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ABSTRACT 

Both temporal and spatial magnitude, structure, and distribution of rangeland aboveground biomass (AGB) are impor-
tant inputs for many necessities, in particular for estimating terrestrial carbon amount, ecosystem productivity, climate 
change studies, and potential bioenergy uses. Much of the remote sensing research previously completed has focused on 
determining carbon stocks in forested ecosystems with little attention directed to estimate AGB amount in rangelands. 
Our objectives were to: 1) identify and delineate individual redberry juniper (Juniperus pinchotii) plants from sur-
rounding live vegetation using the support vector machine method for classifying two-dimensional (2D) geospatial im-
agery with a 1-m spatial resolution at two sites; and 2) develop regression models relating imagery-derived and field- 
measured single tree canopy area and diameter for dry AGB estimation. The regression results show that there were 
very close and significant relationships between field measured juniper plant AGB and canopy area derived from the 
image classification with r2 > 0.90. These results suggest that spectral reflectance recorded on 2D high resolution im-
agery is capable to assess and quantify AGB as a quick, repeatable, and unbiased method over large land areas. 
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1. Introduction 

Aboveground vegetation biomass (biomass hereafter) 
distribution, structure, and amount in rangeland regions 
are important in estimating terrestrial carbon and energy 
fluxes between atmosphere and biosphere and thus are 
major considerations in ecosystem processes or climate 
change research [1-4]. Vegetation on rangelands, charac- 
terized by woodlands, shrublands, and grasslands, pro- 
vides essential ecosystem services, including forage for 
domestic and native herbivores, but is highly variable in 
spatial distribution and temporal growth patterns [5-9]. A 
world-wide phenomenon on many rangelands has been 
the expansion of woody plants into grassland and sa- 
vanna areas in the last 150 years [3,4,8,10]. Increases in 
woody-plant abundance comprise a significant but highly 
uncertain fraction of the carbon budget world-wide [3,6]. 
Projecting future states of rangeland ecosystems in re- 
sponse to woody invasions and changes in climate, 

edaphic, and disturbance regimes are strongly dependent 
on current assessment of woody biomass and distribution 
and the contribution of woody plants to total terrestrial 
biomass amount [6]. 

Traditional field-based biomass estimations of woody 
biomass through allometric functions are accurate, but 
are costly, tedious, time consuming, and usually limited 
to small land areas. Remote sensing-based biomass pre- 
diction is the most promising method at regional and 
global scales [2,11-18]. Over the last decade, a large 
number of studies have estimated biomass using two- 
dimensional (2D) geospatial images, synthetic aperture 
radar (SAR) and LIDAR [2,11,13,16,19]. Numerous 
studies have documented that remote sensing techniques 
are highly efficient to assess woody plant biomass at 
multiple spatial and temporal scale [11,12,20]. Although 
small footprint radar backscatter and LIDAR data may be 
more accurate than 2D geospatial imagery for character- 
izing woody plant attributes, these data are expensive to 
acquire at present, and are limited by its narrow swath- 
coverage on each overpass due to high spatial resolution  *Corresponding author. 
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[4,15,21-23]. Two-dimensional high resolution geospa- 
tial imageries, such as TM, IKONOS, QuickBird, GeoEye, 
World View, are much more cost-effective and are now 
available for almost anywhere in the world [24]. Though 
such data have been widely used to quantify forest bio- 
mass, they have been rarely utilized for rangeland woody 
biomass assessment [24,25]. Research on high-resolution 
2D geospatial images from satellite has evaluated algo- 
rithms to determine crown diameter, crown area, and 
other attributes in a wide range of forested areas [24,25]. 
For this reason, remote sensing studies quantifying range- 
land biomass contribution to the total carbon budget are 
strongly needed. 

Redberry juniper (Juniperus pinchotii; juniper hereaf- 
ter) occupies more than 4.7 million ha of rangeland in the 
western half of Texas alone and extents to the neighbor- 
ing states in the Southern Great Plains of the US [10]. 
Juniper is a native troublesome species, aggressively 
encroaching into rangeland due to reduced intensity and 
frequency of fires and livestock overgrazing. High densi- 
ties of this and a closely related species in central TX, 
Ashe juniper (Juniperus ashei), can significantly de- 
crease species diversity and grass production by compet- 
ing for natural resources and can greatly trigger soil ero- 
sion [26]. 

The United States Department of Agriculture-National 
Agricultural Imagery Program (USDA-NAIP) imagery 
archive has entered public domain, providing exciting 
opportunities to advance rangeland research. We propose 
that periodically acquired NAIP images are adequate for 
quantifying biomass of individual juniper plants because 
of 1-m spatial resolution. Recently, Allometric models 
between field-measured redberry juniper above-ground 
mass (AGM) and physiognomic characteristics such as 
canopy area, diameter, and height were developed [10]. 
In addition, the potential of high-resolution QuickBird 
images to estimate Juniperus spp. tree volume and bio- 
mass was examined in which this type of optical imagery 
can be used for rapid and reliable measurements of tree 
volume and biomass [27,28]. The objectives of the pre- 
sent study were to 1) identify and delineate juniper from 
surrounding live vegetation using the support vector ma- 
chine (SVM) classifier; 2) investigate the relationships 
between imagery-derived and field-measured canopy 
area and diameter; and 3) develop regression models 
relating imagery-derived and field-measured single tree 
attributes for estimation of total, wood, and leaf-twig 
biomass. Since the remote sensing biomass of juniper 
trees has not been well documented, we initiated this 
study to fill an important gap in the application of re- 
motely assessed canopy area using the SVM method for 
discriminating juniper plants from background vegetation 
and estimating biomass components. 

2. Materials and Methods 

2.1. Study Area 

Data were collected from two sites near the town of 
Crowell about 132-km west of Wichita Falls and 241-km 
east of Lubbock in north central Texas (Figure 1). The 
sites were located about within 10 km of each other on 
similar soil types: Site 1 (Whatley Ranch), 34˚4'N, 
99˚44'W; elev. 436-m in Foard County; Site 2 (Copper 
Break State Park), 34˚6'N, 99˚45'W; elev. 443-m in 
Hardeman County. Total 30 years mean annual rainfall at 
Crowell is 616 mm [29]. The sites were dominated by 
juniper and honey mesquite (Prosopis glandulosa Torr.). 
Herbaceous understory consists of numerous cool-season 
(C3) and warm-season (C4) grass species dominated by 
perennial C4 grasses, tobosagrass (Pleuraphis mutica) 
and buffalograss (Bouteloua dactyloides). Other grasses 
are C3 mid-grass Texas wintergrass (Nassella leucotri- 
cha), C3 annual grass Japanese brome (Bromus japonicus) 
and other C4 mid-grasses such as vine mesquite (Pani- 
cum obtusum), sideoats grama (Bouteloua curtipendula), 
and dropseeds (Sporobolus spp.) [30]. Soils are fine-silty, 
mixed, thermic Typic Calciustolls of the Quanah series  
 

 

Figure 1. Location of Hardeman (top) and Foard Counties 
(bottom) where study sites were situated in north central 
Texas. 
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and fine-silty, montmorillonitic, thermic Typic Haplus- 
terts of the Hollister series [31]. 

2.2. Field Sampling 

A total of 54 juniper plants ranging in size from 1.53 to 
73.90-m2 canopy area were selected for the study. The 
trees were selected to represent the range of three diame- 
ter found at the sites, thus were not random because the 
objective of the study was to quantify the relationship 
between the tree attributes derived from the imagery and 
field-measured biomass through regression analysis. To 
randomly sample the study sites and still have the same 
range of canopy diameter would have required many 
more plots than the logistics of the study could accom- 
modate. Selection was limited to trees that appeared 
healthy and undamaged and had to be at least 1-m apart 
from other trees. Canopy diameters along 2 directions 
(longest axis and perpendicular to longest) were meas- 
ured on each tree followed by harvesting to the ground 
level during the dormant season (October-December 
2010 and January-March 2011). Following harvest, leaf- 
twig (<3-cm diameter stems) and wood (>3-cm diame- 
ter) components were manually separated and weighed. 
Total wet weight of each component was obtained within 
few hours of tree felling. Three randomly selected sub- 
samples of each component from each tree were weighed 
as wet weight, oven-dried at 60˚C for 60 - 70 days, and 
weighed after weights stabilized. Percent moisture was 
determined [(wet weight-dry weight)/wet weight × 100] 
for components and whole tree and used to determine 
total oven dry biomass of each tree and individual bio- 
mass components. 

2.3. Remote Sensing Imagery and Image 
Classification 

One county-level color infrared aerial image collected 
over Hardeman County, covering both sites, was ob- 
tained from the National Agricultural Imagery Program 
(NAIP) provided by the Natural Resources Conservation 
Service Geospatial Data Gateway at  
(http://datagateway.nrcs.usda.gov/). The NAIP imagery 
consisted of green, red, and near infrared bands with a 
spatial resolution of 1-m taken on August 12, 2010 over 
the sites. The image was projected to the Universal 
Transverse Mercator North American Datum 1983 Zone 
14 North by the provider. The image was extracted for 
the sites using ArcGIS software suits (ESRI, Inc. Red- 
lands, CA). 

Image classifications were performed using the SVM 
method in Environment for Visualizing Images software 
(ENVI; Exelis Visual Information Solutions, Boulder, 
CO). The SVM is a supervised machine learning method 
that performs classification based on the statistical learn-  

ing theory. The SVM classifies data by separating a hy- 
perplane that provides the best separation between 
classes in a multidimensional feature space. This hyper- 
plane is the decision surface on which the optimal class 
separation takes place. The optimal hyperplane is the one 
that maximizes the distance between the hyperplane and 
the nearest positive and negative training example called 
the margin. From a given set of training samples, the 
optimization problem is solved to find the hyperplane 
that leads to a sparse solution. Although the SVM is a 
binary classifier in its simplest form, implementation of 
the SVM classifier in ENVI was extended to more than 
two classes by splitting the problem into a series of bi- 
nary class separations (ENVI User’s Guide). 

In order to represent more complex shapes than linear 
hyperplanes, a variety of kernels including the polyno- 
mial, the radial basis function, and the sigmoid can be 
used for performing SVM classification in ENVI. The 
SVM was employed using the radial basis function ker- 
nel for performing the pairwise classification. There is 
also a penalty parameter can be introduced to the SVM 
classifier to allow for misclassification during the train- 
ing process. The penalty parameter was set to its maxi- 
mum value, whereas a classification probability threshold 
of zero was used in order to classify all pixels (ENVI 
User’s Guide). Default settings of this classifier were 
used for image classifications. During the classification 
process, only NIR band of the NAIP imagery was chosen 
using the spectral subset option in ENVI. 

The 1-m image allowed clear and visual identification 
of all endmembers based on the spectral contrast among 
the live vegetation (juniper, mesquite, herbaceous) and 
senescent or non-vegetative components (road, shadow, 
exposed soil, water, senescent herbaceous) (Figure 2(a)). 
Previous studies found that reflectance from Ashe juniper 
(Juniperus ashei), mesquite, water, exposed soil, and 
herbaceous plants were significantly different [32,33]. In 
addition, reflectance variation within deciduous crown is 
larger than that within coniferous tree crown because of 
the non-conical shape, large branches, and the shade area 
caused by the neighboring branches [15]. Thus, juniper 
endmember was manually extracted from isolated trees 
on areas in the image [34]. Juniper endmember for each 
site comprised 10 polygons, each having 25 pixels, from 
pure juniper canopy at locations well-identified on the 
ground and on the image. The CEM was run for juniper 
endmember using covariance matrix with a 75% rule 
threshold and square root stretching. 

2.4. Determination of Canopy Area and 
Development of Regression Model for 
Biomass Estimation 

Point coordinates of the harvested trees, with sub-meter 
accuracy at the center of each tree following harvest, 
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were taken with a Trimble GeoXH hand-held unit (Trim- 
ble Navigation Limited, Sunnyvale, CA) equipped with 
the ArcPad software (ESRI, Inc. Redlands, CA). The 
projection of the GPS unit was set to Universal Trans- 
verse Mercator North American Datum 1983 Zone 14 
North. A unique identification number was assigned to 
each tree during the collection of point coordinates in the 
field. Spatial analyses performed for juniper canopy area 
determination are described below. 

Following image classification using CEM, fractional 
abundance of juniper was converted to vector layer 
(polygon shapefile format) in ENVI and exported to 
ArcGIS for canopy area determination (Figure 2(b)). 
The point coordinates representing tree-locations were 
overlaid onto the vector layer (Figure 2(c)) and the 
polygons representing harvested tree were selected with 
the “select by location” function, where the locations 

were tree point coordinates. A new polygon layer in- 
cluding only selected polygons was created (Figure 2(d)). 
This new polygon layer and point layer, both represent- 
ing harvested trees, were “joined” in order to assigned 
unique identification number to each polygon. Area of 
each polygon was determined with “calculate geometry” 
function and designated as canopy area. The attribute 
table of the circle layer was then exported to a spread- 
sheet in order to perform regression analysis with field- 
measured tree attributes. 

The point coordinates representing to tree-locations 
were overlaid onto the image where one-to-one matching 
with the juniper trees was verified (Figure 2(c)). Circles 
representing juniper canopy area based on point locations 
were blindly digitized as a polygon layer by an untrained 
person in ArcGIS (Figure 2(c)). The areas and diameters 
of these circles were determined by the “calculate ge-  

 

(a) 

(b) 

(c) (d) 

 

Figure 2. The false color infrared national agricultural imagery program image with 1-m spatial resolution and harvested 
trees represented with yellow (a); classified image with juniper: green (b); some of the harvest trees illustrated with blindly 
drown circles in yellow and red dots (c); classified trees shown with the red dots (d) for site 1. 
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ometry” and “field calculator” functions, respectively. 
The attribute table of the circle layer was then exported 
to a spreadsheet in order to perform regression analysis 
with field-measured tree attributes. Field-based canopy 
area (CA; m2) determination was made using the ellipse 
equation: π·a·b, where a = radius of longest canopy axis 
and b = radius of perpendicular canopy axis adopted 
from [10]. 

Simple linear regression analyses were performed to 
relate image-derived tree attributes with field-measured 
tree variables using Statistical Analysis Systems 9.2 
(SAS Institute Inc., Cary, NC) and regression plots were 
created using SigmaPlot 11 (Systat Software Inc., Chi- 
cago, IL). Image-derived tree parameters were used as 
the independent and field-measured attributes were set as 
the dependent variable. Model validation was performed 
by randomly apportioning observations into a 70/30 split 
with the former fraction being used for model develop- 
ment, while later used to predict tree attributes. Error 
estimation was performed by computing the root mean 
squared error (RMSE) between predicted and field-mea- 
sured values, as well as field-measured and imagery- 
derived attributes. 

3. Results 

3.1. Data Summary 

Descriptive summary of variables used in regression 
models were presented in Table 1. The means and ranges 
confirm that a broad range of values was assessed for 
tree attributes. Field measured juniper plant canopy di- 
ameters ranged from 1.40 to 9.70-m with a mean and 
standard error ( x  ± ε: 5.15 ± 0.31), whereas canopy 
areas varied from 1.72 to 73.90-m2 (24.73 ± 2.72). Av- 
erage canopy diameters and areas derived from the im- 
 
Table 1. Summary statistics for juniper tree attributes mea- 
sured in the field and extracted from the imagery with 1-m 
spatial resolution (n = 54). 

Tree attribute Mean SE Min Max 

Fmca (m2) 24.73 2.72 1.53 73.90 

Fmcd (m2) 5.15 0.31 1.40 9.70 

Fmtb [kg] 187.03 25.29 3.53 688.35 

Fmwb [kg] 104.78 16.41 0.05 460.37 

Fmltb [kg] 82.25 9.47 3.44 227.99 

Meca (m2) 28.21 3.27 1.72 101.92 

Macd (m2) 5.48 0.33 1.48 11.39 

Cca (m2) 27.46 3.55 0.00 105.00 

Fmca: field-measured canopy area; Fmcd: field-measured canopy diameter; 
Fmtb: field-measured total biomass; Fmwb: field-measured wood biomass; 
Fmltb: field-measured leaf-twig biomass; Meca: manually-extracted canopy 
area; Mecd: manually-extracted canopy diameter; Cca: classified canopy 
area; SE: Standard Error; Min: Minimum; Max: Maximum. 

agery using both manual-extraction and classification 
methods were slightly higher than the field-measure- 
ments (Table 1). 

Canopy diameter and area for manual extraction 
method ranged from 1.48 to 11.39 m (5.48 ± 0.33) and 
from 1.72 to 101.92-m2 (22.84 ± 2.70), respectively. 
Range of canopy areas derived from classified imagery 
were between 0 and 105-m2 (27.46 ± 3.55), respectively. 

A juniper plant with 1.75 m diameter, and 2.3 m2 can- 
opy area was, however, not detected with the algorithm. 
Biomass varied from 3.53 to 688.85 kg (187.03 ± 24.83). 
Biomass was partitioned into wood biomass only with a 
minimum and maximum weights 0.05 and 460.37 kg 
(104.78 ± 16.41) and leaf-twig biomass varying from 
3.44 to 227.99 kg (82.25 ± 9.47). 

3.2. Biomass Estimation 

Simple linear regression analysis revealed presence of 
robust, tight, and significant relationships between the 
variables of interest (Figures 3-6, Table 2). Predictors 
(classified and manually-extracted canopy area and di- 
ameter) accounted for 91% to 96% of the variation in field- 
measured canopy area and diameter with associated RMS 
errors between 4.274 and 0.489, respectively, (Figure 3). 
Manually-extracted canopy area produced a slightly 
stronger relationship with total and wood biomass than 
canopy diameter (Table 2). Classified canopy area had 
equal predictive power for total and leaf-twig biomass 
(Figures 4(a)-(c)), while the predictive power was 
weaker for wood biomass (Figure 4(b)). The strength of 
the relationships between biomass components and im- 
agery-derived canopy area or canopy diameter generally 
declined (r2 = 0.88 and RMSE between 5.754 and 5.106) 
for leaf-twig biomass (Figure 6(d); Table 2), except for 
the classified canopy area (r2 = 0.93; RMSE = 7.751; 
Figure 4(c)). 

The relationships between remotely determined and 
field-measured tree attributes using the validation dataset 
confirmed robust and significant associations (Figures 5 
and 6, Table 2). Linear regression between canopy dia- 
meter using manual extraction method and field-meas- 
ured canopy diameter produced a stronger relationship (r2 
= 0.95, RMSE = 0.463) (Figure 5(c)) compared to can- 
opy area calculated using both manually-extracted (r2 = 
0.94, RMSE = 4.287; Figure 5(a)) and classified data (r2 
= 0.94, RMSE = 4.199; Figure 5(b)), respectively. Total, 
wood, and leaf-twig biomass determined using classified 
canopy area accounted for 98% (RMSE = 16.644), 96% 
(RMSE = 15.717), and 88% (RMSE = 12.495) of the 
variations in field-measured counterparts (Figures 6(a)- 
(c)), respectively. Biomass components estimated using 
manually-extracted canopy area had r2 values of 0.96, 
0.96, and 0.84 for field-measured total, wood, and leaf- 
twig biomass (Table 2), respectively, whereas the rela-  
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Figure 3. The relationship between manually-extracted and 
field-measured canopy area (a), classified and field-mea- 
sured canopy area (b), and manually-extracted and field- 
measured canopy diameter (c); n = 38, P < 0.001. Fmca: 
field-measured canopy area; meca: manually-extracted ca- 
nopy area; cca: classified canopy area; fmcd: field-mea- 
sured canopy diameter; mecd: manually-extracted canopy 
diameter. 

 

Figure 4. The relationship between classified canopy area 
and field-measured total (a), wood (b), and leaf-twig bio- 
mass (c); n = 38, P < 0.001. Fmtb: field-measured total bio- 
mass; cca: classified canopy area; fmwb: field-measured 
wood biomass; fmltb: field-measured leaf-twig biomass. 
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Figure 5. The relationship between canopy area using ma- 
nually-extracted canopy area (meca) and field-measured 
canopy area (fmca) (a); canopy area using classified canopy 
area (cca) and fmca (b); and canopy diameter using manu- 
ally-extracted canopy diameter (mecd) and field-measured 
canopy diameter (fmcd) (c); n = 16, P < 0.001. 

 

Figure 6. The relationship between total (a), wood (b), and 
leaf-twig biomass (c) determined from classified canopy 
area (cca) and field measurements; n = 16, P < 0.001. Fmtb: 
field-measured total biomass; fmwb: field-measured wood 
biomass; fmltb: field-measured leaf-twig biomass; tb-, wb-, 
ltb-cca: total, wood, and leaf-twig biomass using classified 
canopy area. 
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Table 2. The simple linear regression models with the asso- 
ciated statistics for manually-extracted canopy area and 
diameter versus predicted and field-measured total, wood, 
and leaf-twig biomass. 

Biomass model r2 RMSE

Fmtb+ = −23.617 + (7.604*meca) 0.92 24.87 

Fmwb+ = −30.581 + (4.903*meca) 0.93 11.58 

Fmltb+ = 2.310 + (2.909*meca) 0.88 5.75 

Fmtb+ = −202.34 + (71.921*mecd) 0.90 29.56 

Fmtb+ = −142.143 + (45.704*mecd) 0.89 20.16 

Fmltb+ = −67.776 + (27.822*mecd) 0.88 5.10 

Fmtb* = 8.674 + (1.457*fmtb-meca) 0.96 16.96 

Fmwb* = −11.972 + (0.992*fmwb-meca) 0.96 5.23 

Fmltb* = 12.208 + (0.800*fmltb-meca) 0.84 5.65 

Fmtb* = −42.420 + (1.085*fmtb-mecd) 0.93 28.21 

Fmwb* =−44.061+ (1.184*fmwb-mecd) 0.90 18.48 

Fmltb* =−116.266+(0.889*fmltb-mecd) 0.89 1.54 

+ and *: model development (n = 38, P < 0.001) and validation datasets (n = 
16, P < 0.001), respectively; fmtb: field-measured total biomass; meca: 
manually-extracted canopy area; fmwb: field-measured wood biomass; 
fmltb: field-measured leaf-twig biomass; mecd: manually-extracted canopy 
diameter; ptb-meca, pwb-meca, and pltb-meca: predicted total, wood, and 
leaf-twig biomass using manually-extracted canopy area, respectively; ptb- 
mecd, pwb-mecd, pltb-mecd: predicted total, wood, and leaf-twig biomass 
using manually-extracted canopy diameter. 

 
tionships between field-measured total, wood, and leaf- 
twig biomass and biomass of these components deter- 
mined using manually-extracted canopy diameter were 
93%, 90%, and 89% (Table 2), respectively. 

4. Discussion 

We evaluated and reported the usefulness of 2D geospa- 
tial aerial imagery for estimating juniper tree biomass at 
two rangeland sites, typical for the southern Great Plains 
of the US, using both automated and manual canopy area 
determination methods. Although accuracy assessment 
for classification was not conducted in this research, ear- 
lier studies found high classification accuracy for juniper 
species [32,33,35-38]. Overall accuracies between 80 and 
92% were found for classifying Ashe juniper in central 
Texas using QuickBird imagery and aerial photography 
[32]. An airborne hyperspectral image was evaluated in 
order to compare classification methods for mapping 
Ashe juniper in central Texas [33]. The authors found 
that overall mapping accuracies varied from 84% to 100%. 
Overall classification accuracies between 80% and 92% 
were achieved for both Rocky Mountain juniper (Juni- 
perus scopulorum) and Utah juniper (Juniperus osteo- 
sperma) using Landsat 5 TM imagery [38]. A mapping 
accuracy of 92% for western juniper (Juniperus occi- 
dentalis subsp. Occidentalis) using the NAIP imagery 
was reported [35]. 

A single juniper plant with a 2.3-m2 canopy area 
(1.75-m canopy diameter) was not detected with the al- 
gorithm used to classify the imagery in this study. Vis- 
ual inspection of ground-level images of this plant taken 
prior to harvest indicated that it was growing on 100% 
exposed soil without any herbaceous background cover. 
This suggested that 100% exposed soil background may 
suppress detection of smaller plants. Accurate monitoring 
of semi-arid vegetation using remote sensing can be hin- 
dered by the effects of bare soil [39]. 

Reasons for this may relate to the greater level of 
“brightness” associated with bare soil in arid and semi- 
arid landscapes that saturates that portion of the image 
and eliminates detection of small dark objects such as a 
small tree canopy. 

The approach developed and implemented in the cur- 
rent study allows accurate estimation of individual juni- 
per tree biomass using simple linear regression for field- 
measured biomass and automated or manual methods. 
The relationships observed between field-measured and 
image derived juniper plant variables were robust and 
highly significant. This indicates that remotely sensed 
imagery can be very useful for estimating biomass of 
individual juniper trees on rangeland ecosystems for both 
trained and untrained personnel. For example, automated 
canopy area determination method over large land areas 
can be used by trained personnel in image processing 
software, while manual method can be preferable by un- 
trained rangeland managers. Remote sensing has not 
been used extensively for quantifying the amount and 
extent of woody biomass on rangelands. The bulk of the 
existing studies have relied on other mass quantification 
techniques, which usually are time-consuming measure- 
ments using field transects [9,28]. The strength of the 
relationships found in this study implies that these attrib- 
utes can be readily obtainable from the image with a suf- 
ficient spatial resolution without a need for field meas- 
urements, especially over remote and inaccessible or 
large land areas. The RMSEs reported in this study were 
far less than that required for biomass estimation proce- 
dures in European countries, with an error not exceeding 
±20% [22]. 

We also explored the use of 2D geospatial imagery not 
only for total plant biomass estimation but also for esti- 
mation of wood and leaf-twig biomass components. Esti- 
mates of woody plant components have rarely been re- 
lated to remotely sensed images [40]. Our results indi- 
cated that wood and leaf-twig biomass can be estimated 
reasonably well with canopy area and diameter values 
derived from aerial images of the resolution utilized in 
this study. Wood biomass has the highest energy content 
of the plant components and would likely be the most 
desirable portion of woody plants from a bioenergy use 
perspective. Alternatively, leaf-twig biomass may be 
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linked to estimate leaf area index (LAI), providing clues 
to estimate water use patterns and potential competitive 
effects with the herbaceous understory. Leaves also con- 
duct photosynthesis and are the primary energy exchange 
medium between plant and the environment, and are thus 
linked to productivity and biogeochemical cycles of a 
site [22,40-43]. 

The relationships developed between image-measured 
canopy area and that measured on the site in this study 
were higher than that reported by [28]. These authors 
found that the QuickBird data accounted for 85% of the 
variation in ground-measured eastern redcedar (Junipe- 
rus virginiana) biomass. A stronger relationship (r2 = 
0.98) than ours between image- and ground-measured 
eastern redcedar canopy area was reported by [28]. An 
identical relationship (r2 = 0.92) between LIDAR- and 
field-measured biomass to ours was reported by [44], 
whereas a weaker relationship (r2 = 0.62) was found by 
[45] who related LISS-IV-estimated and field-measured 
biomass. A good relationship (r2 = 0.78) between Aleppo 
pine (Pinus halepensis) biomass measured in the field 
and estimated from a high-quality aerial photograph [46]. 
Image-estimated biomass can serve as an alternative to 
field sampling in forest biomass research, given adequate 
temporal and spatial coverage of the study area [46]. 

Recently, there has been increasing amounts of base- 
line information required at large spatial scales as part of 
woody biomass operational management plans. Such 
details may include ecological diversity issues, partial 
harvesting (i.e., leaving old and large trees), or patch 
harvesting for bioenergy, wildlife or hydrological con- 
cerns. These new requirements demand a greater level of 
detail in remote sensing data. Higher resolution data with 
individual tree-scale details allows for better precision in 
management decisions [1,3,40,47-49]. The individual 
plant approach offers a better understanding of the sources 
of uncertainty and errors associated with remote sensing 
estimates when predicting biomass at a large scale [48]. 
With availability of high spatial and spectral resolution, 
multispectral and hyperspectral satellite and aerial re- 
mote sensing data in the recent times, it is now possible 
to estimate both individual tree and cluster or stand level 
biomass [28,40] at relatively low resource requirement. 
The equations derived and validated in this study are 
easy to comprehend and may be used with high confi- 
dence by managers, ecologists, scientists, and ranchers 
seeking rapid estimates of juniper biomass and possibly 
other tree species with similar growth forms for use in 
management and in ecological models. 

Accurate estimates of biomass are also critical for 
monitoring carbon dynamics in rangelands that is con- 
sidered essential in assessing regional or global carbon 
budgets. Growing interest in quantifying ecosystem car- 
bon stocks and or potential bioenergy uses has triggered 

various research initiatives to explore possibilities of 
using non-destructive methods to estimate biomass [10, 
28]. In particular, there has been a noticeable inclination 
towards using aerial or satellite remote sensing images to 
estimate biomass [3,28,50-53]. Regional companies are 
currently considering to use eastern redcedar in gasifica- 
tion facilities for the production of steam or electricity 
for small rural communities and in ethanol production, or 
to produce woody pellets for residential heating [28]. 
With respect to potential biomass estimation for bio- 
energy uses, the aerial extent of the images will have to 
be sufficient to cover large land areas (>50,000 ha) that is 
necessary for sustainable feedstock supply to a process- 
ing facility [28,54]. Such estimations may need to rely on 
2D imagery such as National Agricultural Imagery Pro- 
gram (NAIP) of the USDA [35,53,55] or satellite images 
that can provide appreciable details at regional scale and 
can be geo-spatially integrated with other features such 
as road networks, waterways, etc. to facilitate harvest 
plans. Otherwise, if not impossible, it is too costly, labor 
intensive, and time consuming to estimate biomass via 
ground-based measurements [28]. 

Data reported so far worldwide have indicated that for 
most rangeland woody plants, the most accurate method 
of non-destructively estimating biomass is to measure 
basal stem diameter, crown diameter, plant height, and 
crown volume [7,56-61]. Basal stem diameter and di- 
ameter at breast height, however are not easily-measur- 
able parameters for juniper due to its highly compacted 
canopy and a high density of low growing stems restrict- 
ing access to the central base stem [10]. Because of 
spherical growth forms and dense lateral growth with very 
compact canopy and a high density of low growing stems, 
these researchers determined that canopy area, determined 
by measuring canopy diameter in two directions, was the 
best variable for predicting total tree AGM.  Height was a 
less effective variable to predict biomass and including 
height to calculate canopy volume resulted in little im- 
provement in the biomass estimation accuracy compared 
to canopy area alone. Since it is not possible to measure 
canopy height or stem diameter at breast height from 2d 
geospatial imagery, using canopy area and/or diameter 
measurements would appear to be the most suitable ap- 
proach for predicting juniper tree biomass from 2D im- 
agery. Imagery classification and converting classifi- 
cation to vector to obtain automated canopy area of all 
trees in an area are the easiest and quickest processes. The 
ability to remotely estimate biomass using canopy area 
would provide a major benefit for research and manage- 
ment efforts. 

5. Conclusion 

Though remote sensing data is becoming increasingly 
important in forest biomass estimation, little attention has 
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been directed to rangeland woody biomass. There is an 
obvious need for large scale measurements to improve 
our understanding on the effects of ecological processes 
such as woody encroachment into grasslands and carbon 
contribution of rangeland woody plants to local or re- 
gional carbon stocks. The current study was undertaken 
to explore the relationship between canopy area and di- 
ameter of individual red berry juniper trees as determined 
via aerial images and the biomass of those trees. A major 
finding of this research is that the method is highly 
automated and repeatable, and provides the ability to 
estimate and map juniper biomass using image classifi- 
cation in addition to manual digitizing. Results suggest 
that 2D geospatial imagery may be a powerful tool for 
estimating juniper biomass and in certain situations with 
adequate ground-based calibration curves, could replace 
ground measurement in many areas. Imagery classifica- 
tion of woody canopies can be a relatively straightfor- 
ward process when the imagery is acquired during the 
dormant season when there is a strong spectral contrast 
between evergreen juniper and leafless deciduous trees 
and/or dormant herbaceous plants. 

6. Acknowledgements 

This research was funded in part by a grant from John 
Deere Renewables, Inc., and the Texas AgriLife Bio- 
energy Initiative Fund. Copper Breaks State Park and the 
Whatley Ranch, Crowell, TX provided harvest sites for 
this project. Images used in this study were made avail- 
able by the USDA-NRCS. We also thank Mimi Roy for 
technical discussion and Andy Bell for assisting with 
data collection. 

REFERENCES 
[1] N. F. Glenn, L. P. Spaete, T. T. Sankey, D. R. Derryberry, 

S. P. Hardegree and J. J. Mitchell, “Errors in LiDAR-De- 
rived Shrub Height and Crown Area on Sloped Terrain,” 
Journal of Arid Environments, Vol. 75, No. 4, 2011, pp. 
377-382. doi:10.1016/j.jaridenv.2010.11.005 

[2] J. E. Nichol and M. L. R. Sarker, “Improved Biomass 
Estimation Using the Texture Parameters of Two High- 
Resolution Optical Sensors,” IEEE Transactions on Geo- 
science And Remote Sensing, Vol. 49, No. 3, 2011, pp. 
930-948. doi:10.1109/TGRS.2010.2068574 

[3] E. K. Strand, L. A. Vierling, A. M. S. Smith and S. C. 
Bunting, “Net Changes in Aboveground Woody Carbon 
Stock in Western Juniper Woodlands, 1946-1998,” Jour- 
nal of Geophysical Research D: Atmospheres, Vol. 113, 
No. G01013, 2008, pp. 1-13. 

[4] Z. Wang, C. B. Schaaf, P. Lewis, Y. Knyazikhin, M. A. 
Schull, A. H. Strahler, T. Yao, R. B. Myneni, M. J. 
Chopping and B. J. Blair, “Retrieval of Canopy Height 
Using Moderate-Resolution Imaging Spectroradiometer 
(MODIS) Data,” Remote Sensing of Environment, Vol. 

115, No. 6, 2011, pp. 1595-1601.  
doi:10.1016/j.rse.2011.02.010 

[5] K. Brinkmann, U. Dickhoefer, E. Schlecht and A. Buerk- 
ert, “Quantification of Aboveground Rangeland Produc- 
tivity and Anthropogenic Degradation on the Arabian 
Peninsula Using Landsat Imagery and Field Inventory 
Data,” Remote Sensing of Environment, Vol. 115, No. 2, 
2011, pp. 465-474. doi:10.1016/j.rse.2010.09.016 

[6] C. Huang, S. E. Marsh, M. P. McClaran and S. R. Archer, 
“Postfire Stand Structure in a Semiarid Savanna: Cross- 
Scale Challenges Estimating Biomass,” Ecological Ap- 
plications, Vol. 17, No. 7, 2007, pp. 1899-1910.  
doi:10.1890/06-1968.1 

[7] E. T. A. Mitchard, S. S. Saatchi, S. L. Lewis, T. R. Feld- 
pausch, I. H. Woodhouse, B. Sonké, C. Rowland and P. 
Meir, “Measuring Biomass Changes Due to Woody En- 
croachment and Deforestation/Degradation in a Forest- 
Savanna Boundary Region of Central Africa Using Multi- 
Temporal L-Band Radar Backscatter,” Remote Sensing of 
Environment, Vol. 115, No. 11, 2011, pp. 2861-2873.  
doi:10.1016/j.rse.2010.02.022 

[8] K. P. Paudel and P. Andersen, “Assessing Rangeland 
Degradation Using Multi Temporal Satellite Images and 
Grazing Pressure Surface Model in Upper Mustang, Trans 
Himalaya, Nepal,” Remote Sensing of Environment, Vol. 
114, No. 8, 2010, pp. 1845-1855.  
doi:10.1016/j.rse.2010.03.011 

[9] R. Sonnenschein, T. Kuemmerle, T. Udelhoven, M. Stel- 
lmes and P. Hostert, “Differences in Landsat-Based Trend 
Analyses in Drylands Due to the Choice of Vegetation 
Estimate,” Remote Sensing of Environment, Vol. 115, No. 
6, 2011, pp. 1408-1420. doi:10.1016/j.rse.2011.01.021 

[10] R. J. Ansley, M. Mirik, B. W. Surber and S. C. Park, 
“Canopy Area and Aboveground Mass of Individual Red- 
berry Juniper (Juniperus pinchotii Sudw.) Trees,” Range- 
land Ecology & Management, Vol. 65, No. 2, 2012, pp. 
189-195. doi:10.2111/REM-D-11-00112.1 

[11] M. A. Alrababah, M. N. Alhamad, A. L. Bataineh, M. M. 
Bataineh and A. F. Suwaileh, “Estimating East Mediter- 
ranean Forest Parameters Using Landsat ETM,” Interna- 
tional Journal of Remote Sensing, Vol. 32, No. 6, 2011, 
pp. 1561-1574. doi:10.1080/01431160903573235 

[12] M. L. Clark, D. A. Roberts, J. J. Ewel and D. B. Clark, 
“Estimation of Tropical Rain Forest Aboveground Bio- 
mass with Small-Footprint Lidar and Hyperspectral Sen- 
sors,” Remote Sensing of Environment, Vol. 115, No. 11, 
2011, pp. 2931-2942. doi:10.1016/j.rse.2010.08.029 

[13] S. Englhart, V. Keuck and F. Siegert, “Aboveground Bio- 
mass Retrieval in Tropical Forests—The Potential of 
Combined X- and L-Band SAR Data Use,” Remote Sens- 
ing of Environment, Vol. 115, No. 5, 2011, pp. 1260- 
1271. doi:10.1016/j.rse.2011.01.008 

[14] M. T. Gebreslasie, F. B. Admed, J. A. N. Van Aardt and 
F. Blakeway, “Individual Tree Detection Based on Vari- 
able and Fixed Window Size Local Maximum Filtering 
Applied to IKONOS Imagery for Even-Aged Eucalyptus 
Plantation Forest,” International Journal of Remote Sens- 
ing, Vol. 32, No. 15, 2011, pp. 4141-4154.  
doi:10.1080/01431161003777205 

Copyright © 2013 SciRes.                                                                                  ARS 

http://dx.doi.org/10.1016/j.jaridenv.2010.11.005
http://dx.doi.org/10.1109/TGRS.2010.2068574
http://dx.doi.org/10.1016/j.rse.2011.02.010
http://dx.doi.org/10.1016/j.rse.2010.09.016
http://dx.doi.org/10.1890/06-1968.1
http://dx.doi.org/10.1016/j.rse.2010.02.022
http://dx.doi.org/10.1016/j.rse.2010.03.011
http://dx.doi.org/10.1016/j.rse.2011.01.021
http://dx.doi.org/10.2111/REM-D-11-00112.1
http://dx.doi.org/10.1080/01431160903573235
http://dx.doi.org/10.1016/j.rse.2010.08.029
http://dx.doi.org/10.1016/j.rse.2011.01.008
http://dx.doi.org/10.1080/01431161003777205


M. MIRIK  ET  AL. 191

[15] Y. Ke and L. J. Quackenbush, “A Review of Methods for 
Automatic Individual Tree-Crown Detection and Delinea- 
tion from Passive Remote Sensing,” International Jour- 
nal of Remote Sensing, Vol. 32, No. 17, 2011, pp. 4725- 
4747. doi:10.1080/01431161.2010.494184 

[16] S. C. Popescu, K. Zhao, A. Neuenschwander and C. Lin, 
“Satellite Lidar vs. Small Footprint Airborne Lidar: Com- 
paring the Accuracy of Aboveground Biomass Estimates 
and Forest Structure Metrics at Footprint Level,” Remote 
Sensing of Environment, Vol. 115, No. 11, 2011, pp. 2786- 
2797. doi:10.1016/j.rse.2011.01.026 

[17] L. R. Sarker and J. E. Nichol, “Improved Forest Biomass 
Estimates Using ALOS AVNIR-2 Texture Indices,” Re- 
mote Sensing of Environment, Vol. 115, No. 4, 2011, pp. 
968-977. doi:10.1016/j.rse.2010.11.010 

[18] C. Yang, H. Huang and S. Wang, “Estimation of Tropical 
Forest Biomass Using Landsat TM Imagery and Perma- 
nent Plot Data in Xishuangbanna, China,” International 
Journal of Remote Sensing, Vol. 32, No. 20, 2011, pp. 
5741-5756. doi:10.1080/01431161.2010.507677 

[19] E. Næsset, “Estimating Above-Ground Biomass in Young 
Forests with Airborne Laser Scanning,” International 
Journal of Remote Sensing, Vol. 32, No. 2, 2011, pp. 
473-501. doi:10.1080/01431160903474970 

[20] G. Sun, K. J. Ranson, Z. Guo, Z. Zhang, P. Montesano 
and D. Kimes, “Forest Biomass Mapping from Lidar and 
Radar Synergies,” Remote Sensing of Environment, Vol. 
115, No. 11, 2011, pp. 2906-2916.  
doi:10.1016/j.rse.2011.03.021 

[21] G. Chen and G. J. Hay, “An Airborne Lidar Sampling 
Strategy to Model Forest Canopy Height from Quickbird 
Imagery and GEOBIA,” Remote Sensing of Environment, 
Vol. 115, No. 6, 2011, pp. 1532-1542.  
doi:10.1016/j.rse.2011.02.012 

[22] T. Le Toan, S. Quegan, M. W. J. Davidson, H. Balzter, P. 
Paillou, K. Papathanassiou, S. Plummer, F. Rocca, S. 
Saatchi, H. Shugart and L. Ulander, “The BIOMASS 
Mission: Mapping Global Forest Biomass to Better Un- 
derstand the Terrestrial Carbon Cycle,” Remote Sensing 
of Environment, Vol. 115, No. 11, 2011, pp. 2850-2860.  
doi:10.1016/j.rse.2011.03.020 

[23] A. Swatantran, R. Dubayah, D. Roberts, M. Hofton and J. 
B. Blair, “Mapping Biomass and Stress in the Sierra Ne- 
vada Using Lidar and Hyperspectral Data Fusion,” Re- 
mote Sensing of Environment, Vol. 115, No. 11, 2011, pp. 
2917-2930. doi:10.1016/j.rse.2010.08.027 

[24] C. Song, M. B. Dickinson, L. Su, S. Zhang and D. Yaus- 
sey, “Estimating Average Tree Crown Size Using Spatial 
Information from Ikonos and QuickBird Images: Across- 
Sensor and Across-Site Comparisons,” Remote Sensing of 
Environment, Vol. 114, No. 5, 2010, pp. 1099-1107.  
doi:10.1016/j.rse.2009.12.022 

[25] P. Gonzalez, G. P. Asner, J. J. Battles, M. A. Lefsky, K. 
M. Waring and M. Palace, “Forest Carbon Densities and 
Uncertainties from Lidar, QuickBird, and Field Meas- 
urements in California,” Remote Sensing of Environment, 
Vol. 114, No. 7, 2010, pp. 1561-1575.  
doi:10.1016/j.rse.2010.02.011 

[26] R. J. Ansley, H. T. Weidemann, M. J. Castellano and J. E. 

Slosser, “Herbaceous Restoration of Juniper-Dominated 
Grasslands with Chaining and Fire,” Rangeland Ecology 
& Management, Vol. 59, No. 2, 2006, pp. 171-178.  
doi:10.2111/05-095R1.1 

[27] I. Ozdemir, “Estimating Stem Volume by Tree Crown 
Area and Tree Shadow Area Extracted from Pan-Shar- 
pened QuickBird Imagery in Open Crimean Juniper For- 
ests,” International Journal of Remote Sensing, Vol. 29, 
No. 19, 2008, pp. 5643-5655.  
doi:10.1080/01431160802082155 

[28] P. J. Starks, B. C. Venuto, J. A. Eckroat and T. Lucas, 
“Measuring Eastern Redcedar (Juniperus virginiana L.) 
Mass with the Use of Satellite Imagery,” Rangeland Ecol- 
ogy & Management, Vol. 64, No. 2, 2011, pp. 178-186.  
doi:10.2111/REM-D-10-00057.1 

[29] National Oceanic and Atmospheric Administration, Cli-
mate Data Center, Asheville, 2006.  
http://www.ncdc.noaa.gov/ oa/ncdc.html 

[30] NRCS, United States Department of Agriculture, Natural 
Resource Conservation Service, Plants Database Website, 
2011. http://plants.usda.gov 

[31] NRCS, United States Department of Agriculture, Natural 
Resource Conservation Service, Soil Series Descriptions 
Website, 2011. http://soils.usda.gov  

[32] J. H. Everitt, C. Yang and H. B. Johnson, “Canopy Spec- 
tra and Remote Sensing of Ashe Juniper and Associated 
Vegetation,” Environmental Monitoring and Assessment, 
Vol. 130, No. 1-3, 2007, pp. 403-413.  
doi:10.1007/s10661-006-9407-2 

[33] C. Yang, J. H. Everitt and H. B. Johnson, “Applying Im- 
age Transformation and Classification Techniques to Air- 
borne Hyperspectral Imagery for Mapping Ashe Juniper 
Infestations,” International Journal of Remote Sensing, 
Vol. 30, No. 11, 2009, pp. 2741-2758.  
doi:10.1080/01431160802555812 

[34] B. Somers, G. P. Asner, L. Tits and P. Coppin, “End- 
member Variability in Spectral Mixture Analysis: A Re- 
view,” Remote Sensing of Environment, Vol. 115, No. 7, 
2011, pp. 1603-1616. doi:10.1016/j.rse.2011.03.003 

[35] K. W. Davies, S. L. Petersen, D. D. Johnson, D. B. Davis, 
M. D. Madsen, D. L. Zvirzdin and J. D. Bates, “Estima- 
ting Juniper Cover from National Agriculture Imagery 
Program (NAIP) Imagery and Evaluating Relationships 
between Potential Cover and Environmental Variables,” 
Rangeland Ecology & Management, Vol. 63, No. 6, 2010, 
pp. 630-637. doi:10.2111/REM-D-09-00129.1 

[36] S. L. Petersen and T. K. Stringham, “Development of 
GIS-Based Models to Predict Plant Community Structure 
in Relation to Western Juniper Establishment,” Forest 
Ecology and Management, Vol. 256, No. 5, 2008, pp. 
981-989. doi:10.1016/j.foreco.2008.05.058 

[37] T. T. Sankey, N. Glenn, S. Ehinger, A. Boehm and S. 
Hardegree, “Characterizing Western Juniper Expansion 
via a Fusion of Landsat 5 Thematic Mapper and Lidar 
data,” Rangeland Ecology & Management, Vol. 63, No. 5, 
2010, pp. 514-523. doi:10.2111/REM-D-09-00181.1 

[38] T. T. Sankey and M. J. Germino, “Assessment of Juniper 
Encroachment with the Use of Satellite Imagery and Geo- 
spatial Data,” Rangeland Ecology & Management, Vol. 

Copyright © 2013 SciRes.                                                                                  ARS 

http://dx.doi.org/10.1080/01431161.2010.494184
http://dx.doi.org/10.1016/j.rse.2011.01.026
http://dx.doi.org/10.1016/j.rse.2010.11.010
http://dx.doi.org/10.1080/01431161.2010.507677
http://dx.doi.org/10.1080/01431160903474970
http://dx.doi.org/10.1016/j.rse.2011.03.021
http://dx.doi.org/10.1016/j.rse.2011.02.012
http://dx.doi.org/10.1016/j.rse.2011.03.020
http://dx.doi.org/10.1016/j.rse.2010.08.027
http://dx.doi.org/10.1016/j.rse.2009.12.022
http://dx.doi.org/10.1016/j.rse.2010.02.011
http://dx.doi.org/10.2111/05-095R1.1
http://dx.doi.org/10.1080/01431160802082155
http://dx.doi.org/10.2111/REM-D-10-00057.1
http://dx.doi.org/10.1007/s10661-006-9407-2
http://dx.doi.org/10.1080/01431160802555812
http://dx.doi.org/10.1016/j.rse.2011.03.003
http://dx.doi.org/10.2111/REM-D-09-00129.1
http://dx.doi.org/10.1016/j.foreco.2008.05.058
http://dx.doi.org/10.2111/REM-D-09-00181.1


M. MIRIK  ET  AL. 

Copyright © 2013 SciRes.                                                                                  ARS 

192 

61, No. 4, 2008, pp. 412-418. doi:10.2111/07-141.1 

[39] K. Hufkens, J. Bogaert, Q. H. Dong, L. Lu, C. L. Huang, 
M. G. Ma, T. Che, X. Li, F. Veroustraete and R. Ceule- 
mans, “Impacts and Uncertainties of Upscaling of Re- 
mote-Sensing Data Validation for a Semi-Arid Wood- 
land,” Journal of Arid Environments, Vol. 72, No. 8, 
2008, pp. 1490-1505. doi:10.1016/j.jaridenv.2008.02.012 

[40] R. M. Lucas, A. C. Lee and P. J. Bunting, “Retrieving 
Forest Biomass through Integration of CASI and LIDAR 
Data,” International Journal of Remote Sensing, Vol. 29, 
No. 5, 2008, pp. 1553-1577.  
doi:10.1080/01431160701736497 

[41] D. F. Levia Jr., “A Generalized Allometric Equation to 
Predict Foliar Dry Weight on the Basis of Trunk Diame- 
ter for Eastern White Pine (Pinus strobus L.),” Forest 
Ecology and Management, Vol. 255, No. 5-6, 2008, pp. 
1789-1792. doi:10.1016/j.foreco.2007.12.001 

[42] S. D. Roberts, T. J. Dean, D. L. Evans, J. W. McCombs, 
R. L. Harrington and P. A. Glass, “Estimating Individual 
Tree Leaf Area in Loblolly Pine Plantations Using Li- 
DAR-Derived Measurements of Height and Crown Di- 
mensions,” Forest Ecology and Management, Vol. 213, 
No. 1-3, 2005, pp. 54-70.  
doi:10.1016/j.foreco.2005.03.025 

[43] L. Wang, J. E. R. Hunt, J. J. Qu, X. Hao and C. S. T. 
Daughtry, “Towards Estimation of Canopy Foliar Bio- 
mass with Spectral Reflectance Measurements,” Remote 
Sensing of Environment, Vol. 115, No. 3, 2011, pp. 836- 
840. doi:10.1016/j.rse.2010.11.011 

[44] R. M. Lucas, N. Cronin, M. Moghaddam, A. Lee, J. Arm- 
ston, P. Bunting and C. Witte, “Integration of Radar and 
Landsat-Derived Foliage Projected Cover for Woody Re- 
growth Mapping, Queensland, Australia,” Remote Sens- 
ing of Environment, Vol. 100, No. 3, 2006, pp. 388-406. 
doi:10.1016/j.rse.2005.09.020 

[45] R. Madugundu, V. Nizalapur and C. C. Jha, “Estimation 
of LAI and Above-Ground Biomass in Deciduous Forests: 
Western Ghats of Karnataka, India,” International Jour- 
nal of Applied Earth Observation and Geoinformation, 
Vol. 10, No. 2, 2008, pp. 211-219.  
doi:10.1016/j.jag.2007.11.004 

[46] A. B. Massada, Y. Carmel, G. E. Tzur, J. M. Grünzweig 
and D. Yakir, “Assessment of Temporal Changes in 
Aboveground Forest Tree Biomass Using Aerial Photo- 
graphs and Allometric Equations,” Canadian Journal of 
Forestry Research, Vol. 36, No. 10, 2006, pp. 2585-2594.  
doi:10.1139/x06-152 

[47] H. Holmström, “Estimation of Single-Tree Characteristics 
Using the kNN Method and Plotwise Aerial Photograph 
Interpretations,” Forest Ecology and Management, Vol. 
167, No. 1-3, 2002, pp. 303-314.  
doi:10.1016/S0378-1127(01)00720-4 

[48] S. C. Popescu, “Estimating Biomass of Individual Pine 
Trees Using Airborne Lidar,” Biomass and Bioenergy, 
Vol. 31, No. 9, 2007, pp. 646-655.  
doi:10.1016/j.biombioe.2007.06.022 

[49] G. Whiteman and J. R. Brown, “Assessment of a Method 
for Mapping Woody Plant Density in a Grassland Me- 
trix,” Journal of Arid Environments, Vol. 38, No. 2, 1998, 
pp. 269-282. doi:10.1006/jare.1997.0325 

[50] G. P. Asner, S. Archer, R. F. Hughes, R. J. Ansley and C. 
A. Wessman, “Net Changes in Regional Woody Vegeta- 
tion Cover and Carbon Storage in Texas Drylands, 1937- 
1999,” Global Change Biology, Vol. 9, No. 3, 2003, pp. 
316-335. doi:10.1046/j.1365-2486.2003.00594.x 

[51] C. Huang, G. P. Asner, R. E. Martin, N. N. Barger and J. 
C. Neff, “Multiscale Analysis of Tree Cover and Above- 
ground Carbon Stocks in Pinyon-Juniper Woodlands,” 
Ecological Applications, Vol. 19, No. 3, 2009, pp. 668- 
681. doi:10.1890/07-2103.1 

[52] O. Masera, A. Ghilardi, R. Drigo and M. Angel Trossero, 
“WISDOM: A GIS-Based Supply Demand Mapping Tool 
for Woodfuel Management,” Biomass and Bioenergy, Vol. 
30, No. 7, 2006, pp. 618-637.  
doi:10.1016/j.biombioe.2006.01.006 

[53] M. Mirik and R. J. Ansley, “Comparison of Ground- 
measured and Image-Classified Honey Mesquite (Proso- 
pis glandulosa) Canopy Cover in Texas,” Rangeland 
Ecology & Management, Vol. 65, No. 1, 2012, pp. 85-95.  
doi:10.2111/REM-D-11-00073.1 

[54] R. J. Ansley, M. Mirik and M. J. Castellano, “Structural 
Biomass Partitioning in Regrowth and Undisturbed Mes- 
quite (Prosopis glandulosa): Implications for Bioenergy 
Uses,” Global Change Biology Bioenergy, Vol. 2, No. 1, 
2010, pp. 26-36. doi:10.1111/j.1757-1707.2010.01036.x 

[55] E. Strand, A. Smith, S. Bunting, L. Vierling, D. Hann and 
P. Gessler, “Wavelet Estimation of Plant Spatial Patterns 
in Multitemporal Aerial Photography,” International Jour- 
nal of Remote Sensing, Vol. 27, No. 10, 2006, pp. 2049- 
2054. doi:10.1080/01431160500444764 

[56] E. N. Chidumayo, “Above-Ground Woody Biomass 
Structure and Productivity in a Zambezian Woodland,” 
Forest Ecology and Management, Vol. 36, No. 1, 1990, 
pp. 33-46. doi:10.1016/0378-1127(90)90062-G 

[57] A. Lufafa, I. Diédhiou, N. A. S. Ndiaye, M. Séné, F. Kiz- 
ito, R. P. Dick and J. S. Noller, “Allometric Relationships 
and Peak-Season Community Biomass Stocks of Native 
Shrubs in Senegal’s Peanut Basin,” Journal of Arid En- 
vironments, Vol. 73, No. 3, 2009, pp. 260-266.  
doi:10.1016/j.jaridenv.2008.09.020 

[58] B. K. Northup, S. F. Zitzer, S. Archer, C. R. McMurtry 
and T. W. Boutton, “Above-Ground Biomass and Carbon 
and Nitrogen Content of Woody Species in a Subtropical 
Thornscrub Parkland,” Journal of Arid Environments, 
Vol. 62, No. 1, 2005, pp. 23-43.  
doi:10.1016/j.jaridenv.2004.09.019 

[59] L. F. Ohmann, D. F. Grigal and R. B. Brander, “Biomass 
Estimation for Five Shrubs from Northeastern Minne- 
sota,” Research Paper NC-133, US Department of Agri- 
culture, Forest Service, North Central Forest Experiment 
Station, St. Paul, 1976. 

[60] A. Rosenschein, T. Tietema and D. O. Hall, “Biomass 
Measurement and Monitoring of Trees and Shrubs in a 
Semi-Arid Region of Central Kenya,” Journal of Arid 
Environments, Vol. 42, No. 2, 1999, pp. 97-116.  
doi:10.1006/jare.1999.0509 

[61] T. Tietema, “Biomass Determination of Fuelwood Trees 
and Bushes of Botswana, Southern Africa,” Forest Ecol- 
ogy and Management, Vol. 60, No. 3-4, 1993, pp. 257- 
269. doi:10.1016/0378-1127(93)90083-Y 

http://dx.doi.org/10.1016/j.jaridenv.2008.02.012
http://dx.doi.org/10.1080/01431160701736497
http://dx.doi.org/10.1016/j.foreco.2007.12.001
http://dx.doi.org/10.1016/j.foreco.2005.03.025
http://dx.doi.org/10.1016/j.rse.2010.11.011
http://dx.doi.org/10.1016/j.rse.2005.09.020
http://dx.doi.org/10.1016/j.jag.2007.11.004
http://dx.doi.org/10.1139/x06-152
http://dx.doi.org/10.1016/S0378-1127(01)00720-4
http://dx.doi.org/10.1016/j.biombioe.2007.06.022
http://dx.doi.org/10.1006/jare.1997.0325
http://dx.doi.org/10.1046/j.1365-2486.2003.00594.x
http://dx.doi.org/10.1890/07-2103.1
http://dx.doi.org/10.1016/j.biombioe.2006.01.006
http://dx.doi.org/10.2111/REM-D-11-00073.1
http://dx.doi.org/10.1111/j.1757-1707.2010.01036.x
http://dx.doi.org/10.1080/01431160500444764
http://dx.doi.org/10.1016/0378-1127(90)90062-G
http://dx.doi.org/10.1016/j.jaridenv.2008.09.020
http://dx.doi.org/10.1016/j.jaridenv.2004.09.019
http://dx.doi.org/10.1006/jare.1999.0509
http://dx.doi.org/10.1016/0378-1127(93)90083-Y

