
Advances in Remote Sensing, 2013, 2, 312-321 
Published Online December 2013 (http://www.scirp.org/journal/ars) 
http://dx.doi.org/10.4236/ars.2013.24034  

Open Access                                                                                            ARS 

Development of a Generic Model for the Detection of Roof 
Materials Based on an Object-Based Approach Using 

WorldView-2 Satellite Imagery 

Ebrahim Taherzadeh1, Helmi Z. M. Shafri1,2* 
1Geomatics Engineering Unit, Department of Civil Engineering, Faculty of Engineering,  

Universiti Putra Malaysia (UPM), Selangor, Malaysia 
2Geospatial Information Science Research Centre (GISRC), Faculty of Engineering,  

Universiti Putra Malaysia (UPM), Selangor, Malaysia 
Email: *hzms04@gmail.com 

 
Received September 9, 2013; revised October 9, 2013; accepted October 16, 2013 

 
Copyright © 2013 Ebrahim Taherzadeh, Helmi Z. M. Shafri. This is an open access article distributed under the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. 

ABSTRACT 

The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban 
remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient training data. In this 
study, a generic model of spatial distribution of roof materials is considered to overcome this limitation. A generic 
model that is based on spectral, spatial and textural information which is extracted from available training data is pro-
posed. An object-based approach is used to extract the information inherent in the image. Furthermore, linear discrimi-
nant analysis is used for dimensionality reduction and to discriminate between different spatial, spectral and textural 
attributes. The generic model is composed of a discriminant function based on linear combinations of the predictor 
variables that provide the best discrimination among the groups. The discriminate analysis result shows that of the 54 
attributes extracted from the WorldView-2 image, only 13 attributes related to spatial, spectral and textural information 
are useful for discriminating different roof materials. Finally, this model is applied to different WorldView-2 images 
from different areas and proves that this model has good potential to predict roof materials from the WorldView-2 im-
ages without using training data. 
 
Keywords: Urban; Object-Based; Discriminant Analysis; Roof Materials; Very High Resolution Imagery;  
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1. Introduction 

Almost half of the world’s population lives in urban 
areas [1]. Over the last few decades, urban areas have 
grown rapidly, although cities occupy only a very small 
portion of the Earth’s total land surface. Urban areas 
are characterized by a large variety of artificial and 
natural surface materials that influence ecological [2,3], 
climatic and energy [4,5] conditions. One of the most 
important land cover types is IS that affects urban sur- 
face temperature [6-8] and runoff quality [9-11]. De- 
tection and assessment of the percentage of IS in the 
heterogeneous urban area is one of the challenging and 
important tasks in urban remote sensing. Due to the 
impact of IS on the environment, the concentration on 

this field of study has been growing [12-15]. 
In this study, detection of the IS especially the roof 

of buildings based on their materials using multispec- 
tral remote sensing data is proposed. Detection of the 
roof types and conditions is important; knowledge on 
roof material types can assist applications such as dis- 
aster preparedness [16] solar photovoltaic energy mod- 
eling [17] UHI assessment [18-20] and runoff quality 
[11]. However, accurate IS extraction is still a chal- 
lenge with existing and traditional methods. Due to the 
rapid expansion of cities, and with advent of new satel- 
lite sensors, the new methods with up-to-date informa- 
tion about the cities are needed because traditional me- 
thods are time-consuming, laborious and expensive 
[21]. Thus mapping activities often cannot keep up 
with the pace of urban development. To classify the *Corresponding author. 
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heterogeneity of urban land cover at the parcel level, 
Very-High-Resolution (VHR) imagery is needed [22]. 
For the supervised classification of IS at the materials 
level, such as roof materials, adequate training data are 
needed. However, due to building security, permission 
to access roofs may be denied or access may be impos- 
sible. Several studies have been performed to illustrate 
the potential of hyperspectral data for discriminating 
urban surface materials [18,23-28]. High-spectral-re- 
solution sensors are able to detect, classify, and dis- 
criminate materials on the earth better than traditional 
multispectral imagery that only uses a few wide-band 
spectral channels [29]. 

Urban hyperspectral mapping is currently limited to 
airborne data, despite the availability of spaceborne-
hyperspectral systems [30]. Airborne data acquisition is 
normally expensive. Additionally, the coverage area is 
limited, and the analysis can be too complex compared 
to multispectral imagery. In this study unlike other 
commercial sensors, WorldView-2 (WV-2) that con-
tains 8 spectral bands with high spatial resolution (0.5 
m pan sharpened) was employed. Some studies used 
Landsat or SPOT images, but these images are not 
recommended for urban study because of their low 
spatial resolution. It should be mentioned that although 
VHR imagery provides more information about an ob-
ject, once the spatial resolution increases, discrimina-
tion between classes is reduced because of the increased 
internal variability of the objects [31,32]. Some studies 
have used VHR satellite images such as Ikonos or 
QuickBird, but they are relatively limited in their spec-
tral resolution, thus there are specific limitations in the 
separation of built-up and non-built-up materials [33]. 

Studies show that traditional methods such as maxi-
mum likelihood (ML) and parallelepiped are inade-
quate for classifying very-high-resolution multispectral 
imagery in urban areas [31,34-37]. Recent research 
shows that using only spectral information is insuffi-
cient for classifying IS in detail because of the spectral 
similarity between different materials in urban areas 
[38]. It is very important to add other sources of in-
formation, such as the spatial information inherent in 
images [36,39-41], and textural information, which can 
improve the classification accuracy. With the aim of 
extracting and integrating spatial, spectral and textural 
information, the object-based (OB) approach is used. 
Studies show that such information can be used to in-
crease the discrimination between spectrally similar 
urban land cover types [37,40-42]. The OB classifica-
tion approaches, in general, show better results com-
pared to pixel-based approaches when mapping indi-
vidual landscape features [43]. Nevertheless, to define 
objects in terms of certain rules based on extracted 
information, a priori knowledge is needed. Generally, 
the relevant information is not well formalized, and it 

is difficult to directly obtain such implicit knowledge, 
which is ordinarily held only by domain experts [44]. 
Previous studies such as [45] have defined the optimal 
rule sets for a limited coverage urban area but the rules 
are not transferable and generic for other different ar-
eas. 

The main goal of this research is to build a generic 
and transferable model based on the spectral, spatial 
and texture information through the available training 
data in order to map the spatial distribution of roof ma- 
terials by using WV-2 satellite image to overcome the 
limitations in the urban remote sensing context as men-
tioned such as the airborne hyperspectral data, inade-
quate training data and lack of the generic and trans-
ferable model to detect the IS at materials level. Fur-
thermore, this generic model is used to predict the roof 
materials in different parts of new study areas without 
using new training data to evaluate the transferability 
of this model. Discriminate analysis (DA) utilizes an 
equation that minimizes the possibility of misclassi-
fying cases into their respective groups or categories. 
The purpose of using DA is to investigate differences 
between groups on the basis of the attributes of the 
cases, indicating which attributes contribute most to 
group separation. 

2. Methods 

2.1. Data Acquisition 

Pan-sharpened WV-2 images with a 0.5 meter spatial 
resolution with 8 spectral bands were employed as shown 
in Figure 1. The study areas were located in the Klang 
Valley, which is an area in Malaysia comprising Kuala 
Lumpur (KL) and its suburbs and adjoining cities and 
towns in the state of Selangor. Two different WV-2 im-
ages in terms of data collection time and areas were se-
lected which depict parts of the city of KL and the Uni-
versiti Putra Malaysia (UPM). The standard radiometric, 
geometric and sensor corrections have been applied to 
the raw imagery by the image supplier. 

2.2. Classification 

Based on the WV-2 image of KL area the field survey 
has been conducted and 7 classes were defined. Four 
classes are related to the different roof materials which 
are widely used in Malaysia such as metal, asbestos, 
concrete and clay tile. The other classes are related to the 
vegetation, tarmac and shadow. To classify the KL image 
two different classification approaches were employed. 
First the ML classification which is based on the spectral 
information and subsequent based on generic model 
which were extracted based on the OB approach. 

ML classifier assumes the normal distribution in each 
band for each class and the probability of the training  

Open Access                                                                                            ARS 



E. TAHERZADEH, H. Z. M. SHAFRI 314 

 

Figure 1. The locations and images of the study areas A) 
WV-2 image of part of KL; B, C) WV-2 images of parts of 
the Universiti Putra Malaysia (UPM)-UPM_Eng and UPM_ 
Itma respectively. 
 
data pixel belongs to a specific class is calculated. The 
standard deviation and mean are employed that are de-
rived from the training pixels. Theoretically, it is the best 
classifier but there is some limitation in this classifier 
such as an assumption of normal distribution of the spec-
tral data within the training classes. 

2.3. Object-Based Image Analysis Approach 

To improve the classification accuracy and better dis-
criminate between spectrally similar urban land cover ty- 
pes, the spectral information was combined with other 
sources of information inherent in VHR imagery, such as 
spatial and textural information. With the advent of 
high-resolution satellite imagery and the emergence of 
commercial software, object-based image analysis has 
been increasingly used [37,46,47]. In order to use the OB 
approach the feature extraction module which is avail-
able in ENVI Ex software was employed. The method-
ology conducted in this research in order to extract the 
model can be presented by the flowchart as shown in 
Figure 2. 

2.3.1. Image Segmentation and Merging 
The most crucial task in the OB classification approach is 
segmentation. Image segmentation is a process that parti-
tions raster images into homogenous regions based on 
pixel values and location [48,49]. Pixels with similar 
spectral values that are spatially connected are grouped  

 

Figure 2. Flowchart of methodology to extract the model. 
 
into a single segment. There are different segmentation 
techniques based on pixel, edge and region methods [48], 
and these techniques have been applied in different stud-
ies [50]. To employ the OB approach and segmentation 
in this study, the feature extraction module of the ENVI 
4.7 software package was used. There is a segmentation 
algorithm available in ENVI EX that is based on an edge 
that is very fast and only requires one input parameter. 

Merging is an optional step used to aggregate small 
segments within larger segments. The merge level pa-
rameter in the ENVI EX feature extraction dialog repre-
sents the threshold lambda value, which ranges from 0.0 
to 100. It is ideal to choose the highest merge level that 
delineates the boundaries of features as well as possible. 
Both scale level and merge level were selected manually, 
at 20 and 80, respectively, to detect building roofs. 

2.3.2. Computing the Attribute 
One of the valuable information inherent in the VHR is 
spatial information. Thus 14 spatial attributes were extra- 
cted from the image such compact, convexity, solidity, 
roundness, Formfactor, Elongation, Rec_fit, Maindir, 
Majaxislen, Minaxislen, Numholes, Holesolrat, Area and 
Length attributes which were calculated based on smoo- 
thed version of the geometry. Performing calculations on 
a smoothed geometry ensures the shape measurements 
are less sensitive to object rotation. The essential infor- 
mation to classify the remote sensing data is spectral in- 
formation. Thus four spectral attributes were extracted 
for each spectral band of WV-2 image based on the OB 
approach as shown in Table 1. 

Another source of information inherent in the VHR is 
textural information. Four attributes which are related to 
the textual information were extracted from the WV-2 
image. Table 2 shows the definition of textural attributes. 

In the computation of attributes step, the color infor- 
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Table 1. Spectral attributes definition which is extracted for each band. 

Attribute Description 

MINBAND_x The minimum value of the pixels comprising the region in band x. 

MAXBAND_x The maximum value of the pixels comprising the region in band x. 

AVGBAND_x The average value of the pixels comprising the region in band x. 

STDBAND_x The standard deviation value of the pixels comprising the region in band x. 

 
Table 2. Textural attribute definition which is extracted from the image. 

Attribute Description 

TX_RANGE 
Average data range of the pixels comprising the region inside the kernel. A kernel is an array of pixels used to  

constrain an operation to a subset of pixels. 

TX_MEAN The average value of the pixels comprising the region inside the kernel. 

TX_VARIANCE The average variance of the pixels comprising the region inside the kernel. 

TX_ENTROPY 
The average entropy value of the pixels comprising the region inside the kernel. ENVI Zoom computes entropy, in part,  

from the Max Bins in Histogram preference. 

 
ploratory approach to DA and useful method to find the 
best set of predictors based on the strength of their rela-
tionship with the attribute’s variable and subsequently 
enters them into the predictive model. In stepwise DA, 
the most correlated independent variable is entered first 
by the stepwise program, and then the second one is 
added, and so on, until an additional dependent adds no 
significance [51]. Wilks’ lambda selection method was 
chosen as a variable selection method for stepwise DA. 
Wilks’ λ or U statistic is the ratio of the within-group 
sum of squares to the total sum of square for each pre-
dictor. The value of λ is between 0 and 1 in which the 
large values of near 1 indicate that the group means do 
not seem to be different and inversely the small values of 
indicate that the group means seem to be different.  

mation such as hue, saturation, and intensity (HSI) at-
tributes and furthermore a band ratio attributes were em-
ployed. Access to each attributes variables of each seg-
ment in ENVI software is a very difficult task. Thus to 
overcome this limitation in order to access the each seg-
ment’s variables which were based on spatial, spectral 
and texture attributes the segmented image was exported 
to the vector layer with their attributes. Thus to access 
the each attribute variables of each segment the ArcGIS 
software was used. 

2.3.3. Class Definition and Training Sample 
A ground-truth image was created based on the field 
survey and 7 classes were defined (highlighted) on the 
segmentation map. In order to access the attribute’s 
variable of each class which was defined the attribute 
table of ArcGIS software was used. The attribute’s table 
allows us to access each segment’s attribute variables in 
terms of; each row in the table demonstrates the attribute 
variable for each segment. Subsequently the variable of 
all extracted attribute which were selected on the seg-
ment image (training data) was exported to separate file. 

The predicative model is composed of a discriminant 
function based on linear combinations of the predictor 
variables that provide the best discrimination between the 
groups. The mean values for the discriminant scores for a 
particular class refer to the centroids. Basically based on 
the number of class and number of functions, there are 
centriod. The class centriod is useful for indication of the 
location of an individual for a specific class. Discrimi-
nant function analysis undertakes the same task as multi-
ple linear regression analysis by predicting an outcome. 
DA involves the determination of a linear equation, as in 
regression, that will predict the group to which the case 
belongs. The form of the equation or function is 

2.3.4. Discriminant Analysis 
One of the challenging tasks in image processing is find-
ing the useful and powerful method to best discriminate 
between some classes that are similar in spectral signa-
ture. The purpose of using DA is to investigate the dif-
ferences between groups based on the attributes of each 
class, and explore the most significant attributes that 
contribute to separation of classes and finally create the 
generic predictive model which minimize the possibility 
of misclassifying case into the respective group based on 
the available training data to predict the roof materials. In 
this study the multiple-DA through the SPSS software 
was used. The stepwise method was applied as an ex-  

1 1 2 2 3 3 i iD V X V X V X V X a           (1) 

where: 
D = discriminate function 
V = the discriminant coefficient or weight for that at-

tribute 
X = attribute’s variable 
a = a constant 
i = the number of predictor variables 
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2.3.5. Minimum Distance Classifier (Euclidian 
Distance) 

In order to assign the class of each segment based on the 
different functions which were extracted, the Euclidian 
distance was used to measure the distance between dif-
ferent classes. The minimum distance between the dif-
ferent classes were assigned to the related class. 

2.4. Validation and Accuracy Assessment 

As mentioned all the training data were extracted from 
different parts of the KL image, thus in order to validate 
the model, it was applied to different areas of the WV-2 
image from UPM that was captured in different time. 
Generally, classification accuracy refers to the extent of 
correspondence between the remotely sensed data and 
reference information. In order to assess the accuracy of 
spatial distribution of roof materials extracted from the 
WV-2 image by different classification approaches, the 
testing data which are provided based on the field survey 
were used and the results were recorded in a confusion 
matrix. A non-parametric Kappa test was also used to 
measure the classification accuracy. 

3. Result and Discussion 

3.1. Class Definition and Training Sample 

The ground-truth image was created based on the field 
survey. All the training data used to train the model are 
related to the different parts of the KL image, although 
the testing data were collected from the KL and UPM 
images. As mentioned previously, this study focuses on 
the detection of roof materials, so the testing data are 
related only to the different roof types. Furthermore, the 
number of segments was used for the training data, and 
the number of pixels was used for the testing data as 
shown in Table 3. 

3.2. Spectral-Based Classification 

In order to evaluate the potential of different classifica-
tion methods to extract the roof materials the supervised 
classifications such as ML classifier method was applied 
on WV-2 image from the KL image. Figure 3 shows the 
classification result using the ML classifier. 
 
Table 3. The number of training in segment and testing in 
pixel. 

Class Training 
Test 
(KL)

Test 
(UPM_Itma) 

Test 
(UPM-Eng)

Asbestos roof 46 5368 2795 - 

Clay tile roof 31 2507 1831 - 

Concrete tile roof 77 6583 3687 1551 

Metal roof 94 5719 5606 3329 

 

Figure 3. Classification result using ML classifier. 
 

To assess the accuracy of this classification the confu-
sion matrix was used. Table 4 demonstrates the classifi-
cation accuracy for each class. 

3.3. Object-Based Classification Approach  
(Generic Model) 

To build a generic model for detecting roof materials 
based on the OB approach, the WV-2 image was used. 
The first and most important step was segmentation and 
merging, for which the ENVI EX software was used. In 
this research, 20 and 80 were chosen as the scale bars for 
segmentation and merging, respectively as shown in Fig-
ure 4. 

In this research 54 attributes were extracted from WV-2 
image. Table 5 shows the number of attributes based on 
the spectral, spatial, texture and color. 

The stepwise approach results show that only 13 of the 
54 attributes were selected: band ratio; average bands 2, 3, 
5, 6, 7 and 8; Tx_range; Max_band 2, 5 and 8; Majaxislen; 
and saturation attributes that were more significant than 
others for discriminating between the classes. The un-
standardized coefficient result was used to utilize the 
original variables of each significant variables and no 
normalization was applied on the variables of attributes. 
Table 6 shows the discriminant function coefficient whi- 
ch is based on the unstandardized scores concerning the 
independent variables. 

In this study, for instance, 13 predictor variables in 6 
different functions, which follow the linear model, are 
extracted based on the training data. As an example, func-
tion 1 is calculated as follows: 

   
     
1 0.010 28.425

5.161 _ 8 0.17 7.603

D MAJAXISLEN BANDRATIO

SATURATION AVGBAND

   

    
 


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Table 4. Classification accuracy using ML classifier. 

Roof type Prod. Acc User Acc. 

A  sbestos roof 32.05 100 

Clay tile roof 45.87 99.65 

C f 

Ov 45.64 

oncrete tile roo 13.33 27.20 

Metal roof 96.93 38.69 

erall accuracy 

Kappa Coefficient 0.24 

 

 

Figure 4. (a) Segmentation preview at scale level 20; (b)

able 5. Number of attributes which were computed based 

ributes 

 
Merging preview at scale level 80; (c) Result of merging at 
scale level 80. 
 
T
on spatial, spectral, texture and color. 

 Number of att

Spectral 
32 attributes ba ands of WV-2 

M

sed on the 8 spectral b
image ,each band 4 attributes, such as Max_band x, 
in_bandx,Average_band x, standard deviation band x

Spatial 

Texture 
4 attributes based on nformation ,texture 

Color 
4 attri ch as 

14 attributes based on the shape such as Compact and 
Convexity 

 the texture i
range, texture entropy and texture mean 

butes based on the color and band ratio su
hue ,saturation, band ratio 

 
The means for a group for all the functions are the 

gr
gment based 

on

le 6. Discriminant function coefficients. 

oup centroids, which are given in Table 7. 
To predict and assign the class for each se
 the model, which is based on 6 functions, the Euclid-

ean distance approach was used by comparing the results 
of six functions output with centroid of each class. First 
this model was applied to the KL images that all training 
data for building the model was taken from the KL image. 
Figure 5 shows the predicated result of roof materials for 
KL image. 

Tab

Function 
Attribute 

3 4 1 2 5 6 

MAJAXISLEN 0.010 0.  015 −0. 1 00 0.  003 0.023 −0. 503

BANDRATIO 28.425 −21.93 3.377 −4.505 8.04 −9.45

SATURATION 5.161 9.13 2.054 4.721 −4.68 4.782

TX_RANGE −0.011 0.014 −0.003 −0.009 0.038 0.020

M  AXBAND_2 0.013 0.004 0.008 −0.004 −0.014 −0.006

AVGBAND_2 −0.007 −0.032 0.003 0.040 0.001 0.017

AVGBAND_3 0.021 0.003 0.017 −0.029 0.015 −0.006

MAXBAND_5 −0.021 −0.023 −0.011 −0.006 0.014 0.004

AVGBAND_5 −0.037 0.010 −0.012 0.019 −0.024 −0.039

AVGBAND_6 0.015 0.008 0.000 0.005 0.007 0.034

AVGBAND_7 −0.018 0.043 0.026 0.061 0.005 −0.046

MAXBAND_8 0.000 0.005 0.002 0.004 0.004 0.000

AVGBAND_8 −0.017 −0.013 −0.025 −0.038 −0.024 0.026

(Constant) 7.603 −5.86 −5.10 −8.25 3.45 −7.95

 
Table 7. Functions at group centroids. 

Function 
Class 

1 2 3 4 5 6 
Asbestos roof −1. 108 −0. 5 07 −0.524 −1.364 −0. 978 0.248
Clay tile roof −1.648 −1.051 −1.832 1.270 0.434 0.380

C foncrete tile roo −0.795 −0.814 −1.167 −0.180 0.092 −0.302
Metal roof −1.885 −1.067 1.219 0.447 −0.479 −0.026

 

 

Figure 5. Spatial distribution of roof materials in KL image

To evaluate, this model was applied to parts of the 
U

esult based 
on

ild generic  

 
based on the generic model. 
 

PM study area images that was collected in different 
time. Figure 6 shows the results after applying the model 
to all attributes extracted from each segment. 

To assess the accuracy of the prediction r
 the testing data, the confusion matrix was used. Ta-

ble 8 shows the accuracy of the model in predicting the 
roof materials in the different study areas. 

The main goal of this research is to bu
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(a)                          (b) 

Figure 6. (a) the generic 

able 8. Accuracy of model on predicting roof materials in 

UPM_Eng UPM_Itma KL 

UPM_Eng roof types based on 
model (b) UPM_Itma roof types based on the generic mo- 
del. 
 
T
different areas. 

Roof type P  P Prod.rod. User
Acc Acc. 

rod. User 
Acc Acc. 

 User 
Acc Acc.

Asbestos roof - - 80.84 99.53 95.27 94.37

Clay tile roof - - 65.25 100 73.20 69.64

C f 91 8 1  

Ov y 06 .0 .4

oncrete tile roo .6 00 81.45 82.74 78.26 89.77

Metal roof 89.19 100 83.34 100 79.47 100

erall accurac

Kappa Coefficient 
90.  
0.79 

81 9 
0.73 

82 9 
0.76 

 
odel for very high spatial resolution satellite imagery 

strates that the 13 attributes related 
to

ted as the generic 
m

ood potential for pre-
di

4. Conclusions 

this study is to build a generic and 

s model shows good potential to predict 
an

m
such as WV-2 image, based on the available training data 
in order to predict the spatial distribution of roof materi-
als in the new areas without using any training data. With 
the purpose of extraction of value of each spectral, spa-
tial, texture and color attributes, the segmentation proc-
essing was applied. This step is the most important and 
crucial step which affected the result. DA was applied to 
select the significant attributes and in subsequent process 
utilizing them to model the roof materials in order to 
predict spatial distribution of roof materials from the 
WV-2 images. The model generated based on the KL 
training data was then applied to different parts of KL 
and UPM images.  

The DA result illu
 the spectral, spatial, and textural and color information 

were the most effective over the 54 attributes at dis-
criminating the roof materials. Furthermore based on the 
DA result, the new additional bands of WV-2 image such 

as the Red-edge and NIR-ІІ bands are valuable and use-
ful to discriminate between the roof materials compared 
to the costal blue and yellow bands. 

Finally, 6 functions were extrac
odel based on the stepwise DA results. First, the model 

was applied to the related attributes, which were ex-
tracted from the vector layer of the KL images, to assess 
the prediction accuracy, for which the confusion matrix 
was used. The results show that the model can predict the 
roof materials with an overall accuracy of approximately 
83% and a Kappa coefficient of 0.76. To evaluate the 
model to predict roof materials without using training 
data, the model was applied to different WV-2 images of 
the UPM area. The UPM_Eng and UPM_Itma image 
results show that the overall accuracy of prediction is 
approximately 90% and 81%, respectively. This model 
shows the good potential to predict the spatial distribu-
tion without using training data rather than the traditional 
method (ML) which utilizes the spectral information with 
approximately 46% overall accuracy. Still, there were 
some misclassifications, such as asbestos vs. metal roofs, 
clay tile vs. concrete tile and certain roof materials vs. 
roads due to some reasons such as illumination of the 
roof, similarities in texture and spectra. In some parts of 
the classified images, shadows produced misclassifica-
tions, such as shadow vs. asbestos roof. Some misclassi-
fications are related to spectral and textural similarities 
such as metal vs. asbestos roofs.  

This model demonstrates the g
cting and discriminating different roof types such as 

clay tile, asbestos, concrete tile and metal roof materials 
from the WV-2 imagery. Furthermore, if buildings are 
extracted from WV-2 images and the detection of the 
roof materials are desired, the model can be used to pre-
dict materials after the segmentation and extraction of 
roof attributes. 

The main goal of 
transferable model to predict roof materials without 
using training data, based on OB classification ap-
proach. According to the DA results, 13 of 54 attributes 
were selected based on their spectral, spatial, textural 
and color information. The model was applied to KL 
image, and the result shows that the model can predict 
the spatial distribution of roof materials with 82% ac-
curacy and a 0.76 Kappa coefficient. To evaluate the 
model, it was applied to UPM_Itma and UPM_Eng 
images with no training data selected from the images. 
The UPM_Eng and UPM_Itma results show an overall 
prediction accuracy of approximately 90% and 81%, 
respectively. 

Finally, thi
d detect 4 types of roof material that are widely used 
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in Malaysia (metal, concrete tile, asbestos and clay tile 
roof) without using training data from WV-2 images. 

The significances of this model are listed as follows:
Fi

ther types of dat
su
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