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ABSTRACT 

A new model for the remote sensing of absorption coefficients of phytoplankton aph(λ) in oceanic and coastal waters is 
developed and tested with SeaWiFS and MODIS-Aqua data. The model is derived from a relationship of the remote 
sensing reflectance ratio Rrs(670)/Rrs(490) and aph(λ) (from large in-situ data sets). When compared with over 470 inde-
pendent in-situ data sets, the model provides accurate retrievals of the aph(λ) across the visible spectrum, with mean 
relative error less than 8%, slope close to unity and R2 greater than 0.8. Further comparison of the SeaWiFS-derived 
aph(λ) with in-situ aph(λ) values gives similar and consistent results. The model when used for analysis of MODIS-Aqua 
imagery, provides more realistic values of the phytoplankton absorption coefficients capturing spatial structures of the 
massive algal blooms in surface waters of the Arabian Sea. These results demonstrate that the new algorithm works well 
for both the coastal and open ocean waters observed and suggest a potential of using remote sensing to provide knowl-
edge on the shape of phytoplankton absorption spectra that are a requirement in many inverse models to estimate 
phytoplankton pigment concentrations and for input into bio-optical models that predict carbon fixation rates for the 
global ocean. 
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1. Introduction 

Phytoplanktons play a critical role in the cycling of bio- 
geochemical properties, and are responsible for much of 
the oxygen present in the Earth’s atmosphere through a 
process known as photosynthesis. Their cumulative en- 
ergy fixation in carbon compounds that account for ap- 
proximately half of the world’s total primary productivity 
is the basis for the majority of oceanic food chains. They 
are highly diverse in shape, size, and pigmentation, hav- 
ing a predominant influence on the colour of seawater 
measured by satellite sensors [1,2]. 

Light absorption by particulate phytoplankton—which 
determines the amount of radiant energy captured by them 
—is an important source of optical variability in surface 
waters of the ocean. This variability has consequences 
for light attenuation, primary production, remote sensing 
of pigment biomass and mixed layer heating [3-8]. The 
spectra of phytoplankton absorption (aph(λ)) vary widely 
both in terms of magnitude and spectral behaviour [9-11] 
in seawaters because of differences in phytoplankton 
community, cell size, and pigment packages among sites 
[11-13]. For these reasons and because of the advent of 
remote sensing capabilities, there is increasing demand 
for a fundamental knowledge of the magnitude, range  

and sources of variability in phytoplankton optical prop-
erties in marine surface waters. Remote sensing offers the 
potential for synoptic assessment of pigment biomass and 
primary production, but this requires the ability to accu-
rately estimate phytoplankton absorption coefficients from 
remotely measured signals using an appropriate optical 
model that has potential applications in ocean colour 
remote sensing.  

To estimate aph(λ) coefficients from remote sensing 
data, several models have been reported in the recent stud- 
ies which enable retrieval of two or more in-water con- 
stituents and properties simultaneously. For these models, 
an inversion technique is usually applied to a parameter- 
ized ocean colour model whose parameters have been 
determined from in-situ bio-optical measurements. Garver 
and Siegel [14] developed a nonlinear statistical method 
for the inversion of ocean colour data, which assumed 
the known spectral shapes of specific absorption coeffi- 
cients for phytoplankton. Later, this model was improved 
and optimized by Maritorena et al. [15] (the GSM01 
model) using simulated annealing, thus the model could 
be applied to global ocean colour data for improved re- 
trievals of pigment concentrations. However, GSM model 
provides absorption coefficients of phytoplankton at spe- 
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cific wavelengths. Lee et al. [16] developed a multiband 
quasi-analytical model (QAA) based on the relationships 
between remote sensing reflectance and IOPs of water 
derived from the radiative transfer equation. Though the 
QAA model provides aph(λ) within ~15% of the input 
values [16] in open ocean waters, it yields aph values at 
specific wavelengths in the blue-green domain and sig- 
nificantly large errors (> 27%) in coastal waters [17]. 
Smyth et al. (2006) developed a semi-analytical model to 
the problem of determining inherent optical properties 
(IOPs) from satellite and in-situ ocean colour data. This 
model has the same limitations as other models produc- 
ing large errors particularly at 555 nm (see Figure 5 in 
Smyth et al. [18]). Boss and Roesler [19] developed a 
constrained linear matrix inversion model with statistical 
selection to obtain absorption coefficients of phytoplankton 
and other IOPs from the ocean radiance. An evaluation 
of these models in a recent study from coastal waters 
indicated that the spectrum of aph(λ) is currently obtain- 
able for only few wavelengths within the blue-green do- 
main; this causes the main difficulty in making the mo- 
dels more usable with any suite of wavelengths. Thus, it 
is unrealistic to consider an optimized hyperspectral ver- 
sion of the model with the current parameterization for 
aph(λ). 

Since information on chlorophyll and its accessory 
pigments can help the differentiation into major phyto- 
plankton classes or taxonomic groups [9], it would be a 
great enhancement to ocean-colour remote sensing if in- 
formation regarding these pigments can be retrieved ac- 
curately from water colour. In this study, a new optical 
model is developed to provide accurate assessments of 
the aph(λ) spectra from ocean-colour remote sensing data. 
The model validation is performed with three independ- 
ent data sets such as NOMAD-2, Carder datasets, and 
NOMAD SeaWiFS match-ups. The model results show 
very good agreement with in situ and satellite data sets, 
since it relies primarily on aph peaks at 443 and 670 nm 
wavelengths that are much influenced by phytoplankton 
absorption. Further, the applicability of the new model to 
process MODIS/Aqua and identify the distribution pat- 
tern of phytoplankton absorption coefficient in the Ara- 
bian Sea is examined.  

2. Methods 

2.1. Absorption by Phytoplankton 

The beam attenuation coefficient c (m–1) is the sum of the 
total seawater absorption combined with the rate of the 
photon losses due to scattering in water column: 

     tc a b                (1) 

where, c(λ) is the total attenuation coefficient, at(λ) is the 
total absorption coefficient, and b(λ) is the total scattering 
coefficient (units in m–1 for all three parameters). In this 

equation, at (λ), b(λ), and c(λ) are all IOP’s of the water 
column. Scattering can be further characterized in terms 
of the angular distribution of the scattered light [20], 
which is beyond the scope of the present study. An 
analysis of the light absorption component provides 
valuable insights into the relative importance of CDOM 
and phytoplankton to light availability and ocean colour, 
as it is a measure of an inherent optical property (IOP) of 
the water [21], which means that, it is a property of oce- 
anic waters fully dependent on the water composition. 
The total absorption coefficient can be expressed as a 
sum of the individual contribution of four major absorp- 
tion coefficients of ocean water: pure seawater, aw(λ), 
phytoplankton, aph(λ), coloured dissolved organic matter, 
ag(λ), and suspended sediments, ad(λ): 

         t w ph g da a a a a             (2) 

where aw (λ) is assumed to be a known constant [22,23]. 
In oceanic waters, IOPs of all the optically active sub- 
stances (except pure seawater) are assumed to covary 
with chlorophyll-a (Chl-a) concentration [1]. The stan- 
dard parameterizations of the IOP models have been 
proposed and widely used for the remote sensing appli- 
cations in the visible region, still the spectral characteri- 
zation of IOPs is much less documented and currently the 
open field of the investigation. Here, phytoplankton ab- 
sorption coefficient is the primary interest which is usu- 
ally described by a power, hyperbolic and 2nd order poly- 
nomial function [24]. 

Phytoplankton absorption coefficient is directly pro- 
portional to chlorophyll pigment concentrations; 

  .pha Chl              (3) 

Generally we can write it as, 

   *ph pha a Chl           (4) 

 aphwhere 

     B
pha A Chl

 is the chlorophyll-specific absorption 
coefficient (that varies widely depending on light history, 
nutrient availability, and species). 

A more robust relationship can be expressed based on 
Bricaud et al. [24-26]: 

           (5) 

 A  B  and where  are the spectral coefficients, and 
vary widely depending on light history, nutrient avail- 
ability, and species composition. It is, of course, induced 
by the other optically active substances in the ocean. 

2.2. Modelling Approach 

A new inversion model for determining aph(λ) is devel- 
oped based on the remote sensing reflectance ratio 
(Rrs(670)/Rrs(490)) and aph(λ) values in the visible and 
near-infrared wavelengths (400 nm - 700 nm) (Figure 1). 
This model gives estimates of the aph with specified Rrs(λ) 
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values like the chlorophyll (Chl) parameterization. Similar 
parameterizations for determining the shapes of aph(λ) for 
all wavelengths (400 nm - 700 nm) are derived (Figure 2, 
Table 1). The relationships between the spectral absorp- 
tion coefficients of phytoplankton at 443 and 670 nm ver- 
sus the remote sensing reflectance ratio (Rrs(670)/Rrs(490)) 
provide the best-fit relationships with notably high correla- 
tion coefficients for these wavelengths. The model con- 
stants obtained from these relationships represent a third 
order polynomial equation which takes the form of equa- 
tion:  

         2 3
3X a X 0 1 2pha a a X a         

(6) 

where the X refers to the spectral band ratio of the re- 
mote sensing reflectance i.e., X = log10[Rrs(670)/Rrs(490)], 
and the phytoplankton absorption coefficient term can be 
expressed by non-linear cubic polynomial model given as 
below: 
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(7) 
By using a linear extrapolation method the wavelength 
dependent constant coefficients are determined for all the 
wavelengths (400 nm - 700 nm) (Figure 2). In the above 
equations, λ is the wavelength, and a0, a1, a2, and a3 are 
the constants. The spectral values of the coefficients a0, 
a1, a2, and a3 of the cubic equation represent the variation 
of aph(λ) as a function of remote sensing reflectance ratio 
at 670 and 490 nm. Thus, this model can be easily ap- 
plied to any other independent data set and generalized 
for other types of phytoplankton absorption coefficient 
measurements. If some measurements are available, which 
have explicit non-linear dependence on aph(λ) (Equation 
(7)), and can be easily computed by the new model. The 
more precise aph model can be constructed with the use of 
some supplementary data in addition to more Rrs(λ), 
which has no explicit linear dependence on aph(λ). 

Figure 3 shows the tight relationships between the 
in-situ aph(443) and aph(670) and in-situ chlorophyll-a con- 
centrations (top panels). Similar relationships are ob- 
served between the model-derived aph(443) and aph(670) 
and in-situ chlorophyll-a concentrations (bottom panels), 
The range of aph(λ) value varied from 0.001 (m–1) - 1 
(m–1) corresponding to a wide rage of the different Chl 
concentrations 0.01 (mg·m–3 ) - 100 (mg·m–3 ). 

2.3. Assessment of Model Performance 

The performance of the new model is assessed by com- 

paring its predicted aph(λ) values with in situ aph(λ) val- 
ues. Three basic statistical methods are used such as the 
mean normalized bias (MNB), root mean square error 
(RMSE), and mean relative error (MRE). The accuracy 
of aph(λ) predictions (for all data acquired) is also as- 
sessed based on the slope (S), intercept (I), and correla- 
tion coefficient (R2) of the linear regression between the 
in-situ and predicted aph(λ) values Systematic and ran- 
dom errors are characterized by the mean relative error 
(MRE) and root mean square error (RMSE), respectively 
(IOCCG, 2006); these metrics are defined as: 

1 2N 2
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pwhere redicteda
insitu

phi  stands for the model-derived values, 

phi  stands for the in-situ measurements, and N is the 
number of valid retrievals. The root mean square error 
(RMSE) for the derived aph(λ) is calculated based on the 
comparison of in-situ data with model data for the key 
SeaWiFS wavelengths 412, 443, 490, 510, 530, 555, 670, 
and 683 nm. These errors are calculated after the log 
transformation. Table 2 summarizes the statistical results 
of the new model validation with an in situ datasets. 

a

3. Data Sets 

3.1. In-Situ Data 

An updated NASA bio-Optical Marine Algorithm Data- 
set (hereafter referred to as NOMAD) was obtained from 
the NASA Ocean Biology Processing Group. The NO- 
MAD dataset is a global, high quality in-situ bio-optical 
data set collected over a wide range of optical properties, 
trophic status, and geographical locations in open ocean 
waters, estuaries, and coastal waters (including Arabian 
Sea and coastal waters of India). It consists of two types 
of datasets; i.e., the in-situ bio-optical data set and con- 
current SeaWiFS observations of the remote sensing re- 
flectance Rrs(λ) at key wavelengths. These datasets are 
acquired over 4459 stations and stored in the system for 
use in algorithm development and validation (O’Reilly et 
al., 1998, 2000). The NOMAD in-situ data sets split into 
two data sets in the present study, namely NOMAD-1 
and NOMAD-2. It should be noted that the NOMAD-1 
in-situ data set is used for model parameterizations, 
whilst another suite of NOMAD-2 data set (composed of  
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Figure 1. Relationships between the aph(443) and aph(670) and remote sensing reflectance ratio Rrs(670)/Rrs(490) from the 
NOMAD in-situ dataset (N = 102). 

 

 

Figure 2. Spectral values of the coefficients a0, a1, a2, and a3 of the cubic equations representing the variation of aph(λ) as a 
function of the remote sensing reflectance ratio at 670 nm and 490 nm. The coefficients values in Table 1 were obtained by 
interpolation and extrapolation techniques. 
 
in-situ data of aph(λ) and coincidently measured Sea- 
WiFS-remote sensing reflectances) are used for the 
model validation. The Carder bio-optical dataset (N = 
477) obtained during cruises in the west coast of Florida 
in different seasons and years from 1999 to 2006 are also 
used to validate the performance of the proposed model. 
Only stations having both optical and pigments meas- 
urements are considered in this study. 

The resulting products were converted to the remote sens- 
ing reflectance (Rrs) and processed to the Level 2 pro- 
ducts such as aph(λ). For comparison purpose, the 
SeaDAS software was used to produce Lw(λ) products for 
the same area. 

4. Results 

4.1. Algorithm Validation 

3.2. Satellite Data and Processing  To assess the performance of the new model, it was ap- 
plied to three independent data sets: NOMAD-2, Carder 
datasets, and NOMAD SeaWiFS match-ups, and the re- 
sulting statistical errors were analysed. The applicability 
of this model to satellite ocean colour remote sensing 
data is discussed in detail. 

MODIS-Aqua Level 1A data (~1 km pixel-1 at nadir, 
local area coverage (LAC) of the Arabian Sea collected 
on 18 Feb. 2010, was obtained from the NASA Goddard  
Space Flight Centre (http://oceancolour.gsfc.nasa.gov/). 
The MODIS L1A data that consisted of calibrated and 
scaled top of atmospheric radiances (Lt(λ)) was input to 
the SeaDAS atmospheric correction code to output the 
Rayleigh-corrected (Lrc(λ)) radiances at all wavelengths. 
Both Lt(λ) and Lrc(λ) were input to the CAAS algorithm 
[27] to retrieve the desired water-leaving radiance prod- 
ucts. Before applying these corrections, an operational 
cloud-masking scheme for all MODIS-Aqua data was 
adopted to create flags over the cloud-covered regions.  

4.1.1. Comparison with NOMAD-2 In-Situ Data Set 
Figure 4 shows the comparison between the model-derived 
aph(λ) values and in-situ aph(λ) from the NOMAD-2 data 
set. Table 2 presents the error statistics at the selected 
wavelengths from 412 to 683 nm. It can be seen from 
these scatter plots that the model-derived aph(λ) agree  
very well with in-situ aph(λ) (i.e., 1:1 correlation) at all  
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Table 1. Spectral values of the constants obtained when fitting the variations of absorption by phytoplankton aph(λ) versus the 
remote sensing reflectance ratio [Rrs(670)/Rrs(490)] to cubic equation of the form         2

2X a X  

  3
3a X 

0 1pha a a     

. Wavelength dependent coefficients were derived using the linear extrapolation and interpolation technique. 

λ (nm) a0 a1 a2 a3 λ (nm) a0 a1 a2 a3 

400 –0.0002 0.57118 –1.43557 1.84816 551 –0.0011 0.11798 –0.13456 0.20622 

402 0.00001 0.57915 –1.43387 1.83824 553 –0.001 0.11074 –0.11848 0.18786 

405 0.00024 0.59111 –1.43131 1.82336 555 –0.0009 0.1035 –0.1024 0.1695 

407 0.00039 0.59908 –1.42961 1.81344 557 –0.0009 0.09706 –0.08956 0.15546 

409 0.00055 0.60706 –1.4279 1.80352 559 –0.0009 0.09062 –0.07672 0.14142 

411 0.0007 0.61503 –1.4262 1.7936 561 –0.0009 0.08528 –0.06762 0.13168 

413 0.00087 0.61496 –1.41881 1.78293 563 –0.0008 0.08104 –0.06226 0.12624 

415 0.00104 0.61489 –1.41141 1.77225 565 –0.0008 0.0768 –0.0569 0.1208 

417 0.00121 0.61481 –1.40402 1.76158 567 –0.0008 0.07436 –0.0569 0.12252 

419 0.00138 0.61474 –1.39662 1.7509 569 –0.0008 0.07192 –0.0569 0.12424 

421 0.00155 0.61467 –1.38923 1.74023 571 –0.0008 0.07113 –0.06272 0.13133 

423 0.00172 0.6146 –1.38183 1.72955 573 –0.0009 0.07199 –0.07436 0.1438 

425 0.00189 0.61453 –1.37444 1.71888 575 –0.0009 0.07285 –0.086 0.15628 

427 0.00207 0.61445 –1.36705 1.7082 577 –0.0009 0.07371 –0.09764 0.16874 

429 0.00224 0.61438 –1.35965 1.69753 579 –0.001 0.07457 –0.10928 0.18121 

431 0.00241 0.61431 –1.35226 1.68685 581 –0.001 0.07543 –0.12092 0.19369 

433 0.00258 0.61424 –1.34486 1.67618 583 –0.0011 0.07629 –0.13256 0.20615 

435 0.00275 0.61417 –1.33747 1.6655 585 –0.0011 0.07715 –0.1442 0.21862 

437 0.00292 0.6141 –1.33007 1.65483 587 –0.0011 0.07801 –0.15584 0.23109 

439 0.00309 0.61402 –1.32268 1.64415 589 –0.0012 0.07887 –0.16748 0.24356 

441 0.00326 0.61395 –1.31528 1.63348 591 –0.0012 0.07946 –0.17335 0.2503 

443 0.00343 0.61388 –1.30789 1.6228 593 –0.0012 0.07979 –0.17344 0.2513 

445 0.00338 0.60432 –1.29259 1.60358 595 –0.0012 0.08011 –0.17354 0.2523 

447 0.00332 0.59475 –1.27729 1.58437 597 –0.0012 0.08043 –0.17364 0.2533 

449 0.00326 0.58519 –1.262 1.56515 599 –0.0012 0.08076 –0.17373 0.2543 

451 0.00321 0.57563 –1.2467 1.54593 601 –0.0012 0.08108 –0.17383 0.2553 

453 0.00315 0.56606 –1.2314 1.52672 603 –0.0012 0.08141 –0.17393 0.2563 

455 0.0031 0.5565 –1.2161 1.5075 605 –0.0012 0.08173 –0.17402 0.2573 

457 0.0029 0.55098 –1.20894 1.49868 607 –0.0012 0.08206 –0.17412 0.2583 

459 0.0027 0.54546 –1.20178 1.48986 609 –0.0012 0.08238 –0.17422 0.2593 

461 0.0025 0.53994 –1.19462 1.48104 611 –0.0012 0.0827 –0.17431 0.2603 

463 0.0023 0.53442 –1.18746 1.47222 613 –0.0012 0.08303 –0.17441 0.2613 

465 0.0021 0.5289 –1.1803 1.4634 615 –0.0012 0.08335 –0.17451 0.2623 

467 0.00203 0.51936 –1.15899 1.43891 617 –0.0012 0.08368 –0.1746 0.2633 

469 0.00197 0.50982 –1.13768 1.41442 619 –0.0012 0.084 –0.1747 0.2643 

471 0.0019 0.50028 –1.11637 1.38993 621 –0.0012 0.08497 –0.17743 0.2643 
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Continued 

473 0.00183 0.49073 –1.09507 1.36543 623 –0.0012 0.08593 –0.18017 0.2643 

475 0.00177 0.48119 –1.07376 1.34094 625 –0.0012 0.0869 –0.1829 0.2643 

477 0.0017 0.47165 –1.05245 1.31645 627 –0.0012 0.09108 –0.19 0.27277 

479 0.00163 0.46211 –1.03114 1.29196 629 –0.0012 0.09527 –0.1971 0.28124 

481 0.00157 0.45257 –1.00983 1.26747 631 –0.0012 0.09946 –0.2042 0.28971 

483 0.0015 0.44303 –0.98852 1.24297 633 –0.0012 0.10364 –0.2113 0.29818 

485 0.00143 0.43348 –0.96722 1.21848 635 –0.0012 0.10783 –0.2184 0.30665 

487 0.00137 0.42394 –0.94591 1.19399 637 –0.0012 0.11201 –0.2255 0.31512 

489 0.0013 0.4144 –0.9246 1.1695 639 –0.0012 0.1162 –0.2326 0.32359 

491 0.00112 0.4009 –0.88879 1.13011 641 –0.0012 0.12038 –0.2397 0.33206 

493 0.00094 0.38739 –0.85298 1.09072 643 –0.0012 0.12457 –0.2468 0.34053 

495 0.00076 0.37389 –0.81717 1.05133 645 –0.0012 0.12875 –0.2539 0.349 

497 0.00058 0.36038 –0.78136 1.01194 647 –0.0012 0.13294 –0.261 0.35747 

499 0.0004 0.34688 –0.74555 0.97255 649 –0.0012 0.13712 –0.2681 0.36594 

501 0.00021 0.33337 –0.70974 0.93316 651 –0.0012 0.14131 –0.2752 0.37441 

503 0.00003 0.31987 –0.67393 0.89377 653 –0.0012 0.14549 –0.2823 0.38288 

505 –0.0002 0.30636 –0.63812 0.85438 655 –0.0012 0.14968 –0.2894 0.39135 

507 –0.0003 0.29286 –0.60231 0.81499 657 –0.0012 0.15386 –0.2965 0.39982 

509 –0.0005 0.27935 –0.5665 0.7756 659 –0.0012 0.15804 –0.3036 0.40829 

511 –0.0007 0.26745 –0.53496 0.73874 661 –0.0012 0.16223 –0.3107 0.41676 

513 –0.0008 0.25715 –0.50768 0.70442 663 –0.0012 0.16641 –0.3178 0.42523 

515 –0.0009 0.24685 –0.4804 0.6701 665 –0.0012 0.1706 –0.3249 0.4337 

517 –0.001 0.23655 –0.45312 0.63578 667 –0.0016 0.17588 –0.3309 0.45566 

519 –0.0011 0.22625 –0.42584 0.60146 669 –0.0019 0.18116 –0.3369 0.47762 

521 –0.0012 0.21737 –0.40219 0.57051 671 –0.002 0.17883 –0.32615 0.47552 

523 –0.0013 0.20991 –0.38217 0.54293 673 –0.0019 0.16889 –0.29864 0.44935 

525 –0.0013 0.20245 –0.36215 0.51535 675 –0.0018 0.15895 –0.27113 0.42318 

527 –0.0013 0.19499 –0.34213 0.48777 677 –0.0017 0.14902 –0.24362 0.39701 

529 –0.0014 0.18753 –0.32211 0.46019 679 –0.0016 0.13908 –0.21612 0.37084 

531 –0.0014 0.18069 –0.30362 0.43485 681 –0.0014 0.12914 –0.18861 0.34467 

533 –0.0014 0.17447 –0.28668 0.41175 683 –0.0013 0.1192 –0.1611 0.3185 

535 –0.0013 0.16825 –0.26972 0.38865 685 –0.0012 0.10926 –0.13359 0.29233 

537 –0.0013 0.16203 –0.25277 0.36555 687 –0.0011 0.09932 –0.10608 0.26616 

539 –0.0013 0.15581 –0.23583 0.34245 689 –0.0009 0.08938 –0.07858 0.23999 

541 –0.0012 0.14959 –0.21887 0.31935 691 –0.0008 0.07945 –0.05107 0.21382 

543 –0.0012 0.14337 –0.20192 0.29625 693 –0.0007 0.06951 –0.02356 0.18765 

545 –0.0012 0.13715 –0.18498 0.27315 695 –0.0006 0.05957 0.00395 0.16148 

547 –0.0012 0.13093 –0.16803 0.25005 697 –0.0004 0.04963 0.03145 0.13532 

549 –0.0011 0.12471 –0.15108 0.22695 699 –0.0003 0.03969 0.05896 0.10915 

The λ is wavelength; a0, a1, a2, and a3 are constants. 
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Figure 3. Scatter plots between the Carder in-situ and model aph(443) and aph(670) versus chlorophyll concentrations. 
 
Table 2. Statistical comparison between the modeled and in-situ datasets (SeaWiFS, Carder, and NOMAD-2). RMSE, MRE, 
and MNB and linear-regression results of the datasets at 412, 443, 490, 510, 530, 555, 670, and 683 nm are also presented. 

IOP’s RMSE MRE (%) MNB SLOPE INTERCEPT R2 N 

NOMAD-2 In situ Data Set 

aph(412) 0.2387 8.06 0.0795 1.02 0.1011 0.8572 470 

aph(443) 0.2038 4.95 0.0475 1.009 0.0567 0.8777 470 

aph(490) 0.2321 6.27 0.0716 1.048 0.1305 0.8596 470 

aph(510) 0.2408 5.17 0.0683 1.034 0.1148 0.8682 470 

aph(555) 0.3038 6.03 0.1044 0.9427 –0.0008 0.8279 470 

aph(670) 0.2552 –5.27 –0.0814 0.9534 –0.1496 0.8881 470 

aph(683) 0.2802 –4.25 –0.0704 0.9354 –0.1728 0.8747 470 

Average 0.2507 2.994 0.0314 0.9918 0.0114 0.8648 470 

Carder In situ Data Set 

aph(412) 0.1904 5.14 0.0718 0.8123 –0.2039 0.8481 477 

aph(443) 0.1847 5.01 0.0677 0.8008 –0.2148 0.8443 477 

aph(490) 0.1919 4.66 0.072 0.7977 –0.2551 0.8453 477 

aph(510) 0.216 5.05 0.0889 0.8081 –0.266 0.8491 477 

aph(555) 0.2912 5.61 0.1237 0.7847 –0.3779 0.8196 477 

aph(675) 0.2461 –2.21 –0.0466 0.8834 –0.2866 0.8291 477 

Average 0.22 3.877 0.0629 0.8145 0.2674 0.8393 477 

NOMAD SeaWiFS Satellite-Matchups Data Set 

aph(412) 0.2135 6.24 0.0912 0.7702 –0.2657 0.7952 102 

aph(443) 0.2029 4.91 0.0694 0.74 –0.3165 0.7993 102 

aph(490) 0.2174 5.15 0.0829 0.7403 –0.3566 0.7855 102 

aph(510) 0.2416 5.38 0.0987 0.7497 –0.3847 0.7979 102 

aph(530) 0.2894 6.91 0.1422 0.7468 –0.4149 0.7948 102 

aph(555) 0.3462 8.29 0.1902 0.7188 –0.5084 0.7745 102 

aph(670) 0.2932 1.09 0.0231 0.7175 –0.5832 0.7848 102 

aph(683) 0.3304 2.17 0.0493 0.69 –0.6697 0.7748 102 

Average 0.2668 5.018 0.0934 0.7342 –0.4375 0.7884 102 
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the wavelengths from 412 nm - 683 nm, producing low 
statistical errors (RMSE 0.2038 - 0. 3038 with an av- 
erage of 0.2507, MRE—5.270% - 8.06% with an aver- 
age of ~3.0 %, slope 0.935 - 1.048, R2 0.8279 - 0.888, 
intercept values——0.172 - 0.13). These results confirm 
that the aph(λ) predicted by the model at all these wave- 
lengths matched closely with their corresponding in-situ 
aph(λ) values very well, although slightly deviating from 
linearity at the higher end which may be due to prob- 
lems with the in-situ data sampling techniques. 

wide range of coastal and oceanic waters were used to 
assess the performance of the new model. Figure 5 
compares the model estimates of aph(λ) with the in-situ 
measurements of aph(λ). The statistical results are sum- 
marized in Table 2 for all the selected wavelengths from 
412 to 683 nm. Note that the model aph(λ) values show 
very good agreement with in-situ aph(λ) coefficient val- 
ues at 412, 443, 490, 555, and 670 nm, with low statistic- 
cal errors (RMSE 0.184 - 0. 291 with an average of 0.22, 
MRE—2.21% - 5.14% with an average of ~3.87%, slope 
0.784 - 0.883, R2 0.819 - 0.849, intercept values –0.203 - 
–0.377). Compared with the previous validation, the 
RMSE is low, but other statistics become slightly worse.  

4.1.2. Comparison with Carder In-Situ Data Set 
The in-situ aph(λ) made by Carder and his colleagues in a  

 

 

Figure 4. Comparison of modelled aph(λ) with in-situ data taken from the NOMAD-2 database at wavelengths from 412 to 683 
(N = 470). 
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However, the scatters of data are closely aligned with the 
1:1 line indicating the validity of the model. 

4.1.3. Comparison with SeaWiFS Satellite Data Set 
A validation of the model was also performed by com- 
paring satellite (SeaWiFS) estimates of aph(λ) with con- 
current in-situ aph(λ) measurements. Figure 6 shows the 
scatter plots of the predicted aph(λ) values versus the 
in-situ values. Table 2 presents the statistical analysis 
results at the wavelengths from 412 to 683 nm. When 
applied to the SeaWiFS match-up remote sensing reflec- 
tance, it can be seen that the aph(λ) values from the model 
closely agree with the in-situ data, without much scatters 
above or below the 1:1 line. The good agreement be-
tween these data sets can also be observed in Table 2 
(RMSE 0.202 - 0. 34 with an average of 0.26, MRE 
1.09% - 8.29% with an average of ~5.01%), slope 0.69 - 
0.77, R2 0.774 - 0.797, and intercept values –0.66 - 
–0.26). Although these errors are slightly higher than 
those observed with the previous data sets, the model  

still produced the observed aph(λ) values and resulted in 
low statistical errors. These results clearly indicate that 
the new model has the potential to retrieve accurately the 
aph(λ) values in both clear and turbid coastal waters, and 
would be useful for applications with remote sensing 
data in these waters. 

4.1.4. Error Plots 
Figure 7 provides greater clarity in the variations of 
MRE between the derived and in-situ values of aph(λ) at 
412 nm - 683 nm. Though the MRE values for the new 
model are notably small at all wavelengths for the three 
independent data sets, it shows a significant variability 
across these wavelengths. For the NOMAD-2 data set, 
the MRE value is high at 412 nm (~8.06%), and gradu- 
ally decreases towards the longer wavelengths. By con- 
trast, for the Carder and SeaWiFS match-up data sets, the 
MRE values are low in the blue wavelengths, increasing 
at the green wavelengths and sharply decreasing towards 
the longer wavelengths. However, these values are still in  

 

 

Figure 5. Comparison of modelled aph(λ) with in-situ data taken from the Carder database at wavelengths from 412 to 675 (N 
= 477). 
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Figure 6. Comparisons of the modelled aph(λ) with those from the in-situ dataset (NOMAD SeaWiFS match-ups dataset) at 
the wavelengths from 412 to 683 nm (N = 102). 
 

the acceptable range as far as the aph(λ) modeling is con-
cerned, because the current models produce very high 
errors in moderately turbid to highly turbid coastal wa-
ters [28]. 

4.2. Application to Satellite Ocean Colour Data 

To further assess the efficiency of the new aph model, the 
MODIS-Aqua Level 1A (~1 km/pixel at nadir) imagery 
acquired over bloomed waters of the Arabian Sea on 18 
February 2010, was processed using a regional Complex 
water Atmospheric correction Algorithm Scheme (CAAS) 
[27] to avoid known issues with the SeaDAS atmos- 
pheric correction algorithm in these waters. Subsequently, 
the proposed model was applied to the atmospherically  

corrected imagery to envisage the phytoplankton absorp-
tion coefficients at 443 and 670 nm. Figure 8(a) and 
Figure 8(b) show the regional distribution patterns of aph 

(443) and aph(670) in the Arabian Sea. As expected, the 
distribution patterns illustrate the influence of coastal waters 
on the phytoplankton absorption coefficients across the 
entire Arabian Sea during 18 Feb. 2010. Figure 8(c) pre-
sents an example of aph spectra from this new model us-
ing the same MODIS-Aqua data, which typically have 
two peaks (same as the measured aph spectra) around 443 
and 670 nm. There is relatively lower absorption between 
550 and 650 nm. These peaks and troughs are essentially 
due to the presence of Chl pigment. The width of the 
peaks around 443 and 670nm varies from sample to sam-
ple, due to the change in accessory pigments present and 
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Figure 7. MRE between the derived and the in-situ values of coefficients of absorption by phytoplankton aph(λ) for the new 
model. 
 
the “package effect” [29-33]. These results indicate that 
the spectral variations of the phytoplankton absorption 
are reasonably good, both in terms of the spectral shape 
and magnitude in the visible wavelengths domain. 

This satellite imagery was selected as a good example to 
address the atmospheric correction related issues. Figure 
9(a) displays a typical distribution of sun glint measured 
at 551 nm and confirms that the glint contaminated por- 
tion of the image extends across the bloomed region in 
the central Arabian Sea. It is apparent that the density of 
mineral aerosol (desert) dust is not uniform, and it is very 
strong in the vicinity of desert coasts and across the Ara- 
bian Sea. The corresponding true colour composite (Band 
253) for this area which was atmospherically corrected 
by the CAAS algorithm removes all these effects (Figure 
9(b)). One of the typical problems with the SeaDAS at- 
mospheric correction algorithm is that it produces nega- 
tive water-leaving radiance (Lw) values in optically com- 
plex waters (containing plumes and blooms). This prob- 
lem is clearly seen in Figure 9(c), where the SeaDAS 
algorithm often rendered negative Lw in the blue, or cre- 
ated a cloud or a complete atmospheric correction failure 
because of the elevated NIR radiances. Most of the sur- 
face algal blooms present always non-zero values at the 
NIR bands and near-zero values (sometime negatives) at 
the short-wavelengths bands (e.g. 412 nm). It is clear that 
the spectral curvatures between 488 and 551 nm are re- 
tained in the SeaDAS Lw during the low bloom condition. 
However, the curvatures are not present in the Lw spectra 
(i.e. large distortions in Lw structures with high negative 
values across the wavebands) during the high bloom 
(surface) condition. The dramatic anomalous negative Lw 
values could be attributed to the black-pixel assumption 
or inadequacy of the NIR correction scheme with the 
SeaDAS algorithm [27]. By contrast, the CAAS-derived 
Lw are more realistic depicting the different stages of 
algal blooms, with the presence of a red edge in the NIR  

which is indicative of the dense mats of floating phyto- 
plankton similar to land vegetation. 

4.3. Implications for the Optical Remote Sensing 

Changes in the concentration and composition of the water 
constituents, due to biological, chemical or physical proc- 
esses, affect light penetration in the water and the spec- 
tral signature of light that leaves the water surface. In 
open ocean waters (Case-1 type), which are usually deep 
and free of terrestrial influence, variations in optical prop- 
erties are linked to phytoplankton and their by-products. 
These are major constituents affecting changes in the 
spectral signature of water-leaving radiance. In Case 2 
waters, which include most coastal regions, the concen- 
trations of the optically significant constituents can vary 
independently of each other. Interpreting optical remote 
sensing signals from such waters is particularly chal- 
lenging [34,35], as it can be seen with the standard algo- 
rithms frequently producing erroneous results. The prob- 
lem is amplified by the fact that the atmospheric correc- 
tion algorithms used for marine remote sensing assume 
zero reflectance in the near infra-red, which is not valid 
for turbid waters. However, the knowledge and under- 
standing of phytoplankton absorption coefficients are lim- 
ited by the present algorithms, although these data have 
significant effects on global bio-product in the ocean and 
to the carbon cycle. Therefore, obtaining the spectral 
absorption coefficients aph(λ) of phytoplankton on a re- 
gional and global scale is important for studies on the 
ocean’s role in the global biological production, carbon 
cycle and climate change [36]. In order to use ocean-colour 
measurements to derive information on the concentration 
and composition of optically active substances in the 
water, it is necessary to develop bio-optical algorithms 
that relate the water-leaving radiance to the optical prop- 
erties of the substances present in the water. The deter- 
mination of bio-geo-physica  parameters, such as chlo-  l  
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Figure 8. (a,b) MODIS/AQUA data for 18th February 2010 over Arabian Sea, showing the model implementation for the 
fields of aph(443) and aph(670), (c) aph spectra obtained using the CAAS estimated reflectance values. 
 
rophyll concentration, based on water-leaving radiances, 
is relatively less complex for Case 1 waters where the 
spectral signature of the emerging light is mostly affected 
by phytoplankton and their by-products. The situation is 
very different in Case 2 coastal and estuarine waters that 
are characterized by higher optical and biological com- 
plexity, since other substances such as detritus, mineral 
particles, dissolved organic and inorganic material, also 
affect the light signal measured by the satellite sensor. 
The new aph(λ) model when applied with the CAAS al- 
gorithm particularly provides more reliable aph products 
for coastal and estuarine waters. 

5. Discussion 

Though a wide variety of models-with varying degrees of 
complexity ranging from empirical to complex semi 
-analytical approaches-for determination of the aph(λ) 
coefficients were developed in the past, no models have 
the potential to provide reliable aph(λ) products in coastal 
waters. Thus, accurate estimation of aph(λ) in these wa- 
ters is still a daunting challenge. Hoge et al. [37,38] 
found that aph(λ) products at the wavelengths of 490, 510 
and 555 nm are often estimated with large errors, when  

derived from a linear matrix inversion model. In another 
study, aph(675) was obtained by an inversion model us- 
ing the spectral remote sensing reflectance ratio between 
412:443 and 443:551, which assumed the values of sev- 
eral algebraic constraints [30]. aph(675) values were de- 
termined by fitting a hyperbolic tangent function to 
aph(675) and defaulted to an empirical band ratio algo- 
rithm when solution was not reached. Many other reflec- 
tance-based models (inversion models) are also available 
in the literature such as QAA, LM, and GSM [19]. 
However, these models are applicable only in clear oce- 
anic waters, and provide no aph data at the longer wave- 
lengths (in the red domain). This could be because of the 
fact that the total absorption coefficient is generally 
dominated by pure seawater in oceanic waters, except for 
eutrophic waters when aph(λ) makes significant contribu- 
tions to the total absorption coefficients (a(λ)). Other 
limitations are that the derivation of aph at some specific 
wavelengths using one set of equations and at other 
wavelengths using different equations. After a thorough 
investigation and comparison of our results with those 
from the other models (not shown for brevity since it is 
already discussed in Shanmugam et al. [28], it was found    
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Figure 9. MODIS/AQUA data for 18th February 2010 over Arabian Sea, showing the spectral variation of radiance retrieved 
from CAAS and SeaDAS in case of Low bloom, Medium bloom, High bloom, and Very high bloom waters. 
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that the new model is inherently more flexible for deter- 
mination of aph coefficients at any wavelengths in the 
visible domain. 

6. Conclusion 

The new model has significant advantages over other 
models, since it relies on the Rrs(670)/Rrs(490) ratio 
which is not significantly influenced by materials other 
than phytoplankton. Validation of the model with inde- 
pendent in-situ data sets gave encouraging results. The 
model-predicted aph(λ) values were found to be in good 
agreement with in-situ data from coastal/oceanic waters. 
The model wavelengths of the SeaWiFS sensor (412 to 
683 nm). Though the errors were low (e.g., MRE 8%), 
scatter plots showed slight differences between the model 
and in-situ aph(λ) values. The difference may arise due to 
several reasons; for instance, Rrs(λ) measurements made 
with different instruments with different calibration and 
correction procedures as well as environmental conditions. 
It was demonstrated that the atmospheric correction of 
satellite ocean colour data could introduce very high errors 
in complex waters. However, such problems could be 
eliminated when the water-leaving radiance signals are 
estimated with the CAAS algorithm. Thus, the aph(λ) 
model may be applied along with the CAAS algorithm, 
in order to retrieve more reliable aph(λ) values in opti- 
cally complex waters. A MODIS-Aqua example showed 
striking features of the distribution pattern of phyto- 
plankton absorption coefficients in bloomed waters in the 
Arabian Sea. In conclusion, this is the first study to esti- 
mate aph(λ) values at all the visible wavelengths. Thus, it 
provides new opportunities for improving the phyto- 
plankton inversion modelling based on the coefficients as 
given in Table 1. Our future effort will include addi- 
tional validation and tests based on more in-situ and sat- 
ellite data, and refining the model coefficients in order to 
provide more accurate phytoplankton absorption coef- 
ficients in complex waters. 
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