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Abstract 
Zoonosis is an important factor affecting human economic development and 
population mortality. This paper introduces a general model of zoonosis, in 
which the diseases can only be transmitted from animals to humans, such as 
rabies, brucellosis and so on. The basic reproduction number 0R  is derived. 
And then the global stability of the disease-free equilibrium and endemic 
equilibrium models is analyzed by using the method of comparison principle 
and Lyapunov function. Next, a numerical analysis is performed to elaborate 
the consistency of theoretical and numerical results and to prove the practical 
significance of zoonosis research. The numerical results show that our models 
are applicable to zoonosis with animal size larger than or smaller than popu-
lation size. Finally, in order to see the most important factor for the epidemic 
of zoonosis a sensitive analysis is analyzed. 
 

Keywords 
Zoonosis, Global Stability, Equilibrium, Sensitive Analysis 

 

1. Introduction 

Infectious diseases seriously endanger human health and the development of 
community economy all over the world [1] [2] [3], historically, infectious dis-
eases have caused millions of deaths. SARS attracted worldwide attention in 
2003, more than 8000 infected people have been found worldwide, resulting in 
more than 900 deaths [4]; Dengue fever in Thailand has reached 5284 people, 
and the disease is prevalent in Ecuador, Paraguay, Australia and other countries 
to varying degrees by 2006 [5]. Thus, researching and controlling the dynamic 
process of infections is very significant to society. 

How to cite this paper: Liu, X.Y. (2019) A 
General Model of Zoonosis Where the 
Diseases Can Only Be Transmitted from 
Animals to Humans. Advances in Pure 
Mathematics, 9, 67-77. 
https://doi.org/10.4236/apm.2019.92005 
 
Received: January 21, 2019 
Accepted: February 16, 2019 
Published: February 19, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2019.92005
http://www.scirp.org
http://www.scirp.org
https://doi.org/10.4236/apm.2019.92005
http://creativecommons.org/licenses/by/4.0/


X. Y. Liu 
 

 

DOI: 10.4236/apm.2019.92005 68 Advances in Pure Mathematics 
 

Among numerous infectious diseases, zoonosis is an important factor affect-
ing human economic development and population mortality. There are about 
200 confirmed zoonoses in the world, such as avian influenza, rabies, malaria, 
brucellosis and so on. From 1996 to 2015, 30,300 human rabies cases were re-
ported [6]. Every year, about 50,000 people are newly infected with brucellosis 
[7]. What’s more, there are about 300 to 500 million new cases because of mala-
ria annual, among which maybe one million to three million deaths, most of 
them are children [8]. Malaria kills a child every 40 seconds, costing the world 
more than 2000 young lives a day [8] [9]. 

Many scholars have studied infectious disease models. At the beginning Ker-
mack and Mckendrick opened the door of infectious disease research. In 1927 
and 1932, they separately established the classical SIR [10] and SIS [11] model of 
plague. In 2002 van Driessche and Watmough [12] provided a method of estab-
lishing Lyapunov function which furnishes strong theoretical support for the 
latter study of the dynamic process of the infections. On this basis, more and 
more scholars established different models for different infectious diseases [13] 
[14] [15]. However, a basic model on zoonosis has not been established at now. 
Many models consider the vaccination [12] [16], but there are only a few people 
get vaccinated in poor area, even there is not an effective vaccination for some 
newly discovered zoonoses. Some models consider human transmission to hu-
man or animal [17] [18], in fact there are some zoonosis that can only be trans-
mitted from animals to humans such as rabies, brucellosis, tapeworm disease 
and so on. What’s more, few animals are treated after they get sick in the real 
life. This paper studies on this kind of zoonosis. 

In this article, a general model of the interaction between infected animals and 
humans are established. Referencing to classical model [10] [11] we generalize a 
SIS model which consider the cure rate those who are infected on human popu-
lation and a SI model on animal population. The organizational structure of the 
article is shown below. In Section 2 a mathematical expression of the model is 
constructed. The third section studies the global dynamics of disease from the 
perspective of disease-free equilibrium and endemic equilibrium. Section 4 
makes numerical simulation to explain the consistency of the theory and nu-
merical results, after that the sensitive analysis is performed. Finally, the conclu-
sion is shown in Section 5. 

2. Model Formulation 

We consider both animal and human, then classify each of them into tow sub-
classes: susceptible and infectious. Defining 1 1,S I  as the susceptible and infec-
tious human, 2 2,S I  as the susceptible and infectious animals respectively. If a 
susceptible human individual is contact with infected animals, this human indi-
vidual may be infected. If this one received effective treatment, he can change 
back to a susceptible individual, but if he isn’t cure in time, he is in the risk of 
death from infection. The model proposed in this paper is a system composed of 
four ordinary differential equations: 
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                 (2.1) 

The dynamic transmissions for the model of infectious of animal and humans 
are demonstrated in Figure 1. 

Figure 1 illustrate that the people and animal population import new sus-
ceptible individuals by the birth of baby with the number of 1b  and 2b . Under 
the influence of infected animals, the susceptible individuals will transfer to in-
fected one with the rate of 1β  and 2β . In the people population, the infected 
individual can return back to a susceptible individual with the rate 1σ  by med-
ical treatment. The infected individuals will die and then be removed from the 
population for the reason of nature factor with probability of 1 2,d d  and disease 
factor with probability of 1 2,α α . All the parameters with subscript 1 define the 
people population property while the parameters with subscript 2 define the 
animal population property. Based on the reality, we can know there is not a pa-
rameter is negative for human population. 

3. Dynamic Analysis 

Following, we express the derivative of t with 1 1 2 2, , ,S I S I′ ′ ′ ′ . Adding the first two 
equations, we can get  

1 1 1 1 1 1 1 1 11 1 11 1S I b d S d I I b d S d Iα′ ′ = − − − ≤ − −+             (3.1) 

There is 

1
1 1

1

lim
t

bS I
d→∞

+ =                         (3.2) 

Similarly  

2
2 2

2

lim
t

bS I
d→∞

+ =                         (3.3) 

 

 
Figure 1. Transmission diagram of zoonosis among animals and humans. 
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Accordingly, we can conclude an invariant set for the model 

( ) 4 1 2
1 1 2 2 1 1 2 2

1 2

, , , ,0 0
b bS I S I R S I S I
d d+

 
Ω = ∈ ≤ + ≤ ≤ + ≤ 

 
      (3.4) 

3.1. The Basic Reproduction Number 

Obviously, setting the right-hand side of the four differential equations to ze-
ro we can find the equilibrium. When set 1 2 0I I= =  The model (1) has a 
unique disease-free equilibrium 0E : 

( )0 0 0 0 0 1 2
1 1 2 2

1 2

, , , ,0, ,0
b bE S I S I
d d

 
= =  

 
                (3.5) 

when 1 2 0I I= ≠ , we can find a unique equilibrium *E : 

( )* * * * *
1 1 2 2, , ,E S I S I=                        (3.6) 

where  
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− +
=
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    (3.7) 

Based on this, the knowledge of next generation matrix and basic repro-
duction number are proposed [10], we now consider the follow auxiliary 
model 

1 1 2 1 1 1 1 1 1

2 2 2 2 2 2 2

1

2

I S I I I d I
I S I I d I

β σ α
β α

′ = − − −
′ = − −

                    (3.8) 

It can be written as  

( )
( )

1 1 2 1 1 1 1

2 2 2 2 22 2

1I S I d I
I S I d I

β σ α
β α

′  + +    
= − = −    ′ +     

                (3.9) 

Following the recipe from [10] we have 
0

1 1 11 1
0

2 22 2

00
,

00
dS

F V
dS

σ αβ
αβ

+ +   
= =   +  

            (3.10) 

1FV −  is the next generation matrix and 0R  is the spectral of 1FV − . We 
call 0R  as the basic reproduction number 

0
2 2

0
2 2

SR
d

β
α

=
+

                           (3.11) 

3.2. Dynamic Analysis on Disease-Free Equilibrium 

Theorem 1. If 0 1R < , the disease-free equilibrium 0E  of the model is local-
ly asymptotic stability, or else, 0E  is instability. 

Proof: 
The disease-free equilibrium Jacobian matrix of model (1) is  
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( )

0
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d v S
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           (3.12) 

The eigenvalues of   can be obtained from the above equation as follows: 

( )1 1 2 1 1 1

0
3 2 4 2 2 2 2

d d

d S d

λ λ σ α

λ λ β α

= − = − + +

= − = − −
                  (3.13) 

when 0 1R < , we can know 4 0λ < , then every eigenvalue of the model has the 
negative real parts, 0E  is locally asymptotic stability. Otherwise, 0E  is un-
stable and there will be exist diseases case.  

Theorem 2. If 0 1R < , then the disease-free equilibrium 0E  is globally 
asymptotic stability. 

Proof: 
The Jacobian matrix of model (2) on the disease-free equilibrium 0E  is  

( ) 0
1 1 1 1 1

0
2 2 2 20

d S
S d

σ α β
β α

 − + +
=  

− − 
              (3.14) 

It is easy to see that when 0 1R < , there is ( ) 0ρ < , where 

( ) { }max : is an eigenvalue ofReρ λ λ=   

Since the invariant set of the model (1) is Ω , choose positive and small 
enough 1ε , 2ε , and 0it > , such for all it t> , there is  

0 01 2
1 1 1 2 2 2

1 2

,
b bS S S S
d d

ε ε≤ < + ≤ < +  

Consider the following auxiliary model  

( )
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             (3.15) 

Similarly, the Jacobian matrix of model (3) on the disease-free equilibrium 
0E  is 

( ) 0
1 1 1 1 1 1 1

0
2 2 2 2 2 2

1
1 2

2

0

0 00
00 0

d S
S d

σ α β ε β
β α ε β

β
ε ε

β

 − + + +
=  

− − + 
  

= + +   
   





         (3.16) 

Since 1 2, 0ε ε >  are infinitely close to zero, ( )ρ   is continuous, on ac-
count of ( ) 0ρ < , It’s easy to derive ( ) 0ρ <  for positive and small 
enough 1 2,ε ε . By the comparison principle [19], it can be concluded that 
( )1 0I t →  and ( )2 0I t → , as t →∞ . By the theory of [20], which defined that 

( ),x f t x=  is called asymptotically autonomous—with limit equation 
( )y g y=  if ( ) ( ), ~f t x g x , t →∞ , locally uniformly in nx R∈ . 

Thus, there exist ( ) 0
1 1S t S→  and ( ) 0

2 2S t S→  as t →∞ . Accordingly, 
when 0 1R < , the disease-free equilibrium of the model 0E  is global asymptot-
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ic stability. 

3.3. Dynamic Analysis on Endemic Equilibrium 

We have calculated the endemic equilibrium *E  in the above article. Next, 
the global exponentially stable of *E  will be shown. 

Theorem 3. If 0 1R > , then the endemic equilibrium *E  of the model is 
globally asymptotic stability. 

Proof:  
On the endemic equilibrium *E , we derive the model (1) satisfied the fol-

low equation: 
* * * *

1 1 1 1 1 2 1 1
* * * * *

1 1 2 1 1 1 1 1 1
* * *

2 2 2 2 2 2
* * * *

2 2 2 2 2 2 2

0

0

0
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b I S I d S

S I I I d I

b S I d S

S I I d I

σ β

β σ α

β

β α

= + − −

= − − −

= − −

= − −

                (3.17) 

Thus, the model (1) can be converted into 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

* * * *
1 1 1 1 1 2 1 2 1 1 1
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2 2

1

2

2

S I I S I S I d S S

I S I S I I I I I d I I

S S I S I d S S

I S I S I I I d I I

σ β

β σ α

β

β α

′ = − − − − −

′ = − − − − − − −

′ = − − − −

′ = − − − − −

   (3.18) 

Define  

1 1
1 2* *

1 1

2 2
3 4* *

2 2

1, 1

1, 1

S IX X
S I
S IX X
S I

= − = −

= − = −
                 (3.19) 

It is easy to get 

1 1 2 1 3 2* * * *
1

4
1 2 2

2, , ,1 1 1 1X S X I X S X I
S I S I

′ ′ ′ ′ ′ ′ ′ ′= = = =         (3.20) 

The corresponding differential equation is 

( )

( ) ( )

( )
( ) ( )

*
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1 2 1 2 1 4 1 4 1 1*
1
* *
1 2

1 1 4 1 4 1 1 1 2*
1

*
2 3 2 2 3 4 3 4

*
2 2 3 4 3 4

1

2

4 2 2 4

3

IX X I X X X X d X
S

S IX X X X X d X
I

X d X I X X X X

X S X X X X d X

σ β

β σ α

β

β α

′ = − + + −

′ = + + − + +

′ = − − + +

′ = + + − +

       (3.21) 

We construct the Lyapunov function as  

( )2
4 43

2 2 2 2

ln 1
2

X XX
L

I Sβ β∗ ∗

− +
= +                  (3.22) 

Therefore, the derivative of L is as follow 
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 
+ + + − + +  

   +
= − + + + −   +   

 
= − + ≤ 
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        (3.23) 

It is easy to see, 0L′ ≤  for all 3X . In addition, if and only if 3 0X = , 
0L′ = . That is to say, 0L′ =  if and only if *

2 2S S= , *
2 2I I= , *

1 1S S= , *
1 1I I= . 

Thus, the endemic equilibrium *E  of the model is globally asymptotic sta-
bility in the interior of Ω . 

4. Numerical Simulation 

In this section, we discuss two situations in which animal population size is 
larger or smaller than population size. For the purpose of proving the universal-
ity of the model, we analyze the global stability by establishing the simulation 
data including animals and setting the parameters and initial values of the pop-
ulation size. After that, we give the sensitive analysis to see what is the most im-
portant factor to infect the existence or extinction of disease. 

4.1. Numerical Results 

Because it is not specific to infectious diseases, we use dimensionless parameter 
to conduct the numerical experiments. All the parameters values and initial val-
ues are displayed in Table 1, when people size is larger than animal size. 

Since the transmission rate of animal to animal is bigger than animal to 
human and disease mortality rate is bigger than nature mortality rate, for 

0 1R < , we set 3
2 1 10β −= ×  and 2 0.12α = , this moment 0 0.952R ≈  the cor-

responding results are shown in Figure 2(a). For 0 1R > , we set 3
2 1.2 10β −= ×  

and 2 0.16α = , this moment 0 1.042R ≈  the corresponding results will be dis-
played in Figure 2(b).  

We can conclude from Figure 2(a) that when 0 1R < , the number of in-
fected animal individuals is stable at 0, that is to say the disease-free equili-
brium 0E  is globally stable. Otherwise, from Figure 2(b) when 0 1R > , the 
result shows that the quantity of infected animal individuals is finally stable 
around 10.9, in the meantime, we calculate *

2 10.86957I = , it illustrates that 
the endemic equilibrium *E  is globally stable when 0 1R > . 

Next, we analysis the situation of the people size is smaller than animal size. 
Values of parameters and initial values are shown in Table 2. 

For 0 1R < , we set 5
2 8 10β −= ×  and 2 0.8α = , now we calculate 0 0.833R ≈   
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Table 1. Values of parameters and initial values when people size is larger than animal 
size. 

parameters 

name value name value 

1b  200 2b  120 

1σ  0.6 2d  0.3 

1β  43 10−×  2β  vary 

1d  0.06 2α  vary 

1α  0.2   

initial values 

name value name value 

( )1 0S  2000 ( )2 0S  500 

( )1 0I  200 ( )2 0I  80 

 
Table 2. Values of parameters and initial values when people size is smaller than animal 
size. 

parameters 

name value name value 

1b  100 2b  5000 

1σ  0.4 2d  0.4 

1β  44 10−×  2β  vary 

1d  0.08 2α  vary 

1α  0.3   

initial values 

name value name value 

( )1 0S  1000 ( )2 0S  10000 

( )1 0I  20 ( )2 0I  200 

 

 
Figure 2. Numerical results of the infected animal individuals when people size is larger 
than animal size. 
 
and the corresponding results are shown in Figure 3(a). For 0 1R > , 4

2 1 10β −= ×  
and 2 0.7α = , now 0 1.136R ≈  and the corresponding results are shown in 
Figure 3(b). 

Similarly, Figure 3(a) we know when 0 1R < , the disease-free equilibrium 
0E  is globally stable. When 0 1R > , the number of infected animal individu-

als is stable around 545.5, and we calculate *
2 545.45455I = , it illustrates that 

the endemic equilibrium *E  is globally stable when 0 1R > . 
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Figure 3. Numerical results of the infected animal individuals when people size is smaller 
than animal size. 

4.2. Sensitive Analysis 

With the view of investigating the role of each parameter on 0R , we use the fol-
lowing formula: 

( ) 0

0

SI
R

R
ρρ

ρ
∂

=
∂

 

where ρ  is the parameters of 0R , and ( )SI ρ  shows the sensitivity of 0R  to 
ρ . The greater the absolute value of ( )SI ρ , the greater the effect of ρ  on 0R . 
It is easy to see ( )2SI β  and ( )2SI b  are equal to 1, ( )2SI d  and ( )2SI α  
are as follows: 

( ) ( )2 2 2
2 2

2 2 2 2

2
SI , SI

dd
d d

α α
α

α α
+

= − = −
+ +

 

Obviously, ( )2SI 1d < − , ( )21 SI 0α− < < . It follows that increase the mortal-
ity of animal can promoting the extinction of disease. However, massive killing 
of animals is not advocated for those animals like dogs, sheep. So we can find 
ways to reduce the infection rate and birth rate. 

5. Conclusion 

In this article, we construct a general model of zoonoses transmitted from ani-
mals to humans. By dynamic analysis we can know that when 0 1R < , the dis-
ease-free equilibrium 0E  is globally stable. When 0 1R > , *E  is globally 
stable. Theory tells us that infectious diseases will not unrestrictedly grow, but if 
not take action to solve the epidemic of infectious diseases, it will exist all the 
time and then continuously make harm to human society. We can take measures 
to control the birth rate of animals to reduce the incidence of infectious diseases. 
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