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Abstract 
This paper clarifies the steady-state properties and performance of an α-β filter for moving target 
tracking using both position and velocity measurements. We call this filter velocity measured α-β 
(VM-α-β) filter. We first derive the stability condition and steady-state predicted errors as funda-
mental properties of the VM-α-β filter. The optimal gains for representative motion models are 
then derived from the Kalman filter equations. Theoretical and numerical analyses verify that 
VM-α-β filters with these optimal gains realize more accurate tracking than conventional α-β fil-
ters when the filter gains are relatively large. Our study reveals the conditions under which the 
predicted errors of the VM-α-β filters are less than those of conventional α-β filters. Moreover, 
numerical simulations clarify that the variance of the tracking error of the VM-α-β filters is ap-
proximately 3/4 of that of the conventional α-β filters in realistic situations, even when the accu-
racy of the position/velocity measurements is the same. 
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1. Introduction 
Various monitoring systems that use remote sensors require the capability to accurately track moving targets. 
For such applications, representative approaches are to use a Kalman filter and an α-β(-γ) filter [1]. Kalman fil-
ters track moving targets based on a linear mechanical model of the target’s motion [1] [2]. The use of improved 
algorithms in Kalman filters, such as the extended Kalman filter and particle filter, enables targets with compli-
cated motions to be tracked by various organizations, such as air traffic control and intelligent transport systems 
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[3]-[5]. However, the computational load of the Kalman and its extended filters is relatively large, and there are 
some cases where the use of these filters is impractical. Moreover, it is difficult to estimate their tracking per-
formance analytically, and so the design of these filters is conducted empirically [1]. 

An α-β filter is a simple and effective tracking filter that assumes constant velocity during the sampling inter-
val [1] [6]-[12]. Because of its small computational load, the use of α-β filters has been proposed in various 
tracking systems. Moreover, the α-β filter is also useful for the design of tracking systems using other filters 
(Kalman filter, etc.), because its tracking performance can be analytically predicted and a steady-state α-β filter 
can be obtained as a steady-state Kalman filter [6] [11]. Thus, many researchers have reported the properties, 
performance, and optimal gain settings of the α-β filter. Benedict and Bordner [7] derived an optimal gain rela-
tion for a random velocity target, and Kalata [10] found a similar relation for a random acceleration model while 
defining an effective design parameter known as the tracking index. These studies derived optimal gains in the 
steady state from the Kalman filter equations for simple and practical motion models. Based on these funda-
mental works, effective gain-setting algorithms for various maneuvering targets have been widely investigated 
[13]-[16]. 

The majority of conventional tracking filters measure only the position of their target. This is because they are 
mainly adapted for radar or global positioning systems that acquire only position information. However, thanks 
to technical advances in recent years, monitoring systems using many radars and/or networks composed of var-
ious sensors (e.g., cameras, lasers, ultrasound sensors, and acceleration sensors) have been realized [17]. These 
systems can measure the position, velocity, and acceleration of a target, and we would expect an improvement in 
tracking performance by using these measured parameters. For design of such tracking systems, the α-β filter 
using measurement of position, velocity, and acceleration should be effective. However, although some studies 
on α-β filter [18] [19], steady-state Kalman filter [20], and parameter tuning of Kalman filter [21]-[24] had been 
conducted for tracking systems measuring velocity, these systems had been designed empirically for each appli-
cation. Thus, there are no reports on the general theory of the fundamental properties and performance of an α-β 
filter that uses parameters other than position. Therefore, the appropriate design of tracking filters that measure 
parameters such as velocity is difficult at present. 

This paper focuses on the fundamental steady-state properties of an α-β filter that measures both position and 
velocity. From the Kalman filter equations, fundamental properties of a velocity measured α-β (VM-α-β) filter 
and optimal gains are analytically derived. Based on the derived properties, we clarify the performance of the 
VM-α-β filter, and compare it with that of conventional α-β filters. Moreover, numerical simulations clarify that 
the VM-α-β filter with sufficiently accurate velocity measurements realizes accurate tracking in a realistic situa-
tion, even when the performance of the conventional α-β filter deteriorates.  

2. System Model and Tracking Filter Basics 
This section first explains the target and measurement model assumed in this paper. The Kalman filter equations 
and fundamental properties of the conventional α-β filter are then described. The new analysis examined in this 
paper is based on these conventional filter basics. 

2.1. Target/Measurement Model and Kalman Filter Equations 
A tracking filter predicts the state of a moving target using measured data based on a dynamical model. In gen-
eral, the state is composed of the position and velocity, and sensors measure the position of the target. The typi-
cal target dynamical model is [1] 

( ) ( ) ( ) ( ) ( )11 1 1 1t tk k k k k= − − + − −x x wΦ Γ                           (1) 

where xt(k) is the true target state vector at time kT, T is the sampling interval, Φ(k) is a transition matrix from 
kT to (k + 1)T, w(k) is a white Gaussian process noise with zero mean and covariance Q(k), and Γ1(k) is a matrix 
that specifies the effect of w(k). The measurement from a target is modeled as [1] 

( ) ( ) ( ) ( )2tk k k k= +z Hx vΓ                                   (2) 

where z(k) is the measurement vector, H is a measurement matrix, v(k) is white Gaussian measurement noise 
with zero mean and covariance matrix B(k), and Γ2(k) is a matrix that specifies the effect of v(k). The tracking 
system estimates the state vector based on these equations. 
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The Kalman filters equentially estimates state vectors from the following equations [2]: 

( ) ( ) ( )ˆ1 1k k k= − −x xΦ                                       (3) 

( ) ( ) ( ) ( ) ( ) ( )T T
1 1

ˆ1 1 1 ( 1) 1 1k k k k k k k= − − − + − − −P P QΦ Φ Γ Γ                    (4) 

( ) ( ) ( ) ( ) ( ) ( )
1T T T

2 2k k k k k k
−

 = + K P H HP H BΓ Γ                        (5) 

( ) ( ) ( ) ( ) ( )ˆ k k k k k= + −  x x K z Hx                                 (6) 

( ) ( ) ( ) ( )ˆ k k k k= −P P K HP                                    (7) 

where forecasts and estimates are denoted by ¯ and ^, respectively, T denotes the transpose, P(k) is a covariance 
matrix of errors, and K(k) is the Kalman gain. The Kalman filter estimates the optimal state vector whose pre-
dicted error is the minimum in the assumed target model. 

2.2. Conventional α-β Filter and Its Steady-State Performance 
The α-β filter estimates the position and velocity of a moving target using a position measured by sensors, and is 
defined by the following equations [7]: 

( ) ( ) ( ) ( )s p o px k x k x k x kα  = + −                                (8) 

( ) ( ) ( ) ( ) ( )s p o pv k v k T x k x kβ  = + −                              (9) 

( ) ( ) ( )p s s1 1x k x k Tv k= − + −                                (10) 

( ) ( )p s 1v k v k= −                                      (11) 

where xs(k) is the smoothed target position at time kT, xo(k) is the measured target position, xp(k) is the predicted 
target position, vs(k) is the smoothed target velocity, vp(k) is the predicted target velocity, and α and β are filter 
gains. Equations (8)-(11) are obtained from the Kalman filter Equations (3)-(7) using a constant velocity model 
[7].  

To evaluate the performance of α-β filter tracking, the following two steady-state errors can be derived from 
Equations (8)-(11).  

1) Steady-state error for linear uniform motion (smoothing performance): an important function of the track-
ing filter is the reduction of random errors caused by noise. One indicator of this performance is the steady-state 
error of the target with linear uniform motion considering sensor noise. We assume the variance of the noise of 
xo(k) is Bx, and that the target moves with constant velocity. The variance of the predicted target position in the 
steady state is expressed as [6] [9]  

( ) ( )( ) ( )
222

p p t x
2 2E

4 2
x k x k Bα β αβσ

α α β
+ + = − =   − −

                        (12) 

where E[ ] indicates the mean. This paper calls 2
pσ  the smoothing performance. 

2) Steady-state error for constant acceleration target (tracking performance): the filter is required to track an 
accelerating target. The tracking accuracy for a target with acceleration is evaluated by the steady-state bias er-
ror for a target under constant acceleration. When xo(k) = 1/2ac(kT)2 (ac is the constant acceleration), the steady- 
state predicted error is expressed as [6] [9] 

( ) ( ) 2
fin o p clim

k
e x k x k a T β

→∞
 = − =                              (13) 

This paper calls efin the tracking performance. 

2.3. Optimal Gains of an α-β Filter 
The optimal gains of the α-β filter minimize the steady-state errors, and are derived using the Kalman filter equ-
ations [7]-[10]. The following two optimal gain relations for representative motion models are known: 
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1) Random velocity process noise model [7] [8]: let w(k) of Equation (1) be the first derivative of the target 
position:  

( ) ( )T
1 1k T=Γ                                       (14) 

( ) ( ) ( ) ( )
2

T
1 1 1

T T
k Q k k Q k

T
 

=  
 

Γ Γ                           (15) 

For this model, the optimal relationship between the gains is known to be [7] 

( )2 2β α α= −                                     (16) 

Equation (14) is the so-called Benedict-Bordner relation (BBR) [12], and this paper calls an α-β filter having 
this relation a BBR filter. This filter is stable when 0 < α ≤ 1. 

2) Random acceleration process noise model [8] [10]: let w(k) be the second derivative of the target position:  

( ) ( )T2
1 2k T T=Γ                                   (17) 

( ) ( ) ( ) ( )
4 3

T
1 1 3 2

4 2
2

T T
k Q k k Q k

T T
 

=  
 

Γ Γ                         (18) 

For this model, the optimal relationship between the gains is known to be [10] 

( )2 2 4 1β α α= − − −                               (19) 

Equation (17) is known as the Kalata relation (KR) [12], and this paper calls an α-β filter having this relation 
a KR filter. This filter is stable when 0 < α < 1. 

The BBR and KR filters are basic tracking filters for realizing the desired performance in the steady state. 
Consequently, this paper compares their performance with that of the VM-α-β filter defined in the next section. 

3. Velocity Measured α-β Filter and Its Fundamental Properties 
This section firstly defines an α-β filter using measurements of both position and velocity we deal with in this 
paper. Then, we derive its stability condition and filter performance indicators as fundamental steady-state 
properties. 

3.1. Definition 
As for the conventional α-β filter, an α-β filter using measured velocity vo(k) can be defined with the Kalman 
filter equations. We substitute the following into Equations (3)-(7): 

( ) ( ) ( )( )T
p pk x k v k=x                                    (20) 

( ) ( ) ( )( )T
s sˆ k x k v k=x                                    (21) 

( )
1
0 1

T
k  

=  
 

Φ                                       (22) 

( ) ( ) ( )( )T
o ok x k v k=z                                   (23) 

( )
1 0
0 1

k  
=  
 

H                                       (24) 

( )
0

0
k

α
β

 
=  
 

K                                       (25) 

This paper assumes that Kalman gains other than the main diagonal elements are zero, as in Equation (25), to 
avoid increasing the number of design parameters. As indicated in Equations (5) and (7), this assumption is 
equivalent to neglecting the covariance of the errors in position and velocity. As a result of this substitution, 
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Equations (8), (10), and (11) are same as the conventional α-β filter and Equation (9) becomes 

( ) ( ) ( ) ( )s p o pv k v k v k v kβ  = + −                               (26) 

We call the tracking filter defined by Equations (8), (10), (11), and (26) the VM-α-β filter. 

3.2. Stability Condition 
To clarify the stability condition of the VM-α-β filter, we examine the relationship between the input and output 
signals in z-space. Applying a z-transform to Equations (8), (10), (11), and (26), the relationships between input 
signals xo(k) and vo(k) and output signals xp(k) and vp(k) in z-space can be written as: 

( ) ( ) ( )( ) ( )p o o1 1 1
zX z X z TV z

z z z
α β
α α β

= +
+ − + − + −

                    (27) 

( ) ( ) ( )p o 1V z V z zβ β= + −                                    (28) 

Thus, the stability condition of the VM-α-β filter is easily derived from the characteristic polynomial of  
( )( )1 1z zα β+ − + − , resulting in the gains constraints: 

0 2   and   0 2α β< < < <                                     (29) 

This condition means that the VM-α-β filter is stable for practical use, because gains are generally in the 
range 0 < α < 1 and 0 < β < 1 to obtain a smoothing effect in the filter. 

3.3. Tracking Performance 
We can derive the predicted errors in the steady state to evaluate the tracking/smoothing performance. First, the 
steady-state error for a target with constant acceleration ac is derived to evaluate the tracking performance. The 
result of the derivation is 

( ) ( ) ( ) ( )2
fin o p clim 2 2

k
e x k x k a Tβ αβ

→∞
 = − = −                         (30) 

The derivation of Equation (30) is as follows. From Equation (27), the z-transform of ep(k) = xo(k) − xp(k) is 
given by 

( ) ( ) ( ) ( ) ( )( ) ( )p o p o o
1

1 1 1
z zE z X z X z X z V z

z z z
β

α α β
−

= − = −
+ − + − + −

              (31) 

Here, because we assume the target has constant acceleration ac, the measured position and velocity are given 
as: 

( ) ( )2
o c 2x k a kT=                                     (32) 

( )o cv k a kT=                                        (33) 

and their z-transforms are: 

( ) ( ) ( )32
o c1 2 1X z z z a T z = + −                                    (34) 

( ) ( )2
o c 1V z za T z= −                                    (35) 

Substituting these into Equation (31), we obtain 

( ) ( )( )
( ) ( )( )

2
p c2

1 1 2

2 1 1 1

z z z z
E z a T

z z z

β β

α β

+ + − −
=

− + − + −
                          (36) 

Using Equation (36), the final value theorem, and l’Hôpital’s rule, we have Equation (30). 

3.4. Smoothing Performance 
Next, we derive the smoothing performance. As mentioned in Section 3.1, we assume that the errors in position 
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and velocity are uncorrelated. The covariance matrix of the measurement noise is thus expressed as 

( ) ( ) ( ) xT
2 2

v

0
0

B
k k k

B
 

=  
 

BΓ Γ                                (37) 

where Bv is the variance of the measurement noise of vo(k). Under the assumption of Equation (37), the variance 
in steady-state errors of the predicted position for a constant velocity target is derived as 

( ) ( ) ( )( )
2 2
p p t x vE

2 2 2
x k x k B T Bα βσ

α α α β
 = − = +  − − −

                  (38) 

The derivation of Equation (38) is as follows. First, we determine the variance of the smoothed position and 
velocity errors. From Equations (8), (10), (11), and (26), the errors in the smoothed position and velocity are:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ){ } ( ) ( )( )s t s t s t o t1 1 1 1 1x k x k x k x k T v k v k x k x kα α− = − − − − + − − − + −     (39) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )s t s t o t1 1 1v k v k v k v k v k v kβ β− = − − − − + −                (40) 

Therefore, the variances of these errors are calculated as 

( ) ( )( )

( ) ( ) ( )( ){ ( ) ( )( ) ( ) ( )( )

( ) ( )( ) } ( ) ( ) ( )( ) ( ) ( )( ){
( ) ( )( ) ( ) ( )( ) } ( ) ( )( )

2
s t

22
s t s t t

22
s t s t o t

22
o t s t o t

E

1 E 1 1 2 E 1 1 1 1

E 1 1 2 1 E 1 1

E 1 1 E

s

x k x k

x k x k T x k x k v k v k

T v k v k x k x k x k x k

T x k x k v k v k x k x k

α

α α

α

 −  

   = − − − − + − − − − − −   

   + − − − + − − − − −   

  + − − − − + −    

    (41) 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

2 22
s t s t

s t o t

22
o t

E 1 E 1 1

2 1 E 1 1

E

v k v k v k v k

v k v k v k v k

v k v k

β

β β

β

   − = − − − −      
 + − − − − − 

 + −  

          (42) 

Since the position and velocity errors are uncorrelated and we are considering the steady state, we can as-
sume: 

( ) ( )( ) ( ) ( )( )2 2 2
s t s t xsE E 1 1x k x k x k x k σ   − = − − − =      

                    (43) 

( ) ( )( ) ( ) ( )( )2 2 2
s t s t vsE E 1 1v k v k v k v k σ   − = − − − =      

                    (44) 

( ) ( )( ) ( ) ( )( )s t s tE 1 1 1 1 0x k x k v k v k − − − − − − =                        (45) 

( ) ( )( )2
o t xE x k x k B − =  

                               (46) 

( ) ( )( )2
o t vE v k v k B − =  

                               (47) 

( ) ( )( ) ( ) ( )( )o t s tE 1 1 0x k x k v k v k − − − − =                          (48) 

Because the smoothed parameters are a linear combination of the measured parameters, the following rela-
tions are satisfied: 

( ) ( )( ) ( ) ( )( )s t o tE 1 1 0x k x k x k x k − − − − =                          (49) 

( ) ( )( ) ( ) ( )( )s t o tE 1 1 0v k v k v k v k − − − − =                            (50) 
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Substituting Equations (43)-(50) into Equations (41) and (42), the variances are given by:  

( )2
vs v 2Bσ β β= −                                        (51) 

( )
( )( )

2
2 2
xs x v

1
2 2 2

B T B
β αασ

α α α β
−

= +
− − −

                            (52) 

Using these variances, we can derive the variance of the predicted error. From Equations (10) and (43)-(45), 
the variance of the predicted error is expressed as 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

2 22
p p t s t

s t s t

22
s t

2 2 2
xs vs

E E 1 1

2 E 1 1 1 1

E 1 1

x k x k x k x k

T x k x k v k v k

T v k v k

T

σ

σ σ

   = − = − − −     
 + − − − − − − 
 + − − −  

= +

                    (53) 

Substituting Equations (51) and (52) into Equation (53), we have Equation (38).  

4. Optimal Gains of the VM-α-β Filter 
Using the tracking/smoothing performance given by Equations (30) and (38), we can evaluate the performance 
of the VM-α-β filter. However, as shown in these equations, there is a trade-off between these steady-state errors. 
For example, although a relatively small α is appropriate to reduce 2

pσ  in Equation (38) when Bx is large com-
pared with T2Bv, a small value of α serves to increase the value of efin in Equation (30). To realize better perfor-
mance while considering this trade-off, setting the optimal gains derived from the Kalman filter has been shown 
to be an effective approach [6]-[10]. This section derives optimal gain relationships for the VM-α-β filter from 
the Kalman filter equations for the two representative motion models described in Section 2.3.  

4.1. Optimal Gain Relationship for Random Velocity Model 
In this subsection, we consider the optimal gains when the process noise is a zero-mean random velocity, as 
given by Equations (14) and (15), such as in the BBR filter. For this model, the optimal gain relationship is giv-
en by 

( )
2

2
B 1R
αβ

α α
=

+ −
                                         (54) 

where  
2

B v xR T B B=                                           (55) 

We call the VM-α-β filter whose gains satisfy Equation (54) the random-velocity velocity-measured (RV- 
VM) filter. 

The derivation of Equation (54) is as follows. Optimal gains are derived from the relationship between the 
gain matrix K(k) and variance matrix P(k) of the Kalman filter equations. As we have assumed that the cova-
riance of the position and velocity is zero, let the covariance matrices be: 

( ) ( )
( )

11

22

0
0

P k
k

P k
 

=   
 

P                                       (56) 

( ) ( )
( )

11

22

ˆ 0ˆ
ˆ0

P k
k

P k

 
 =
 
 

P                                       (57) 

Substituting Equations (15), (22), (56), and (57) into Equation (4), we obtain: 

( ) ( ) ( ) ( )11 11 2 22 2ˆ ˆ1 1 1P k P k T P k T Q k= − + − + −                         (58) 
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( ) ( ) ( )22 22ˆ 1 1P k P k Q k= − + −                                (59) 

Substituting Equations (25), (56), and (57) into Equation (7), we obtain:  

( ) ( ) ( )11 11ˆ 1 1P k P kα= − −                                  (60) 

( ) ( ) ( )22 22ˆ 1 1P k P kβ= − −                                  (61) 

Equation (5) can be rewritten as [25] 

( ) ( ) ( ) ( ) ( )
1T T

2 2
ˆk k k k k

−
 =  K P H BΓ Γ                            (62) 

Substituting Equations (24), (37), (60), (61) into (62), the gains can be expressed as:  

( ) ( )( )11 11
xP k P k Bα = +                                  (63) 

( ) ( )( )22 22
vP k P k Bβ = +                                  (64) 

From Equations (58), (60), (61), and (63), and assuming the steady state (i.e. all variables do not depend on k), 
we obtain 

2 2
x v

2 2
x v x

B T B T Q
B T B T Q B
α β

α
α β

+ +
=

+ + +
                               (65) 

Similarly, from Equations (59), (61), and (64), we obtain 

v

v v

B Q
B Q B
β

β
β

+
=

+ +
                                    (66) 

Simplifying Equations (65) and (66), we arrive at Equation (54).  
Figure 1(a) shows the relationship between the gains α (0 < α ≤ 1) and β of the RV-VM filter for various RB 

calculated with Equation (54), and that of the conventional BBR filter calculated with Equation (16). As shown 
in this figure, the gain of β becomes large compared with the BBR filter when RB is relatively small. When RB is 
small, the reliability of the measured velocity is high. Consequently, the velocity gain β becomes large to make 
best use of the measured velocity. In contrast, the conventional BBR filter estimates the velocity as the deriva-
tive of position, and the gain β therefore becomes small to avoid instabilities in the estimation. In addition, when 
RB is relatively large, the value of β in the RV-VM filter becomes small compared with that in the BBR filter, 
because the measured velocity is unreliable.  

4.2. Optimal Gain Relationship for Random Acceleration Model 
This subsection considers the random acceleration process noise modeled by Equations (17) and (18), as in the 
KR filter. Using the same procedure as for the RV-VM filter in Equations (56)-(64) with Equation (18), we ob- 

 

  
(a)                                                  (b) 

Figure 1. Relationship between optimal gains. (a) RV-VM and BBR filters; (b) RA-VM and KR filters.     
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tain the steady-state gains corresponding to Equations (65) and (66) for this motion model as: 
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Thus, optimal gains relationship can be written using Equation (55) as 
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We call the VM-α-β filter whose gains satisfy Equation (69) the random-acceleration velocity-measured (RA- 
VM) filter. Note that this filter is unstable when RB = 0 or α = 1, as can be seen from Equation (69).  

Figure 1(b) shows the relationship between gains α (0 < α < 1) and β of the RA-VM filter for various RB cal-
culated with Equation (69), and that of the conventional KR filter calculated with Equation (19). Although the 
relationship is qualitatively similar to that of the RV-VM and BBR filters, β increases faster than in the RV-VM 
and BBR filters. This is because the RA-VM and KR filters consider randomly varying acceleration, and the 
gains thus become relatively large to realize sufficient tracking performance, as indicated in Equations (13) and 
(30). 

5. Numerical Evaluation  
In this section, we use numerical examples to evaluate the tracking and smoothing performance of the derived 
VM-α-β filters (RV-VM and RA-VM filters), and compare these results with those from conventional α-β filters 
(BBR and KR filters). First, the filter performance is evaluated based on the derived steady-state predicted errors. 
Then, we simulate a maneuvering target tracking to show the performance in a realistic situation. 

5.1. Performance Evaluation of RV-VM Filter and Comparison with BBR Filter 
This subsection evaluates the filter performance of the RV-VM and BBR filters. These are derived from the 
same process noises (random velocity model). The gains, smoothing performance, and tracking performance of 
the RV-VM filter are calculated with Equations (54), (38), and (30), respectively. Those of the BBR filter are 
calculated with Equations (16), (12), and (13). We assume that the sampling interval T, the variance of the 
measured position error Bx, and the acceleration ac used in the tracking performance evaluation are normalized 
to 1. 

Figure 2 shows the smoothing performance of the RV-VM filter for various RB and the results given by the 
BBR filter. When α is relatively large, the smoothing performance of the RV-VM filter with small RB is better 
than that of the BBR filter. In particular, when RB = 1 and 2, although the accuracy of the velocity sensor is the 
same or worse than that of the position sensor, the smoothing performance of the RV-VM filter is significantly 
better than that of the BBR filter when (approximately) α > 0.7. This indicates that the RV-VM filter enjoys im- 

 

 
Figure 2. Smoothing performance of the RV-VM and 
BBR filters.                                     
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proved performance using the measured velocity, even when the velocity sensor has relatively poor accuracy. 
However, as can be seen when RB = 10, the predicted error becomes worse compared with the BBR filter when 
the noise variance of the velocity measurement is extremely large. Thus, we should not use the measured veloc-
ity in this case. Then, we clarify the conditions under which the smoothing performance of the RV-VM filter is 
better than that of the conventional BBR filter using Equations (12), (16), (38), and (54). Substituting Equation 
(16) into Equation (12), the smoothing performance of the BBR filter is expressed as 

( )
( )2

xp BBR 2
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8 8
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α α
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α α

−
=

− +
                                         (70) 

and substituting Equation (54) into (38), the smoothing performance of the RV-VM filter is 
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As shown in Equations (70) and (71), 2
pσ  of the RV-VM and BBR filters become same value when RB = 4. 

Thus, the smoothing performance of the RV-VM filter is better than that of the BBR filter for all α when RB < 4. 
Figure 3(a) shows the tracking performance of the RV-VM and BBR filters. The same tendency as for the 

smoothing performance can be seen for relatively large α. However, for small α, the performance of the RV-VM 
filter with relatively large RB is worse than that of the BBR filter. This means that, from the viewpoint of track-
ing performance, the RV-VM filter is unsuitable when α is small and RB is large. However, unlike the smoothing 
performance, with sufficiently small RB, the tracking performance is efficiently improved for small α. Figure 
3(b) shows the tracking performance threshold RBT-RV, which is the value of RB for which efin of the RV-VM and 
BBR filters takes the same value for each α. This means that the tracking performance of the RV-VM filter is 
better than that of the BBR filter when RB < RBT-RV, indicating the conditions under which the predicted bias er-
ror of the RV-VM filter is smaller than that of the conventional BBR filter. Even for RB = 1, efin in the RV-VM 
filter is smaller than that in the BBR filter when α > 0.423 which is calculated with Equations (12), (13), (30), 
and (38). These investigations show that both the tracking and smoothing performance of the RV-VM filter is 
better than that of the BBR filter, even when RB ≥ 1, for relatively large α. Moreover, for relatively small α, al-
though the improvement in performance is not so significant, the tracking and smoothing performance of the 
RV-VM filter is enhanced when RB is sufficiently small. 

5.2. Performance Evaluation of RA-VM Filter and Comparison with KR Filter 
This subsection evaluates the performance of the RA-VM and KR filters. These are derived from the random 
acceleration model expressed in Equations (17) and (18). The gains, smoothing performance, and tracking per-
formance of the RA-VM filter are calculated with Equations (69), (38), and (30), respectively. Those of the KR 
filter are calculated with Equations (19), (12), and (13). As in the previous section, we assume that T, Bx, and ac 
used are normalized to 1. 

 

   
(a)                                                  (b) 

Figure 3. Tracking performance evaluation of the RV-VM and BBR filters. (a) Tracking performance efin for each α; (b) 
Tracking performance threshold RBT-RV.                                                                   
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Figure 4(a) shows the smoothing performance of the RA-VM filter with various RB and the results given by 
the KR filter. The same tendency as for the RV-VM and BBR filters can be observed. When (approximately) α 
> 0.8, the smoothing performance of the RA-VM filter is significantly better than that of the KR filter except for 
RB = 10. Moreover, as shown in the results for RB = 10, although the smoothing performance of the RA-VM fil-
ter is worse than that of the KR filter when (approximately) α > 0.6, the difference between them is slight. This 
suggests that the RA-VM filter is suitable for practical use in terms of smoothing performance, even when the 
velocity sensor reliability is low compared with that of the position sensor. Figure 4(b) shows the smoothing 
performance threshold RBS-RA, which is the value of RB for which σp

2 in the RA-VM and KR filters takes the 
same value for 0.4 ≤ α < 1. As indicated in this figure, the RA-VM filter with relatively large α realizes better 
accuracy. Even for RB ≥ 1, the smoothing performance of the RA-VM filter is better than that of the KR filter in 
α > 0.656 which is calculated with Equations (12), (19), (38), and (69). 

Figure 5 shows the tracking performance of the RA-VM and KR filters, and the tracking performance thre-
shold RBT-RV. This figure exhibits similar properties as for the RV-VM and BBR filters. Compared with the 
RV-VM and BBR filter results in Figure 3, the tracking performance of the RA-VM and KR filters is improved 
by the assumption of random acceleration.  

5.3. Comparison of RV-VM and RA-VM Filters 
We now compare the performance of the RV-VM and RA-VM filters. Figure 6(a) shows the difference in σp

2 
given by the two filters. As shown in this figure, the values of 2

pσ  of the RV-VM filter minus that of the RA- 
VM filter are negative for all α, which means that the smoothing performance of the RV-VM filter is better than 
that of the RA-VM filter. Analogously, Figure 6(b) shows the difference in the efin values given by the RV-VM  

 

    
(a)                                                         (b) 

Figure 4. Smoothing performance evaluation of the RA-VM and KR filters. (a) Smoothing performance σp
2 for 

each α; (b) Smoothing performance threshold RBS-RA.                                                     
 

     
(a)                                                         (b) 

Figure 5. Tracking performance evaluation of the RA-VM and KR filters. (a) Tracking performance efin for each 
α; (b) Tracking performance threshold RBT-RA.                                                        
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(a)                                                         (b) 

Figure 6. Performance difference between RV-VM and RA-VM filters. (a) Smoothing performance; (b) 
Tracking performance.                                                                       

 
and RA-VM filters, and this result indicates that the RA-VM filter is better in terms of tracking performance. 
The reason for these findings is as follows. As described in Section 4, the RV-VM filter assumes random veloc-
ity and the RA-VM filter assumes random acceleration. Consequently, the RA-VM filter operates to reduce the 
predicted errors of an accelerating target, and this leads to better tracking performance than in the RV-VM filter. 
However, there is a trade-off between the tracking and smoothing performance, as indicated in Equations (30) 
and (38). Hence, the smoothing performance of the RA-VM filter is worse than that in the RV-VM filter. Thus, 
in practical applications, the RA-VM filter is suitable when better tracking performance is required, whereas the 
RV-VM filter is preferable for better smoothing performance. 

5.4. Application Example 
Finally, we investigate the performances of the proposed VM-α-β filters and conventional α-β filters in a realis-
tic situation, using numerical simulations of a maneuvering target tracking. For simplicity, we assume one-di- 
mensional tracking. Figure 7 shows the true position and velocity xt(t) and vt(t) of the target, where t = kT. The 
sampling interval T is 1 s. The measured position and velocity xo(t) and vo(t) are generated by adding white 
Gaussian noise to xt(t) and vt(t). The variance of the measured position Bx is 1 m2. We investigate α gains of 0.4 
and 0.8 and variances of measured velocity Bv of 0.5 and 1 m2/s2, which correspond to RB = 0.5 and 1. The mean 
error and mean variance of the position errors are determined for 1000 Monte-Carlo simulations, and these cor-
respond to the tracking and smoothing performance, respectively. The mean error is defined as  

( ) ( ) ( )
1000

mean t p
1

1
1000 i

i
e t x t x t

=

 = − ∑                                (72) 

where xpi(t) is the predicted position estimated in the i-th Monte-Carlo simulation. The mean of the error va-
riance is 

( ) ( ) ( )
1000 22

mean mean p
1

1
1000 i

i
t e t x tσ

=

 = − ∑                               (73) 

Figure 8 shows the simulation results for RB = 0.5. Figure 8(a) and Figure 8(b) show 2
meanσ  and emean for α 

= 0.4. In terms of the smoothing performance expressed by 2
meanσ , the conventional filters are better than the 

VM-α-β filters. This is in spite of the fact that σp
2 of these filters shown in Figure 2 and Figure 4 are almost the 

same when α = 0.4. This is because we have assumed that the covariance of the position and velocity is zero, but 
this is not completely satisfied in realistic situations. Thus, the variance of errors becomes slightly larger com-
pared with the theoretical value. In contrast, the tracking bias errors emean of the VM-α-β filters are smaller than 
those of the conventional filters, as in the theoretical analysis of efin shown in Figure 3 and Figure 5. Thus, 
when the gain α is relatively small and RB is sufficiently small, the RV-VM and RA-VM filters can improve the 
tracking performance by using the measured velocity, even in realistic situations. As indicated for t > 700 s, the 
RA-VM filter gives the best reduction in tracking bias errors for an accelerating target. Figure 8(c) and Figure 
8(d) show the results for α = 0.8. As shown in these figure parts, both the tracking and smoothing performance  
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(a)                                                 (b) 

Figure 7. True position and velocity in numerical simulations. (a) True position xt(t); (b) True velocity vt(t).      
 

   
(a)                                                 (b) 

   
(c)                                             (d) 

Figure 8. Numerical simulation results for RB = 0.5. (a) Mean of variance of error (α = 0.4); (b) Mean of error 
(α = 0.4); (c) Mean of variance of error (α = 0.8); (d) Mean of error (α = 0.8).                             

 
of the RV-VM and RA-VM filters are better than those of the BBR and KR filters. This implies that RB = 0.5 is 
sufficiently small to allow the filter performance to be improved by using the measured velocity. As indicated in 
Figure 8(c), the RV-VM filter is the best in terms of smoothing performance. The variance of errors of the 
RV-VM filter is approximately 1/2 that of the BBR filter in this case. Because the acceleration of the target is 
not particularly large, the difference in tracking performance is small, as shown in Figure 8(d). However, we 
can see that the smallest errors are given by the RA-VM filter. Thus, when α is relatively large, the VM-α-β fil-
ter is effective when the velocity measurement is sufficiently accurate, even in realistic situations.  

Figure 9 shows the simulation results for RB = 1. Figure 9(a) and Figure 9(b) show the results for α = 0.4 
and these indicate that the smoothing performance of the RV-VM and RA-VM filters is worse than that of the 
conventional filters, as for RB = 0.5. The tracking performance of the RA-VM filter becomes the same as that of 
the BBR and KR filters. These results suggest that no performance improvement should be expected when the 
gains are relatively small and the reliability of the velocity sensor cannot be guaranteed. However, Figure 9(c) 
and Figure 9(d) show the results for α = 0.8, and these indicate the VM-α-β filter can improve the performance  
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in this case. As shown in Figure 9(c), the variance of errors of the RV-VM filter is approximately 3/4 of that of 
the BBR filter. Moreover, the tracking performance of the RA-VM filter is slightly better than that of other fil-
ters for t > 1000 s, as shown in Figure 9(d). These results indicate that, even when the reliability of the velocity 
measurement is the same as that of the position measurement, the derived RV-VM and RA-VM filters realize 
more accurate tracking than the conventional filters for relatively large filter gains. Moreover, the above discus-
sion indicates that the theoretical calculations and examinations in Sections 5.1-5.3 give almost identical results 
as the application example of a realistic situation in this subsection. Consequently, the properties derived in this 
paper will be useful for filter design in actual tracking systems. 

6. Summary and Conclusion 
This paper focused on the general properties of the VM-α-β filter. We firstly derived steady-state errors, stability 
condition, and optimal gains of the VM-α-β filter. Table 1 shows a summary of the derived properties of the  

 

    
(a)                                                 (b) 

    
(c)                                             (d) 

Figure 9. Numerical simulation results for RB = 1. (a) Mean of variance of error (α = 0.4); (b) Mean of error 
(α = 0.4); (c) Mean of variance of error (α = 0.8); (d) Mean of error (α = 0.8).                           

 
Table 1. Summary of the properties of the VM-α-β filter and conventional α-β filter.                                

 
VM-α-β filter (Equations (8), (10), (11), and (26)) Conventional α-β filter (Equations (8)-(11)) 

RV-VM filter RA-VM filter BBR filter KR filter 

Gain relation Equation (54)* Equation (69)* Equation (16) Equation (19) 

Assumed process noise Equations (14) and (15) Equations (17) and (18) Equations (14) and (15) Equations (17) and (18) 

Stability condition Equation (29) * Equation (29) and  
RB ≠ 0 and α ≠ 1* 

0 < α and 0 < β < 4 − 2α 
[6] 

0 < α and α ≠ 1 
and 0 < β < 4 − 2α [6] 

Tracking performance Equation (30)* Equation (13) 

Smoothing performance Equation (38)* Equation (12) 

Suitable for Smoothing* Tracking* Smoothing Tracking 

Relatively effective  
when the gains are Large* Large* Small* Small* 

*Novel properties clarified in this paper. 
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VM-α-β filter and conventional α-β filters. We then investigated the filter performance of the derived RV-VM 
and RA-VM filters using numerical calculations based on the derived equations. These calculations confirmed 
that both the tracking and smoothing performance could be improved using the derived filters when the ratio of 
position and velocity measurement noise RB is sufficiently small and/or the gains are relatively large. Moreover, 
numerical simulations showed the effectiveness of the VM-α-β filter in a realistic situation. The variance of pre-
dicted errors given by the VM-α-β filters was approximately 3/4 that of the conventional α-β filters, even when 
the reliabilities of the position and velocity sensors were the same (RB = 1). Moreover, we confirmed the cor-
respondence between our theoretical analysis based on the derived properties and the application results. This 
implies that the derived properties will be useful for the practical design of tracking systems. However, for sim-
plicity, this paper assumed that the only non-zero elements in the gain and covariance matrices were on the main 
diagonal. Further analysis without these assumptions is an important future task. Moreover, another possible 
topic for future work is to analyze properties of tracking filter using other measured parameters such as accele-
ration. 
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