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Abstract 
Land cover change is a major challenge for many developing countries. Spatiotemporal informa-
tion on this change is essential for monitoring global terrestrial ecosystem carbon, climate and 
biosphere exchange, and land use management. A combination of LST and the EVI indices in the 
global disturbance index (DI) has been proven to be useful for detecting and monitoring of 
changes in land covers at continental scales. However, this model has not been adequately applied 
or assessed in tropical regions. We aimed to demonstrate and evaluate the DI algorithm used to 
detect spatial change in land covers in Lao tropical forests. We used the land surface temperature 
and enhanced vegetation index of the Moderate Resolution Imaging Spectroradiometer time-se- 
ries products from 2006-2012. We used two dates Google EarthTM images in 2006 and 2012 as 
ground truth data for accuracy assessment of the model. This research demonstrated that the DI 
was capable of detecting vegetation changes during seven-year periods with high overall accuracy; 
however, it showed low accuracy in detecting vegetation decrease. 
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1. Introduction 
Global measures of land cover change are important for global terrestrial ecosystem carbon schemes, climate 
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and biosphere exchange modeling [1]-[3], and for improving our understanding of human and environmental 
interactions [4]-[6] with vegetation condition and structure [7]. Biodiversity loss due to land cover change is one 
of the core management challenges at both global and regional scale [8] [9]. Adequate spatiotemporal informa-
tion is critical for monitoring this change [10]-[12]. However, obtaining accurate spatiotemporal information of 
the timing and location of land cover change is especially challenging under logistically constrained conditions 
such as tropical forests in developing countries. 

A remote sensing approach is essential and such an application has provided key information for the compre-
hension of ecological system dynamics. For example, it has been used to study the responses of both the Ama-
zon forest canopy to drought [13], and the intra-annual and inter-annual variations of the enhanced vegetation 
index (EVI) in Brazilian tropical forests [14]. Remote sensing has also been used to predict and map forest struc- 
ture and density in southeastern Madagascar [15], and to examine the relationship between Mexican tropical 
vegetation and rainfall [16]. Moreover, a number of change detection algorithms for use with satellite imagery 
have been tested and applied [5]. 

Another approach is to use the differential surface heat flux response of bare versus vegetated land. This ap-
pears to offer a means for the investigation of the status of land surface cover, and a number of studies have in-
vestigated the relationship between temperature and vegetation cover [17]-[24]. It is widely acknowledged that 
land surface temperature (LST) is determined by different land cover characteristics. Yue, Xu, Tan, et al. [25] 
suggested that dense vegetation cover might cause relatively higher evapotranspiration from the land surface to 
the atmosphere. This evapotranspiration could reduce land surface heat in comparison with open or bare land. In 
contrast, if vegetation loss occurred (i.e., large-scale forest clearance), this would be likely to increase LST. 

Research has proven that using LST and the EVI can be useful for distinguishing differences in land cover [1] 
[7] [26] [27]. Using LST and EVI time-series data from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) offers the potential to detect changes in land covers, such as with the disturbance index (DI). The DI 
was developed by Mildrexler, Zhao, Heinsch, et al. [3] and Mildrexler, Zhao and Running [27] to monitor glob-
al vegetation changes, and the approach was tested and shown to work well in forests of the United States and 
Canada [7].  

In theory, the DI uses a combination of the EVI and LST indices for detecting and monitoring the changes in 
land covers on global scales. However, there are known problems related to cloud cover, atmospheric water 
column content, and aerosol haze when employing the EVI in tropical regions [28] [29]. There has been no im-
plementation or evaluation of the DI model in tropical regions [2] [27] [30] and there is little known about 
whether EVI and LST could be useful in detecting changes in land covers in this region. Therefore, the aim of 
this research was to demonstrate and evaluate the DI for detecting spatial change in land covers in the south of 
Lao People’s Democratic Republic (PDR). We used MODIS EVI and LST data time series from 2006-2012 in 
the DI model, and used high resolution Google Earth TM images (2006 and 2012) to evaluate the performance of 
the DI. 

2. Methods 
2.1. Study Area 
The study area is located in Champasack Province in the south of Lao PDR. This area was selected because of 
its reasonably high geographic uniformity and large areas of homogeneous land cover. Additionally, this area 
was selected because of the availability of images from Google Earth™ for the evaluation of the success of the 
DI model. 

The study site shown in Figure 1 covers an area of 15,415 km2 (13˚55'00"N - 15˚22'00"N, 105˚13'00"E - 
106˚55'00"E). Approximately 58% of Champasack Province is covered by native forests, which comprise a 
range of natural ecosystems such as dry, mixed evergreen, deciduous tropical forests, savanna, and semi-dry 
evergreen forests. Two of the largest national protected areas of Lao PDR are encompassed within the area: Xe-
pian and Dong Houa Sao. Champasack is divided by the Mekong River. The majority of the terrain is relatively 
flat (74%), while 26% of the area has higher elevations. Overall, the elevation ranges from 75 - 1284 m, but the 
majority of land is around 75 - 120 m above sea level. There are two distinct seasons: rainy (May-October) and 
dry (November-April). During the rainy season, it is often windy; humidity is high, and most of the annual av-
erage rainfall of 2279 mm occurs. During the dry season, conditions are mostly sunny with average temperatures  
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Figure 1. Location of the study area in Champasack Province, southern Lao 
PDR.                                                                  

 
of 21˚C - 35˚C and little rainfall. The volcanic soil of the area provides suitable growing conditions for coffee 
trees. 

2.2. Method Overview 
Our research comprised three major steps: 1) data collection and image preprocessing, 2) application of the DI 
algorithm to detect vegetation cover change, and 3) evaluation of the results of the DI (Figure 2). 

2.2.1. Data Collection and Image Preprocessing 
We used the MODIS Terra vegetation index products (MOD13A2 and MOD11A2, tile h28v07) from Collection 
5 with 1-km spatial resolution. MODIS data were retrieved from the Earth Resource Observation and Science 
Center (EROS), National Aeronautics and Space Administration (NASA) using the ModisDownload R script. 
The time series spans the period from January 2006 to December 2012 with 16-day intervals (23 time steps) for 
MOD13A2 and 8-day intervals (46 time steps) for MOD11A2. The EVI is a vegetation index using the red, blue 
and NIR reflectance, as shown in Equation (1): 

( )
( )

NIR red
EVI 2.5

1 NIR 6 red 7.5 blue
x

x x
−

=
+ + −

                          (1) 

The EVI was selected because the algorithm is improved both for sensitivity to regions of high biomass and 
for vegetation monitoring through a de-coupling of the canopy background signal and a reduction in atmospher-
ic influences [7] [31]-[34]. 

In this research, image preprocessing selected only good quality pixels of the MODIS data to avoid bias. Thus, 
we extracted pairs of MODIS EVI and LST time series data and their quality assurance layers (QA). Then, bad 
quality pixels were masked by the QA or via enclosed Pixel Reliability datasets (value = 0; good data, use with 
confidence). Those time-series datasets were subsetted and reprojected to WGS84, UTM zone 48N, using the 
MODIS reprojection tool (version 4.01).  

2.2.2. Applying the DI Algorithm 
The DI algorithm was tested for detecting changes in vegetation cover for the entire Champasack Province using 
the MODIS EVI and LST data time series from 2006-2012. The DI created by Mildrexler, Zhao, Heinsch, et al. 
[3] and refined by Mildrexler, Zhao and Running [27] is calculated as: 
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Figure 2. Research steps.                                         
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where DIi is the disturbance index value for year i; LSTimax is the annual maximum eight-day composite LST for 
year i; EVIimax is the annual maximum 16-day EVI for year i; LSTmax is the multiyear mean LST (maximum) up 
to, but not including the analysis year (i − 1); and EVImax is the multiyear mean of EVI (maximum) up to, but not 
including the analysis year (i − 1). 

The DI was designed for detecting changes in land covers on a pixel-by-pixel basis [3] [27]. The output from 
our pixel calculations is unitless. We used the same standard of threshold setting as in previous research [2] [3] 
[7] [27], and values of DI were set as the mean ±1 standard deviation (SD). An output map of the DI was classi-
fied into three classes: increased, stable, and decreased vegetation. Larger the mean (+) 1SD was assigned to de-
creased vegetation, whereas less than the mean (−) 1SD, signified increased vegetation. The rest was designated 
as stable vegetation. Normally, DI values of natural variability with no substantial change in land covers or sta-
ble vegetation fall within a narrow range around 1.0. 

2.2.3. Evaluating the Results of the DI Model 
The final research step was to evaluate the effectiveness of the DI in detecting spatial changes in vegetation 
cover within the study area. We evaluated the output map of the DI by Google EarthTM Images in 2006 and 
2012. 

Table 1 represents our interpretation of the change in land covers between 2006 and 2012, from the Google 
Earth™ images. Firstly, we identified and classified land covers from the Google EarthTM imagery into four do-
minant land cover types: native forest, plantation, mixed wooded/cleared area and agriculture. Secondly, we di-
gitized these land covers as polygons in order to calculate their changes between 2006 and 2012 using Arc-
GIS10.2.1 software. This vegetation change map was assigned into the same three categories corresponding to 
those used in the DI application: 1) Stable vegetation is an area that appears to exhibit little or no change be-
tween the images; 2) Increased vegetation means an area that shows an increase in vegetation cover such as the  
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Table 1. Matrix of interpreted land cover transitions.                                                           

Transition of land cover from/to Native forest Plantation Mixed wooded/cleared Agriculture 

Native forest S DV DV DV 

Plantation NA S NA DV 

Mixed wooded/cleared IV IV S DV 

Agriculture NA IV IV S 

Note: IV = increased vegetation, S = stable vegetation, DV = decreased vegetation, NA = not found in our case. 
 
transition from mixed wooded/cleared areas or bare land to plantation; and 3) Decreased vegetation indicates the 
clearance or loss of vegetation, i.e., the transition of native forest to mixed wooded/cleared areas or agricultural 
land. This information was used as evaluation data for the DI. 

Thirdly, the output map of the DI and the evaluation data from the Google Earth TM were overlaid (Figure 3). 
This comparison was to evaluate whether the DI can detect detailed changes in land covers. We used 1207 ran-
dom samples within the total assessment area of approximately 2500 km2. This area was determined by the avai- 
lability of high resolution Google Earth TM images in two dates 2006 and 2012 over the same location (Figure 4). 
The unit of comparison was based on a pixel of MODIS (1 × 1 km). Finally, summary of the Disturbance Index 
accuracy assessment was provided. 

3. Results and Discussion 
3.1. DI Accuracy Assessment 
The DI was implemented to detect spatial changes in land covers within our study area during the seven-year 
period from 2006-2012. The results of its accuracy assessment are presented in Table 2, and an example of a 
comparison of the results with the Google Earth™ imagery is shown in Figure 3. The overall accuracy of the DI 
output is 82% and its Kappa statistic is 0.59, although the user’s and producer’s accuracies for individual classes 
differ. The producer’s and user’s accuracies for the class of stable vegetation (areas of little change or minor 
disturbance; 90.37% and 89.95%, respectively) are higher than for the other vegetation change classes. In-
creased vegetation suggested by the DI shows lower percentages of both producer’s (66.67%) and user’s accu-
racy (65.72%), and areas of decreased vegetation cover have the lowest accuracy (producer’s 42.42% and user’s 
48.28%). The DI appears to detect changes in vegetation cover within the study area with high overall accuracy, 
but lower accuracy for areas in which the vegetation has decreased. 

3.2. Visualizing Changes in Google EarthTM 
Figure 3 shows the spatial changes in land covers detected by the DI model and its comparison of changes with 
high-resolution images from Google Earth™ in the same period (2006 and 2012). The model appears to detect 
and locate patterns of change in land covers, especially highlighting areas where vegetation has increased or re-
mained unchanged. Increased vegetation is found mostly in plantation areas, but stable vegetation areas are lo-
cated in agricultural regions and some parts of the native forest within the protected areas (Figure 4). The DI 
can indicate areas of vegetation decrease; however, some of these areas were not detected well, including native 
forest clearances. The interpretation of the Google Earth™ indicates that most forest clearance has occurred in 
relatively tiny areas, due to shifting cultivation practices and small-sized agriculture. Some of these small scat-
tered areas of forest clearances went undetected by the model. This approach tends to capture large spatial 
changes in land covers, preferably >1 km2. For example, continuous extended areas showing an increase in ve-
getation cover were well detected, such as rubber plantations. 

Table 3 indicates that about 2.5% of the total area of vegetation cover was lost from 2006 to 2012, while ap-
proximately 6.65% of the entire provincial land shows an increase in vegetation cover. This increase was the 
result of the expansion of rubber plantations within this area. A large proportion of the vegetation decrease was 
found in native forests, near the protected areas, and in the mixed wooded/cleared area in the north of Champa-
sak Province. 
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Figure 3. Comparison of changes in land covers over the seven-year period (2006-2012) detected 
by the Disturbance Index with the evaluation data from Google Earth™ images. Red pixels and red 
striped lines indicate decreased vegetation, green pixels and green striped lines indicate vegetation 
increase, and white pixels and white polygons show stable vegetation.                           

4. Conclusion 
In this research, we demonstrated and evaluated the global disturbance index, which used a combination of EVI 
and LST indices. We used MODIS EVI and LST time series data (from 2006-2012) to test whether this ap-
proach was useful for detecting land cover change in Lao tropical forests. An evaluation of the performance of 
the DI was performed by comparing its results with corresponding high-resolution images from Google Earth™. 
The key findings were that the DI was capable of detecting vegetation changes within our study area during the 
seven-year period with high overall accuracy (82%); however, it showed low accuracy in detecting decreases in 
vegetation (about 42%). Even though this model is straight forward and can be used for rapid assessment of land 
cover changes in the tropics, it may not be useful for assessing vegetation loss when high accuracy is required. 
Further investigation is required into the atmospheric and climate effects on MODIS LST and EVI in the appli-
cation of the model. 
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Figure 4. Example of the Google Earth™ images showing land cover changes between 2006 and 
2012, from locations in Figure 3. (a) undisturbed forest in 2006, (b) disturbed native forest in 2012; 
(c) land clearance in 2006, (d) rubber plantations in 2012, (e) mixed wood and cleared areas in 2006, 
(f) reduced areas of wood and increased clearances in 2012, (g) & (h) unchanged agricultural areas 
in 2006 and 2012, respectively.                                                            



C. Phompila et al. 
 

 
80 

Table 2. Summary of the disturbance index accuracy assessment.                                                  

Google Earth™ (2006 and 2012) 
Disturbance Index 

Total Producer’s Accuracy 
(%) IV S DV 

IV 186 87 6 279 66.67 

S 59 779 24 862 90.37 

DV 38 0 28 66 42.42 

Total 283 866 58 1207  

User’s Accuracy (%) 65.72 89.95 48.28  82 % 

IV = increased vegetation, S = stable vegetation, DV = decreased vegetation. 
 
Table 3. Estimated area of vegetation cover changes from 2006-2012.                                              

Vegetation Cover Changes 
Years 2006-2012 

Total Area (km2) 
Area (km2) Percentage (%)* 

Decreased Vegetation 386 2.50% 
15,415 

Increased Vegetation 1026 6.65% 
*The percentage of vegetation cover change was calculated from numbers of pixels (1 km2) indicating change, divided by the total area (15,415 km2), 
and multiplied by 100. 
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