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ABSTRACT 

With the advancement in geospatial data acquisition technology, large sizes of digital data are being collected for our 
world. These include air- and space-borne imagery, LiDAR data, sonar data, terrestrial laser-scanning data, etc. LiDAR 
sensors generate huge datasets of point of multiple returns. Because of its large size, LiDAR data has costly storage and 
computational requirements. In this article, a LiDAR compression method based on spatial clustering and optimal fil- 
tering is presented. The method consists of classification and spatial clustering of the study area image and creation of 
the optimal planes in the LiDAR dataset through first-order plane-fitting. First-order plane-fitting is equivalent to the 
Eigen value problem of the covariance matrix. The Eigen value of the covariance matrix represents the spatial variation 
along the direction of the corresponding eigenvector. The eigenvector of the minimum Eigen value is the estimated 
normal vector of the surface formed by the LiDAR point and its neighbors. The ratio of the minimum Eigen value and 
the sum of the Eigen values approximates the change of local curvature, which determines the deviation of the surface 
formed by a LiDAR point and its neighbors from the tangential plane formed at that neighborhood. If the minimum 
Eigen value is close to zero for example, then the surface consisting of the point and its neighbors is a plane. The objec- 
tive of this ongoing research work is basically to develop a LiDAR compression method that can be used in the future at 
the data acquisition phase to help remove fake returns and redundant points. 
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1. Introduction 

The large volumes of spatial data and their products 
made it necessary to research new data compression 
techniques. Much research has been focused on develop- 
ing compression methods for aerial and satellite imagery 
[1,2]. As a result, a number of image compression tech- 
niques have been developed for these types of imagery. 
These compression techniques can be generally catego- 
rized in two classes: 1) one that reduces the number of 
bits and creates a numerically-identical replica of the 
original image; and 2) one that creates a much com- 
pressed replica of the image, but with much degraded 
quality [3]. 

LiDAR sensors generate huge datasets of unstructured 
point clouds of multiple returns, which may be false sig- 
nals or correspond to natural or manmade features. Be- 
cause of its large size, LiDAR data has costly storage and 
computational requirements [4]. To reduce the size of Li- 
DAR data for effective storage and processing, robust 
compression methods are being researched. Wu and  

Amaratunga [5] presented wavelet transform-based tri- 
angulated networks (WTIN) method for representing 
large GIS datasets. The WTIN method, which is based on 
the second generation wavelet theory, can be used to 
produce multi-resolution representations of the data. Al- 
though this method has produced compact multi-resolu- 
tion representations of LiDAR data with acceptable qual- 
ity, more efficient quantization schemes are much needed 
than the simple threshold operation adopted in the 
method to compress the data [6,7]. Ali and Mehrabian [8] 
developed a novel computational paradigm for picking 
sample points to create a triangulated irregular network 
(TIN) model from LiDAR data of a flat terrain. This 
method can be used to remove unwanted and redundant 
points in over-sampled smooth terrain surfaces and small 
high resolution objects resulting in a compact TIN mo- 
del. 

The method uses the Voronoi diagram to evaluate the 
local density of the LiDAR points and identify clusters 
within the data. Then, points in the same proximity with  
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elevations within a threshold are selected. The Voronoi 
tree concept is then used to delete the selected points and 
update the Voronoi diagram. The final TIN is then built 
using a randomized incremental algorithm. The methods 
described above can help produce a compressed LiDAR 
dataset. However, none of these methods can be used to 
remove unwanted and redundant points in the LiDAR 
data set. The method presented herein can be used to 
remove unwanted and redundant LiDAR point; produc- 
ing a much compressed LiDAR dataset through spatial 
clustering and optimal plane fitting. 

2. Methodology 

The method adopted in this research consists of (1) clas- 
sification and spatial clustering and (2) optimal first- 
order plane fitting of the LiDAR dataset. The schematic 
diagram of Figure 1 summarizes the major steps of our 
compression method. 

First-order plane-fitting helps in identifying the type of 
surface defined by every LiDAR point and its neighbors, 
and therefore the removal of unwanted, redundant Li- 
DAR points, and fake LiDAR returns becomes possible. 
The technical approach adopted in this study is explained 
below: 

2.1. Spatial Clustering of the LiDAR Data 

The clustering process in this study was performed in 
two steps: (a) classification of the digital orthoimage of 
the study area, which was performed using the Bayesian 
maximum likelihood classification (BMLC), and (b) spa- 
tial clustering of the LiDAR dataset. The goal of spatial 
clustering is to subdivide the data into separate regions 
 

 

Figure 1. Schematic diagram of the compression method. 

that are characterized with a unique property in every 
region’s local neighborhood. These regions are defined 
by the points located inside them. 

In the BMLC method, a Bayesian Probability Function 
is calculated based on statistics computed from the inputs 
for classes established from the training sites. This clas- 
sification begins with computing statistics for user se- 
lected training sites of land cover classes and uses the 
results of the statistical summary to classify the image. 
Each pixel is judged as to the class to which it most 
probably belongs. Histogram analysis was performed to 
locate image clusters using intensity and distance metric 
[9]. The 2001 National Land Cover Data (NLCD) Classi- 
fication Scheme was used when histogram analysis 
shows the existence of more homogenous regions within 
the classes resulted from applying the BMLC method. 
The classified orthoimage of the study area was then 
vectorized using a run graph method [10]; resulting in a 
polygon layer. This vectorization method groups pixels 
in the raster image into area fragments, which were re- 
fined using line fitting and line extending processes. 
Then, the vector layer was used to initiate a sweeping 
spatial clustering algorithm in order to identify clusters in 
the LiDAR dataset [11]. Clustering is a well-studied 
subject and hence many algorithms already exist that can 
be categorized as hierarchical, partitioning-based, graph- 
based, density-based algorithms, model-based, and a few 
combinational algorithms. 

The sweeping spatial clustering algorithm was used to 
determine arbitrary shaped, possibly-nested clusters in 
the LiDAR dataset. This hierarchical spatial clustering 
algorithm generates spatial clusters in one pass as it is 
based on the sweep-line concept which is widely known 
in computational geometry and computer graphics. 

This algorithm works in three phases: initializing, 
sweeping and finalizing. During the initializing phase, 
the LiDAR points are sorted according to the direction of 
the sweep-line movement. In the sweeping phase, a 
sweep-line moves through the plane and stops to update 
the data structure when it hits a LiDAR point and it con- 
tinues until the whole LiDAR point set is clustered. In 
the finalizing phase, the indices of the resulted clusters 
are ordered in a simple data structure of arrays. 

2.2. Finding Optimal Planes in LiDAR Data 

The basic features found in LiDAR point cloud are 
planes. Having planes, points and edges can be obtained 
by calculating planes intersections. Two methods are 
commonly used to identify optimal planes, which are the 
least square fitting and principal component analysis. 
First order plane fitting is basically equivalent to the Ei- 
gen value problem of the covariance matrix [12], which 
is the main concept of the principal component analysis 
method used in this study. Let us first define the point pi 
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and its local neighboring points in the LiDAR point 
cloud as shown in Figure 2. The point pi in Figure 2 and 
its neighbors will be used to estimate the surface normal 
vector. 

The covariance matrix of the point pi and its k neigh- 
boring points;   3 3V ipCO   is expressed as: 
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of pi and its k neighbors, and l̂e  s the eigenvector of the 
l  allest Eigen value l . 

Since i  is a real, positive, semi-definite ma- 
trix, its Eigen values are always greater than or equal to 
zero. The eigenvector of the minimum Eigen value is the 
estimated normal vector of the surface formed by pi and 
its k neighboring points. The other eigenvectors are the 
tangential vectors of the surface. If the minimum Eigen 
value is close to zero, then the surface consisting of a 
LiDAR point and its neighbors is a plane. Note that each 
Eigen value of the covariance matrix represents the spa- 
tial variation along the direction of the corresponding 
eigenvector. The ratio of the minimum Eigen value and 
the sum of the Eigen values approximates the change of 
local curvature, which determines the deviation of the 
surface formed by a LiDAR point pi and its neighbors 
from the tangential plane formed at that neighborhood. 
The optimal planes have been created in this study for 
the clustered LiDAR points set. And a criterion for keep- 
ing or removing unwanted, redundant, and fake LiDAR 
points has been established based on the optimal plane of 
the LiDAR dataset obtained using the First Order Plane 
Fitting method. The success of this compression tech- 
nique was judged by the compression ratio. 

 p COV

3. Results and Discussion 

The LiDAR data used in the work was acquired for a 
study area in the north east region of the City of Venice, 
which is located in Sarasota County, Florida, United 
 

 
(a)                           (b) 

Figure 2. (a) The LiDAR point pi and its neighbors; (b) The 
Eigen vectors of covariance matrix of the LiDAR point pi 
and its k neighbors. 

States (Figure 3). The LiDAR dataset for the study area 
was produced in 2005 for the Southwest Florida Water 
Management District (SWFWMD) as part of the Mana- 
tee/Little Manatee LiDAR Survey project. The data set 
comprised of 3-D bare earth mass points delivered in the 
LAS file format based upon the District’s 5000’ × 5000’ 
grid structure. The LiDAR data (Figure 4) was collected 
using a Leica LS-50 LiDAR system integrated with an 
inertial measuring unit (IMU) and a dual frequency GPS 
receiver. Positional accuracy is 0.75-ft root mean square 
(RMSE), which satisfies the National Standard for Spa- 
tial Data Accuracy (NSSDA) standard for 2-foot con- 
tours (scale of 1:12,000). Bare earth LiDAR masspoint 
data has a vertical accuracy of 0.3-feet root mean square 
(RMSE). Projected Coordinate System is North Ameri- 
can Datum (NAD) of 1983; State Plane System of Flor- 
ida West and the Vertical datum is the North American 
Vertical Datum (NAVD) of 1988. 

Classification of the study area ortho-imagery was per- 
formed using the Bayesian maximum likelihood classifi- 
cation (BMLC) method. The process started by comput- 
ing statistics for selected training sites of land cover 
classes and used the results of the statistical summary to  
 

 

Figure 3. Study area (Intended for color reproduction). 
 

 

Figure 4. LiDAR data of the study area (Size on disk: 
703.32 MB) (Intended for color reproduction). 
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classify the image. Histogram analysis was performed to 
locate ortho-image clusters using intensity and distance 
metrics (Figure 5). The classified ortho-image was 
sharpened and then a vectorized layer was created using 
the run graph method resulting in a polygon layer (Fig- 
ure 6). 

The resulted vector layer was then used to initiate a 
sweeping spatial clustering algorithm in order to identify 
clusters in the LiDAR dataset following [11]. The algo- 
rithm is based on the sweep-line concept which is widely 
known in computational geometry and computer graph- 
ics. The identified clusters in the LiDAR dataset as proc- 
essed with this algorithm are shown in Figure 7. Optimal 
planes fitted to the LiDAR dataset (Figure 8) were then 
generated using the principal component analysis method 
performed on the clustered LiDAR dataset of Figure 6. 

As it can be seen in Figure 7, the sweeping spatial 
clustering algorithm managed to identify clusters in the 
LiDAR dataset successfully by separating smooth objects 
such as buildings tops, pavement, etc. from vegetation 
and water bodies, even in where these classes are in the 
same local neighborhood. The spatial clustering of the 
 

 

Figure 5. Classified ortho-image of the study area. 
 

 

 

Figure 6. The sharpened calssified orth-image and the vec- 
torized layer of the study area (Intended for color repro- 
duction). 

 

Figure 7. Identified clusters in the LiDAR dataset using the 
sweeping spatial clustering algorithm (Intended for color 
reproduction). 

 

 
(a) 

 
(b) 

Figure 8. The optimal planes fitted to the LiDAR dataset: (a) 
2D View; (b) 3D View (Intended for color reproduction). 
 
LiDAR data in this way helped facilitate the execution of 
the optimal plane fitting. 

Although the optimal planes shown in Figure 8 have 
been created from the clustered LiDAR dataset shown in 
Figure 7; we shouldn’t expect the two outcomes to be 
similar because the optimal plane fitting process by de- 
sign doesn’t necessary consider the classes in the study 
area. Optimal plane fitting considers the local neighbored 
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of every LiDAR point regardless of the class to which 
that point belongs. A keep-or-remove criterion has then 
been established to remove every LiDAR point that 
doesn’t fall on one of those optimal planes. All LiDAR 
points in the study area, which are not located on these 
optimal planes, have been removed; resulting in a much- 
compressed LiDAR dataset that has a smaller size on 
disk. Specifically, the size of the original LiDAR dataset 
was 703.32MB and that of the compressed dataset was 
578.13MB; resulting in a compression ratio of 17.8%. 

4. Conclusion 

A LiDAR data compression method was presented in this 
ongoing research work based on spatial clustering and 
optimal plane fitting. The method has produced a com- 
pression ratio of 17.8% for the LiDAR dataset of the 
study area, which is promising. The issue this ongoing 
study is trying to address however is not only the devel- 
opment of a LiDAR compression method with low com- 
putational demands. The objective is to develop a com- 
pression method that can be applied at the LiDAR acqui- 
sition stage that only records the LiDAR points that are 
on these optimal planes. If this goal is achieved, it will 
help to design a LiDAR sensor in the future that will only 
record points that are located on these planes. 
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