, Hothorn 
[43]. A summary of classification procedures and accuracy assessment is shown in Figure 3. 

4. Results  
4.1. Accuracy Improvements through Participatory Iterative Mapping and Model  

Comparisons  
Figure 4(a) shows class accuracies (user’s and producer’s) and the trends of accuracy changes for each class as  
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Figure 3. Flow chart of analysis procedures.                                   

 
size of training data increases and the size of predictor layers being constant. The result is based on classification 
by SVM model and three years stack of 16-days NDVI composite. It should be noted from Figure 4(a) that the 
accuracy improvement achieved through increasing number of iteration (number of days) was not the same for 
different classes: large accuracy fluctuation was observed in non-agricultural land cover category and rice-based 
cropping patterns generally showed increasing trends of accuracy (Figure 4(a)). When small size of training da-
ta was used, RF resulted in relatively higher accuracy (Figure 4(b)). The significance of difference tended to 
diminish as the size of training data set gets larger. The accuracy difference between the initial classification, 
which was based on conventional random sampling of reference data, and the final reference data collected 
through iterative classification is about 31%, 32% and 43% for RF, SVM and C5.0 classifiers, respectively 
(Figure 4(b)). This was due to confusion between urban and bare surfaces such as dry river beds and exposed 
rocky areas. 

Accuracy achieved by all models increased with size of predictor dataset and differences among the three 
classifiers depended on size of predictor layers (Figure 5). Highest accuracy was achieved by SVM using 8 days 
NDVI composite of 3 years, but not significantly different from RF and C5.0 models. Though the differences 
are small, SVM was shown to consistently outperform and in most cases; C5.0 model not only resulted in lowest 
accuracy (Figure 4(b)), but also consumed the largest computational time (Figure 7). Accuracy differences 
among the three classifiers was clearer and consistent when large number of predictor variables are used com-
pared to comparisons using fewer number of predictors (12 stack layers versus 137 stack layers) (Figure 6(a) 
and Figure 6(b)). With largest number of predictors (137 layers), processing time consumed by C5.0 was nearly 
8 times that of SVM. In all sets of data, SVM was shown to be computationally most efficient (Figure 7). Sta-
tistical significance of accuracy difference among classifiers was higher when fewer numbers of predictor layers  
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Figure 4. Accuracy improvement achieved through participatory iterative mapping procedures.                                   
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Figure 5. Accuracy differences among the three machine learning algorithms compared using NDVI layers. With 
increasing numbers of predictor variables, accuracy differences become more obvious; particularly, SVM model 
showed significantly higher accuracy as the size of predictor layers increases.                                     

 
are used. Accuracy of the three models was higher when NDVI is used compared to same number of EVI layers 
and accuracy difference of up to 4% was observed between NDVI and EVI when SVM classifier was used 
(Figures 8(a)-(c)). 

Accuracy also varied with type of vegetation indices used in the prediction. The lowest accuracy was ob-
served when monthly EVI of 1 year was used and increasing the number of VIs layers (predictor variables) has  
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Figure 6. Accuracy differences among the models with increasing size of reference 
data and (a) the smallest number of predictor layers (1 year stack of NDVI monthly 
composite (12 layer stacks)), (b) the largest number of predictor layers (3 years stack 
of NDVI 8-days (137 layer stack)).                                            

 
considerably improved accuracy (Figure 8). 

4.2. Cropping Pattern Map 
The final classification output developed using SVM algorithm is shown in Figure 9. An overall accuracy of 93% 
and Kappa coefficient of 0.92 were achieved when SVM was applied using the final training data set and 3 years 
layers of 16-days NDVI composite. Both user’s and producer’s accuracy of all classes exceeded 74% (Table 2). 
The smallest producer’s and user’s accuracies were due to large confusion among class “rainfed monsoon rice 
and winter/summer upland crops”, “irrigated monsoon rice and winter/summer upland crops”, and “rainfed 
monsoon upland crop and winter/summer upland crops” (Table 2). 

5. Discussion  
Active involvement of local agricultural officers and farmers in the iterative process of mapping was an efficient 
procedure for improving accuracy and identifying areas with high classification errors. It not only helped rapid  
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Figure 7. Comparison of computational time elapsed: within algorithm (row) and across algorithm 
(columns). Total time elapsed to complete model training and determining final tuning parameter is 
calculated in seconds (rounded to minutes).                                                     

 
assessment of accuracy, but also facilitated identification of priority sampling locations which enabled substan-
tial error reduction. Information regarding cropping patterns may not be easy to collect by field observations, 
since once can see only one type of land cover at a time. This was made possible by iteratively evaluating the 
accuracy of each class as we added more reference data and involved local people to examine how the classifi-
cation errors were minimized by including more samples from locations where predominant errors were de-
tected by the people. The participatory reference data collection was an efficient way of collecting accurate ref-
erence data since local people have knowledge about the historical patterns and changes of such patterns in time. 

Ground-based data collection is expensive and time consuming, particularly when the area to be mapped is 
large and accessibility is constrained by factors such as absence of roads and conflicts. Foody [44] emphasizes 
the need for consideration of sample size and economic feasibility of sample collection. Resources being limited, 
sampling strategy need to be economical and the quantity and quality of the data should allow for statistically 
meaningful analyses (Congalton, 1991). Recent study by Mialhe, Gunnell [45] has also highlighted the impor-
tance of participatory mapping approach in data-poor areas, and in areas such as conflict zones. Our approach 
signifies the importance of examining mapping accuracy in a participatory process particularly in conditions 
where sites are inaccessible or difficult to access. Arguably, participation of local community in the mapping 
process enables more efficient way of sampling for substantial accuracy improvements. The approach we ap-
plied has two-fold improvements: first, it minimizes time and resource needed for traveling and collection of 
reference data by facilitating an efficient and accurate way of generating data over large areas, and inaccessible 
areas; with the help of the discussion with local people, more ground samples were systematically allocated to 
areas that are highly heterogeneous, which could be caused by complexity of land cover patterns; second, we  
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were able to assess location accuracy of mapping at locations for which we have no prior knowledge/reference 
data, which would not be possible through traditional accuracy assessment in remote sensing. This interactive 
and iterative process of mapping has resulted in substantial improvement of accuracy ranging from 31% to 43%.  

 

 
Figure 8. Accuracy variation with the use of NDVI and EVI as predictors: (a) SVM, (b) RF and (c) C5.0; (d) shows 
accuracy differences among the three models using NDVI 16-days composite of 3 years.                                
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Figure 9. Final map of cropping patterns and major non-agricultural land use/cover for the five Townships.                  
 
Table 2. Error matrix of final map based on SVM algorithm using NDVI 16-days composite of 3 years stack computed 
applying cross-validation. One-third of the final 3654 reference data (combination of ground-based data and samples 
identified on screen using high resolution imagery provided by Google Earth®. Description of the classes is: 1 = Barren land 
and Other nonagricultural lands, 2 = Forest/Woodland/Scrubland, 3 = Irrigated monsoon rice and summer rice, 4 = Irrigated 
monsoon rice and winter/summer upland crops, 5 = Irrigated monsoon upland crop and winter/summer upland crop, 6 = 
Irrigated monsoon rice, winter upland crop and summer upland crops, 7 = Mixed crop class (this is areas where it was no 
unique cropping pattern, mixture of various cropping patterns were identified within an area of one MODIS pixel size, 8 = 
Recession crops (these are crop produced near rivers and creeks, where no crop is grown during monsoon and as water 
recedes, various crops are grown using residual moisture without/with supplemental irrigation, 9 = Rainfed monsoon rice 
and winter/summer upland crops, 10 = Rainfed monsoon upland crop and winter/summer upland crops, 11 = Rainfed single 
crop monsoon rice, 12 = Rainfed single crop monsoon upland crops, 13 = Urban/settlement areas, 14 = Water.                

  Reference data   

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total User 

SV
M

 p
re

di
ct

ed
 

1 136 0 0 2 0 0 0 2 0 0 0 2 1 1 144 95 

2 0 128 1 0 0 0 0 0 0 0 0 0 0 0 129 99 

3 0 0 71 2 0 1 0 0 1 0 3 0 0 0 78 92 

4 0 1 1 67 0 3 0 0 4 1 1 1 1 0 80 84 

5 0 0 0 1 36 0 0 1 0 1 0 0 0 0 39 91 

6 0 0 2 1 0 48 0 0 0 0 0 0 0 0 52 93 

7 0 0 0 0 0 0 39 0 0 0 0 0 0 0 39 100 

8 0 0 0 0 1 0 0 111 0 1 0 0 0 1 115 97 

9 0 0 1 4 0 0 0 0 36 0 0 1 0 0 43 84 

10 0 1 1 1 0 0 0 0 4 112 6 5 1 0 132 85 

11 1 0 3 0 0 0 0 0 1 1 56 1 0 0 63 90 

12 2 0 0 0 0 0 0 0 2 6 1 54 0 0 64 84 

13 0 0 0 1 1 0 0 0 0 1 0 0 66 0 69 96 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 172 172 100 

 Total 140 129 79 79 38 54 39 115 49 123 66 63 69 174 1217  

 Prod 97 99 90 85 95 89 100 97 73 91 85 86 96 99   

 Overall 93               
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The accuracy performance of all machine learning algorithms compared in this study has increased with in-
creasing size of predictor layers and training sample size, which is in agreement with studies such as Li, Wang 
[18]. With limited number of training samples, RF was slightly better in accuracy. This may imply the robust-
ness of RF when reference data are limited. Similar comparative studies that attempted to examine accuracy dif-
ferences among different machine learning algorithms showed different results. Studies by Adam, Mutanga [46] 
and Duro, Franklin [22] indicated machine learning algorithms such as SVM and RF performed similarly, and 
other studies such as that of Cracknell and Reading [47], Fernández-Delgado, Cernadas [17] and Kampichler, 
Wieland [48] showed RF to be the most accurate algorithm. Our result, which showed SVM to be superior in 
accuracy compared to both RF and C5.0, is yet in agreement with studies such as that of Shao and Lunetta [16] 
and Maroco, Silva [49] indicated SVM to be superior in accuracy.  

Though accuracy comparisons could depend on a number of factors, machine learning algorithms are sensi-
tive to tuning parameter. Tuning of learning parameters is often not straight forward [50]. In this study, the “best” 
values of tuning parameters were determined automatically based on highest accuracy achieved by the methods. 
Our results of computational time comparison also showed SVM is the most efficient method and both lowest 
accuracy and highest computational time was shown by C5.0 algorithm. This is an interesting finding particu-
larly when classification of large data set over large spatial scales is of interest.  

Comparisons of accuracy difference between NDVI and EVI are rare in the literature. A study by Wardlow 
and Egbert [51], which compared agreement of crop information derived from MODIS EVI and NDVI products 
with ground-based measurements indicated no considerable difference between the two indices. Our observation 
which indicated mapping accuracy to be relatively higher with the use of NDVI as predictor over EVI, could be 
explained by the sensitivity of EVI to variation in blue band compared to NDVI [52], which could result in more 
noises particularly in time series analysis, despite atmospheric correction applied to the images, varying magni-
tude of atmospheric effects could be manifested in values of EVI.  

6. Conclusions 
We implemented a unique participatory iterative mapping technique to minimize mapping errors in a complex 
agricultural landscape. Accuracy performances (overall accuracy and kappa coefficient) of three machine learn-
ing algorithms were evaluated after determining optimal tuning parameters for each of the algorithms. The ac-
curacy changes with increasing size of training samples and predictor layers were examined. Variation in accu-
racy with the use of NDVI and EVI as predictors was also explored. In addition to accuracy measures, 
processing time was also used as a criterion to assess model performances. 

The participation of local agricultural officers and farmers people in iterative mapping process substantially 
improved accuracy and enabled efficient sampling strategies. We were able to substantially improve accuracy by 
up to 43% through optimally identifying the most suitable algorithm and predictor data types and sizes. An 
overall accuracy of 93% was achieved and 14 major classes of cropping patterns and non-agricultural land cover 
types were detected. The use of larger number of VIs stacks increased accuracy by up to 4% compared to the 
smallest number of predictor layers (one year stack of monthly composite versus 3 years stack of 16-days or 
8-days composite). NDVI resulted in higher accuracy compared to EVI of same number of layers.  

Comparison based on overall accuracy and kappa coefficient shows that consistently higher, though small, 
accuracy was achieved by SVM compared to RF and C5.0. Statistical significance of accuracy differences de-
pended mainly on number of predictors: with fewer numbers of predictors, less significance of differences were 
observed. When smallest number of training samples were used to predict classes using only 12 layers of VI, RF 
was slightly better in accuracy. As the number of training sample becomes larger and the size of predictor layers 
increases, all of the three algorithms performed well, though SVM was relatively superior. These results provide 
insights into the importance of size of training samples and predictor variables in deciding which classifier may 
need to be used in order to achieve high accuracy levels.  
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