

ISSN Online: 2160-0384 ISSN Print: 2160-0368

Q_K Type Spaces and Bloch Type Spaces on the Unit Ball

Rong Hu

School of Mathematics, Sichuan University of Arts and Sciences, Dazhou, China Email: 85194136@qq.com

How to cite this paper: Hu, R. (2019) Q_K Type Spaces and Bloch Type Spaces on the Unit Ball. Advances in Pure Mathematics, 9, 857-862.

https://doi.org/10.4236/apm.2019.910042

Received: September 10, 2019 Accepted: October 12, 2019 Published: October 15, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

Different function spaces have certain inclusion or equivalence relations. In this paper, the author introduces a class of Möbius-invariant Banach spaces $Q_{K,0}\left(p,q\right)$ of analytic function on the unit ball of \mathbb{C}^n , where $K:\left(0,\infty\right)\to\left[0,\infty\right)$ are non-decreasing functions and $0< p<\infty$, $\frac{p}{2}-n-1< q<\infty$, studies the inclusion relations between $Q_{K,0}\left(p,q\right)$ and a class of \mathcal{B}_0^α spaces which was known before, and concludes that $Q_{K,0}\left(p,q\right)$ is a subspace of $\mathcal{B}_0^{\frac{q+n+1}{p}}$, and the sufficient and necessary condition on kernel function K(r) such that $Q_{K,0}\left(p,q\right)=\mathcal{B}_0^{\frac{q+n+1}{p}}$.

Keywords

Unit Ball, $Q_{K,0}\left(p,q
ight)$ Space, $\mathcal{B}_{0}^{rac{q+n+1}{p}}$ Space, Equivalence Relation

1. Introduction

857

 Q_K spaces were first given by Hasi Wulan and Matts Essen around 2000. In recent years, Q_K type spaces have caused extensive research (cf. [1]-[11]). To study a new kind of function space, we usually need to establish the relationship between that and those known to all. The notion of the spaces Q_K on the unit ball was defined by Xu Wen in his paper [4]. According to Hasi Wulan, Q_K type spaces $Q_K(p,q)$ on unit disk were introduced and investigated, and the conditions on K such that $Q_K(p,q)$ become some known spaces were given (cf. [5]). About multiple variables, the definition of $Q_{K,0}(p,q)$ on unit ball were given by Xu Wen (cf. [6]), and the author has studied the inclusion relations

between $Q_K\left(p,q\right)$ spaces and $\mathcal{B}^{\frac{q+n+1}{p}}$ spaces on the unit ball (cf. [7]). In this paper, the author introduces the $Q_{K,0}\left(p,q\right)$ spaces and $\mathcal{B}_0^{\frac{q+n+1}{p}}$ spaces on the unit ball of \mathbb{C}^n , studies the inclusion relationship between them. Firstly, establish the relationship between the norm of the function which belongs to $Q_{K,0}\left(p,q\right)$ and the norm $\|f\|_{\mathcal{B}_0^{q}}$, proof that the $Q_{K,0}\left(p,q\right)$ is a subspace of $\frac{q+n+1}{\mathcal{B}_0^{p}}$; and then obtain the necessary and sufficient condition of kernel functions K(r) when $Q_{K,0}\left(p,q\right)=\mathcal{B}_0^{\frac{q+n+1}{p}}$.

2. Preliminaries

 $\nabla f(z)$ are related by ([12])

Let $a \in \mathbb{B}_n$ and φ_a be the involution of \mathbb{B}_n satisfied $\varphi_a\left(0\right) = a$. $\mathrm{d} v(z)$ is the volume measure on \mathbb{B}_n , normalized so that $v\left(\mathbb{B}_n\right) = 1$, and $\mathrm{d} \lambda = \frac{\mathrm{d} v(z)}{\left(1 - \left|z\right|^2\right)^{n+1}}$

is the Möbius invariant volume measure on \mathbb{B}_n (cf. [4]), $d\sigma$ is the normalized surface measure on \mathbb{S}_n , the measure v and σ are related by (cf. [12])

$$\int_{\mathbb{B}_n} f(z) dv(z) = 2n \int_0^1 r^{2n-1} dr \int_{\mathbb{S}_n} f(r\zeta) d\sigma(\zeta).$$
 (1)

Let $\nabla f(z) = \left(\frac{\partial f}{\partial z_1}, \frac{\partial f}{\partial z_2}, \dots, \frac{\partial f}{\partial z_n}\right)$ denote the complex gradient of f, and $\tilde{\nabla} f(z) = \nabla (f \circ \varphi_z)(0)$ is the invariant gradient of f (cf. [12]). $\tilde{\nabla} f(z)$ and

$$\left(1-\left|z\right|^{2}\right)\left|\nabla f\left(z\right)\right| \leq \left|\tilde{\nabla}f\left(z\right)\right| \leq \left(1-\left|z\right|^{2}\right)^{\frac{1}{2}}\left|\nabla f\left(z\right)\right|. \tag{2}$$

The Möbius invariant Green function is defined by $G(z,a) = g(\varphi_a(z))$, where

$$g(z) = \frac{n+1}{2n} \int_{|z|}^{1} (1-t^2)^{n-1} t^{-2n+1} dt.$$
 (3)

Definition 1 Let $K:(0,\infty)\to[0,\infty)$ is a right-continuous, non-decreasing function, for $0< p<\infty$, $\frac{p}{2}-n-1< q<\infty$, we say that a holomorphic function f belongs to the space $\mathcal{Q}_{K,0}\left(p,q\right)$ if

$$\lim_{|a|\to 1} \int_{\mathbb{B}_n} \left| \tilde{\nabla} f\left(z\right) \right|^p \left(1 - \left|z\right|^2 \right)^{q+n+1-p} K\left(G\left(z,a\right)\right) \mathrm{d}\lambda\left(z\right) = 0. \tag{4}$$

Definition 2 \mathcal{B}_0^{α} space is defined by

$$\mathcal{B}_{0}^{\alpha} = \left\{ f \in H\left(\mathbb{B}_{n}\right) : \lim_{|a| \to 1} \left(1 - \left|z\right|^{2}\right)^{\alpha - 1} \left|\tilde{\nabla}f\left(z\right)\right| = 0 \right\}. \tag{5}$$

The constant C can represent different values in different places in this paper.

3. Main Results

In this paper, the author demonstrates that $Q_{K,0}(p,q)$ is a subspace of $\mathcal{B}_0^{\frac{q+n+1}{p}}$

as the first main result and it is of great help for the second one.

Theorem 1. Let
$$0 , $\frac{p}{2} - n - 1 < q < \infty$, then $Q_{K,0}\left(p,q\right) \subset \mathcal{B}_{0}^{\frac{q+n+1}{p}}$. Proof Let $E\left(a,r_{0}\right) = \left\{z \in \mathbb{B}_{n}, \left|\varphi_{a}\left(z\right)\right| < r_{0}\right\}$, then
$$\int_{\mathbb{B}_{n}} \left|\tilde{\nabla}f\left(z\right)\right|^{p} \left(1 - \left|z\right|^{2}\right)^{q+n+1-p} K\left(G\left(z,a\right)\right) \mathrm{d}\lambda(z)$$

$$\geq \int_{E\left(a,r_{0}\right)} \left|\tilde{\nabla}f\left(z\right)\right|^{p} \left(1 - \left|z\right|^{2}\right)^{q+n+1-p} K\left(g\left(\varphi_{a}\left(z\right)\right)\right) \mathrm{d}\lambda(z)$$

$$= \int_{|z| < r_{0}} \left|\tilde{\nabla}\left(f \circ \varphi_{a}\right)\left(z\right)\right|^{p} \left(1 - \left|\varphi_{a}\left(z\right)\right|^{2}\right)^{q+n+1-p} K\left(g\left(z\right)\right) \mathrm{d}\lambda(z)$$

$$\geq K\left(g\left(r_{0}\right)\right) \int_{|z| < r_{0}} \left(1 - \left|z\right|^{2}\right)^{p} \left|\nabla\left(f \circ \varphi_{a}\right)\left(z\right)\right|^{p} \left(1 - \left|\varphi_{a}\left(z\right)\right|^{2}\right)^{q+n+1-p} \frac{\mathrm{d}v(z)}{\left(1 - \left|z\right|^{2}\right)^{n+1}}$$

$$\geq C \int_{|z| < r_{0}} \left(1 - \left|\varphi_{a}\left(z\right)\right|^{2}\right)^{q+n+1-p} \left|\nabla\left(f \circ \varphi_{a}\right)\left(z\right)\right|^{p} \mathrm{d}v(z)$$
We have $\left(1 - \left|\varphi_{a}\left(z\right)\right|^{2}\right) = \frac{\left(1 - \left|z\right|^{2}\right)\left(1 - \left|a\right|^{2}\right)}{\left|1 - \left\langle z, a\right\rangle\right|^{2}}$, when $|z| \leq r_{0}$,
$$\frac{1 - r_{0}^{2}}{\left(1 + r_{0}\right)^{2}} \leq \frac{1}{\left|1 - \left|z\right|^{2}}, \text{ and since } \left|\nabla f\left(z\right)\right|^{p} \text{ is subharmonic, that}$$

$$\int_{\mathbb{B}_{n}} \left|\tilde{\nabla}f\left(z\right)\right|^{p} \left(1 - \left|z\right|^{2}\right)^{q+n+1-p} K\left(G\left(z,a\right)\right) \mathrm{d}\lambda(z)$$

$$\geq C\left(1 - \left|a\right|^{2}\right)^{q+n+1-p} \int_{|z| < r_{0}} \left|\nabla\left(f \circ \varphi_{a}\right)\left(z\right)\right|^{p} \mathrm{d}v(z)$$

$$= C\left(1 - \left|a\right|^{2}\right)^{q+n+1-p} \int_{0}^{r_{0}} r^{2n-1} \mathrm{d}r \int_{S_{n}} \left|\nabla\left(f \circ \varphi_{a}\right)\left(r\varsigma\right)\right|^{p} \mathrm{d}\sigma(\varsigma)$$

$$\geq C\left(1 - \left|a\right|^{2}\right)^{q+n+1-p} \left|\nabla\left(f \circ \varphi_{a}\right)\left(z\right)\right|^{p}$$

$$= C\left(1 - \left|a\right|^{2}\right)^{q+n+1-p} \left|\nabla\left(f \circ \varphi_{a}\right)\left(z\right)\right|^{p}$$$$

Thus, we have $\lim_{|a|\to 1} \left(1-\left|a\right|^2\right)^{q+n+1-p} \left|\tilde{\nabla} f\left(a\right)\right|^p = 0$ when $f \in Q_{K,0}\left(p,q\right)$, then $f \in \mathcal{B}_0^{\frac{q+n+1}{p}}$.

The following result is the further study on the equivalence between $Q_{K,0}\left(p,q\right)$ and $\mathcal{B}_0^{\frac{q+n+1}{p}}$.

Theorem 2. Let $0 , <math>\frac{p}{2} - n - 1 < q < \infty$, $Q_{K,0}(p,q) = \mathcal{B}_0^{\frac{q+n+1}{p}}$ if and only if

$$\int_{0}^{1} (1 - r^{2})^{-n-1} r^{2n-1} K(g(r)) dr < \infty.$$
 (6)

Proof Sufficiency: By theorem 1, we only need to show that $\mathcal{B}_0^{\frac{q+n+1}{p}} \subset Q_{K,0}\left(p,q\right)$. Since $\int_0^1 \left(1-r^2\right)^{-n-1} r^{2n-1} K\left(g\left(r\right)\right) \mathrm{d}r < \infty$, for given $\varepsilon > 0$, then there exists $r_0: 0 < r_0 < 1$, such that

$$\int_{r_0}^1 (1-r^2)^{-n-1} r^{2n-1} K(g(r)) dr < \varepsilon.$$

Let $E\left(a,r_{0}\right) = \left\{z \in \mathbb{B}_{n}, \left|\varphi_{a}\left(z\right)\right| < r_{0}\right\}$, for any $f \in \mathcal{B}^{\frac{q+n+1}{p}}$, $z \in \mathbb{B}_{n} \setminus E\left(a,r_{0}\right)$, we have

$$\int_{\mathbb{B}_{n}\backslash E(a,r_{0})} \left| \tilde{\nabla} f(z) \right|^{p} \left(1 - |z|^{2} \right)^{q+n+1-p} K(G(z,a)) d\lambda(z)
\leq \left\| f \right\|_{\mathcal{B}}^{\frac{q}{q+n+1}} \int_{\mathbb{B}_{n}\backslash E(a,r_{0})} K(G(z,a)) d\lambda(z)
\leq \left\| f \right\|_{\mathcal{B}}^{\frac{q}{q+n+1}} \int_{r_{0} < |z| < 1} \left(1 - |z|^{2} \right)^{-n-1} K(g(z)) d\nu(z)
\leq \left\| f \right\|_{\mathcal{B}}^{\frac{q}{q+n+1}} \int_{r_{0}}^{1} \left(1 - r^{2} \right)^{-n-1} r^{2n-1} K(g(r)) dr \int_{\mathbb{S}_{n}} d\sigma(\varsigma)
< \varepsilon \left\| f \right\|_{\mathcal{B}}^{\frac{q+n+1}{p}}$$

And when $z \in E(a, r_0)$, we have

$$\begin{split} &\lim_{|a|\to 1} \int_{E(a,r_0)} \left| \tilde{\nabla} f(z) \right|^p \left(1 - |z|^2 \right)^{q+n+1-p} K \left(G(z,a) \right) \mathrm{d}\lambda(z) \\ &= \lim_{|a|\to 1} \int_{|z|< r_0} \left| \tilde{\nabla} \left(f \circ \varphi_a \right) (z) \right|^p \left(1 - \left| \varphi_a(z) \right|^2 \right)^{q+n+1-p} K \left(g(z) \right) \mathrm{d}\lambda(z) \\ &\leq \lim_{|a|\to 1} \sup_{|z|< r_0} \left(1 - \left| \varphi_a(z) \right|^2 \right)^{q+n+1-p} \left| \tilde{\nabla} \left(f \circ \varphi_a \right) (z) \right|^p \int_{|z|< r_0} K \left(g(z) \right) \left(1 - |z|^2 \right)^{-n-1} \mathrm{d}V(z) \\ &= \lim_{|a|\to 1} \sup_{|z|< r_0} \left(1 - \left| \varphi_a(z) \right|^2 \right)^{q+n+1-p} \left| \tilde{\nabla} \left(f \circ \varphi_a \right) (z) \right|^p 2n \\ &\times \int_0^{r_0} \left(1 - r^2 \right)^{-n-1} r^{2n-1} K \left(g(r) \right) \mathrm{d}r \int_{\mathbb{S}_n} \mathrm{d}\sigma(\varsigma) \\ &\leq C \lim_{|a|\to 1} \sup_{|z| < r_0} \left(1 - \left| \varphi_a(z) \right|^2 \right)^{q+n+1-p} \left| \tilde{\nabla} \left(f \circ \varphi_a \right) (z) \right|^p \\ &\left(1 - \left| \varphi_a(z) \right|^2 \right) = \frac{\left(1 - \left| z \right|^2 \right) \left(1 - \left| a \right|^2 \right)}{\left| 1 - \left\langle z, a \right\rangle \right|^2}, \text{ and } \frac{1 - r_0^2}{\left(1 + r_0 \right)^2} \leq \frac{\left(1 - \left| z \right|^2 \right)}{\left| 1 - \left\langle z, a \right\rangle \right|^2} \text{ when } \\ &|z| \leq r_0, \text{ so } \end{split}$$

$$\lim_{|a|\to 1} \left(1-\left|\varphi_a\left(z\right)\right|^2\right)^{\frac{q+n+1-p}{p}} \left|\tilde{\nabla}\left(f\circ\varphi_a\right)\left(z\right)\right| = 0 ,$$

thus

$$\lim_{|a|\to 1}\int_{E(a,r_0)}\left|\tilde{\nabla}f\left(z\right)\right|^p\left(1-\left|z\right|^2\right)^{q+n+1-p}K\left(G\left(z,a\right)\right)\mathrm{d}\lambda\left(z\right)=0\,,$$

By formula(7), then we have

$$\lim_{|a|\to 1}\int_{\mathbb{B}_n}\left|\tilde{\nabla}f\left(z\right)\right|^p\left(1-\left|z\right|^2\right)^{q+n+1-p}K\left(G\left(z,a\right)\right)\mathrm{d}\lambda\left(z\right)=0 \ , \ \textit{i.e.} \ f\in Q_{K,0}\left(p,q\right) \ . \ \text{It means} \ \mathcal{B}_0^{\frac{q+n+1}{p}}\subset Q_{K,0}\left(p,q\right).$$

Necessary: We only need to show that if $\int_0^1 (1-r^2)^{-n-1} r^{2n-1} K(g(r)) dr = \infty$,

there exists a function $f \in \mathcal{B}_{0}^{\frac{q+n+1}{p}}$, but $f \notin Q_{K,0}(p,q)$.

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ be an n-tuple of non-negative integers, and $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n$ satisfied $|\alpha| = 2^N$ where N is a integer. Let

 $f=\left|\alpha\right|^{\frac{q+n+1-p}{p}}z^{\alpha}\text{ , it is easy to show that } f\in\mathcal{B}^{\frac{q+n+1}{p}}\text{ , and by the proof of theorem}$ 3 in [7], we know that $\int_{\mathbb{S}_n}J\left(r\varsigma\right)^{\frac{p}{2}}\mathrm{d}\sigma(\varsigma)\geq C\big(1-r\big)^{-(q+n+1)+\frac{p}{2}}\text{ when } r\in\left[\frac{3}{4},1\right],$

which

$$J(r\varsigma) = r^{2|\alpha|-2} \left|\alpha\right|^{\frac{2(q+n+1-p)}{p}} \left(\alpha_1^2 \left|\varsigma_1^{\alpha_1-1}\varsigma_2^{\alpha_2}\cdots\varsigma_n^{\alpha_n}\right|^2 + \cdots + \alpha_n^2 \left|\varsigma_1^{\alpha_1}\varsigma_2^{\alpha_2}\cdots\varsigma_n^{\alpha_n-1}\right|^2 - r^2 \left|\alpha\right|^2 \left|\varsigma^{\alpha}\right|^2\right)$$

thus

$$\begin{split} &\int_{\mathbb{B}_{n}} \left| \tilde{\nabla} f\left(z\right) \right|^{p} \left(1 - \left|z\right|^{2} \right)^{q+n+1-p} K\left(G(z,a)\right) \mathrm{d}\lambda(z) \\ &\geq \int_{\mathbb{B}_{n}} \left(1 - \left|z\right|^{2} \right)^{\frac{p}{2}} \left(J(z)\right)^{\frac{p}{2}} \left(1 - \left|z\right|^{2} \right)^{q+n+1-p} K\left(g(z)\right) \mathrm{d}\lambda(z) \\ &= 2n \int_{0}^{1} \left(1 - r^{2}\right)^{q - \frac{p}{2}} r^{2n-1} K\left(g(r)\right) \mathrm{d}r \int_{\mathbb{S}_{n}} J\left(r\varsigma\right)^{\frac{p}{2}} \mathrm{d}\sigma(\varsigma) \\ &\geq C \int_{\frac{3}{4}}^{1} \left(1 - r^{2}\right)^{-n-1} r^{2n-1} K\left(g(r)\right) \mathrm{d}r \end{split}$$

Since the conclusion of theorem 1 in [7], we have

$$\begin{split} &\int_0^{\frac{3}{4}} \! \left(1-r^2\right)^{-n-1} r^{2n-1} K\!\left(g\!\left(r\right)\right) \! \mathrm{d}r \leq C \! \int_0^1 \! \left(1-r^2\right)^{2-n-1} r^{2n-1} K\!\left(g\!\left(r\right)\right) \! \mathrm{d}r < \infty \;, \\ \text{Then if} & \int_0^1 \! \left(1-r^2\right)^{-n-1} r^{2n-1} K\!\left(g\!\left(r\right)\right) \! \mathrm{d}r = \infty \;, \text{ we can get} \\ & \int_{\mathbb{B}_n} \! \left| \tilde{\nabla} \! f\!\left(z\right) \right|^p \! \left(1-\left|z\right|^2\right)^{q+n+1-p} K\!\left(G\!\left(z,a\right)\right) \! \mathrm{d}\lambda\!\left(z\right) = \infty \;, \end{split}$$

which shows that $f \notin Q_{K,0}(p,q)$, the theorem is proved.

With the above conclusion, further study in this field of operator theory on $Q_{K,0}(p,q)$ can be conducted in the future.

Founding

Scientific Research Fund of Sichuan Provincial Education Department of China (18ZA0416).

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Essén, M., Wulan, H. and Xiao, J. (2006) Several Function-Theoretic Characterizations of Möbius Invariant *Q_K* Spaces. *Journal of Functional Analysis*, **230**, 78-115.

- [2] Pau, J. (2008) Bounded Möbius Invariant *Q_K* Spaces. *Journal of Mathematical Analysis and Applications*, **338**, 1029-1042.
- [3] Li, S. and Wulan. H. (2009) Characterizations of Q_p Spaces in the Unit Ball of \mathbb{C}^n . *Journal of Mathematical Analysis and Applications*, **360**, 689-696.
- [4] Wen, X. (2005) Q_K Spaces on the Unit Ball of \mathbb{C}^n . Journal of Nanjing Normal University (Natural Science), **28**, 21-26.
- [5] Wulan, H. and Zhou, J. (2006) *Q_K* Type Spaces of Analytic Functions. *Scientific Horizon*, **4**, 73-84.
- [6] Wen, X. (2005) Q_K Spaces and Bloch-Type Spaces on the Unit Ball of \mathbb{C}^n . Nanjing Normal University, Nanjing.
- [7] Hu, R. (2019) Relationship between $Q_K(p,q)$ Spaces and Spaces \mathcal{B}^{α} on the Unit Ball. *Journal of BeiHua University*.
- [8] Guo, J. and Liu, Y.-M. (2010) Composition Operators from B^0 to Q_K and $Q_{K,0}$ Spaces. Chin. *Quarterly Journal of Mathematics*, **25**, 86-91.
- [9] Zhou, N. (2017) Hypercyclicity of Weighted Composition Operators on the Little Bloch Space and Besov Space. *Journal of Sichuan University*, **54**, 1131-1135.
- [10] Liu, J.F. and Xiao, J.B. (2019) Weighted Composition Operators from Generalized Weighted Bloch Spaces to $Q_{\kappa}(p,q)$ Spaces. *Journal of Hangzhou Dianzi University*, **39**, 85-90.
- [11] Long, J.R. and Wu, P.C. (2011) Composition Operators from Bloch-Type Spaces to $Q_K(p,q)$ Spaces. *Journal of Jiangxi Normal University*, **35**, 286-291.
- [12] Zhu, K. (2004) Spaces of Holomorphic Functions in the Unit Ball. Springer-Verlag, New York.

862