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Abstract

This paper investigates the numerical solution of two-dimensional nonlinear
stochastic Itd-Volterra integral equations based on block pulse functions. The
nonlinear stochastic integral equation is transformed into a set of algebraic
equations by operational matrix of block pulse functions. Then, we give error
analysis and prove that the rate of convergence of this method is efficient.
Lastly, a numerical example is given to confirm the method.
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1. Introduction

Two-dimensional stochastic Itd-Volterra integral equations arise from many
phenomena in physics and engineering fields [1]. Some different orthogonal ba-
sis functions, polynomials and wavelets are used to approximate the solution of
two-dimensional Volterra integral equations. For example, block pulse functions,
triangular functions, modification of hat functions, Legender polynomials and
Haar wavelet and the like (see [2] [3] [4] [5] [6]).

Especially, Fallahpour ef al [3] introduced the following two-dimensional li-

near stochastic Volterra integral equation by Haar wavelet
x(t,t,)= f(tl,tz)+J.:_[(:]l€(tl,t2,sl,s2 )x(s1,5,)ds,ds,
+.[;2J.;]l€(tl,tz,sl,s2 )x(sl,s2 )dB(sl )dB(s2 ),

where x(#,t,) is unknown and called the solution of the Equation (1),

(1)
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k(t,t,,5,,5,), k(t,,t,,5,,5,) and f(t,1,) are known functions
(t,.t,)€[0,7,)x[0,T,) s s,<t,5,<t,. B(s;) and B(s,) are two indepen-
dent Brownian motions and ‘[:J.;lg(tl J1,81,8,) x(s,,5,)dB(s,)dB(s,) is the
double Itd integral. The authors transformed stochastic Volterra integral equa-
tions to algebra equations by Haar wavelet and gave the numerical solutions to
the equations. Similarly, Fallahpour et al [7] obtained a numerical method for
two-dimensional linear stochastic Volterra integral equations by block pulse
functions.

For nonlinear determinate Volterra integral equations, Maleknejad et al. [8]
and Nemati et al [6] used two-dimensional block pulse functions and Legendre
polynomials to solve those respectively. Both Babolian ef a/ [2] and Maleknejad
et al. [9] employed triangular functions to get the numerical solutions. Mirzaee
et al. [5] [10] applied modified two-dimensional block pulse functions to ap-

proximate the following determinate equation
S (0) = R s too052)[3(51052) ] dsdss (1.0) € [0T)<[0.7), - @)

where nonlinear term [ x(s,.s, )J" is power function and x(s,s,) is un-
known, n is a positive integer. Ig(tl,tQ,sl,sz) is determinate kernel function
0<s <t <7,,0<s, <t, <T,. The authors revealed the accuracy and efficiency
of the proposed method by some examples and gave the rate of convergence to
the numerical solution.

However, as far as we known, there are hardly any papers about the numerical
solution of two-dimensional nonlinear stochastic Itd-Volterra integral equations.
Inspired by the above literatures, we introduce an efficient numerical method for
the following nonlinear stochastic integral equation based on block pulse func-

tions.
x(t,1,)=x, (tl,tz)+I:J-;l/€(tl,t2,sl,sz)O'(X(sl,sz ))dslds2
+L:2J.;ll€(tl,t2,sl,s2)g(x(sl,sz ))dB(sl)dB(sz),

where x(#,t,) is unknown function and is called the solution of the Equation

(3) defined on district D =[0,1)x[0,1). x,(#,t,) is known determinate func-

tion. k(t,t,,s,s,) and k(f,t,,s,5,) are determinate kernel functions.
ty et . A s

IOZ Ollc(tl,t2,sl,sz)g()c(sl,s2 ))dB(s,)dB(s,) is the double It6 integral. B(s,)

and B(s,) are two independent Brownian motions. o and g are analytical

(3)

functions.

In Section 2, we recall the definition and properties of block pulse function. In
Section 3 and 4, we show the integration operational matrix about two-dimensional
block pulse functions. In Section 5, an efficient numerical method to nonlinear
stochastic Itd-Volterra integral equation is obtained. In Section 6, the error and
the rate of convergence of this method are given. It’s important to emphasize
that the error is analyzed by Gronwall’s inequality and the interchangeability of
integral and expectation. However, the norm was used in the literature [11], it is

a pity that the interchangeability of norm and integral wasn’t proved. In Section
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7, we give a numerical example to illustrate the validity of the method. In the fi-

nal Section 8, we make some conclusions and look ahead to further work.

2. Two-Dimensional Block Pulse Functions

One dimensional block pulse functions (BPFs) have been widely studied and ap-
plied to solve different problems. For example, the article [12] and their relative
references give a detailed description. A m,m, -set of two-dimensional block
pulse functions (2D-BPFs) ¢, . (#.t,) in the region of D =[0,1)x[0,1) are
defined as:

b (nts)= 1 (aq-1)h <t, <ah,(a,-1)h, <t, <a,h,
aey \172S otherwise,

1 . e
=—, m,=2", m; and n are arbitrary positive in-
m.

i

where g, =1,2,---,m,, h

tegersand i=12.
Similar to the one-dimensional case [12]. There are some elementary proper-

ties for 2D-BPFs as follows:
1) Disjointness:

¢ . (4.t ifa =b,a,=>b
¢al’az (Zl’t2)¢b],bz (tl’l’z): 1,2(1 z) 1 .1 2 =b (4)
0 otherwise,
where a,,b, =1,2,---,m,, i=12.
2) Orthogonality:
1l hh, ifa =b,a,=Db,
J.OJ.O%’“Z (8., )¢b"b2 (1.1, didr, = {0 otherwise. ®)

3) Completeness: for every f e(L2 (D)), when m, and m, approach to
the infinity, Parseval’s identity holds:

-[(;,[(;fz (tlstz)dlldlz = Z Zf:’az

aj=lay =1

b (100 - (6)

where
1 (p
fa,,az :Ejojof(tutz)@l,az (tntz)dtldtz'

The set of 2D-BPFs may be written as a vector ®(¢,,7,) of dimension (m;m, ):

T
(Dmlmz (tl’t2)2(¢],l (tlatz)a”"¢1,mz (tl’tz)""’¢ml,1 (tl’tZ)’“"¢ml,m2 (tl’tz )) > (7)

where (#,,t,)eD.
From the above representation and disjointness property, it follows that:

¢1,1(t15t2) 0 0
0 ¢, (t.0,) - 0
D, (6.6)0, . (4.6,)= 3 |,2(51 2) E (8)
0 0 e B (1)

mymy xmyny

(DZW (1.,)®,,, (t.5,)=1,
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@, (6.6)0,, (4.4,)G= G‘Dmlmz (1.1,), (9)

mymy

where Gis a (mm,)-vector and the matrix G = diag(G). Moreover, it is easy

to conclude that for every (mm,)x(mm,) matrix A

CDT (ll’IZ)A(I)mlnzz (tl’t2) = IlecDm]mz (tl’t2)’ (10)

iy
where A4 is a (mm, ) -vector with elements equal to the diagonal entries of
matrix A.
Any function x(#,¢,) which is square integrable in the interval D can be

expanded in terms of BPFs as
ml ”12
x(tl ’t2 ) = 'xmlmz (tl H t2 ) = z Z'xal,az ¢a1,a2 (tl ’ tZ ) = Xr]n-lmz q)mlmz (t)’ (11)
ay=lay =1
where  x, (t] 4 ) is mm, approximations of 2D-BPFs of x(1,t,) ,
Xpm, (41:1,) s a coefficient (mm,)-vector, ie.

T
D ] YIRS OIS SRR S (12)

where the block pulse coefficients x, , are obtained as

L et j(‘”h‘ x(1,1,)drds,.

X, , =—
a,dy ~1)h ~1)h
hlh2 (ay=1)hy (@ =1)hy

Similarly, a function of four variables k(t,t,,s,,s,) on L*(DxD) may be

approximated with respect to 2D-BPFs such as
T
k(t1:t2asl’s2) =0, (tl’t2) Ko, ,, (SI’SZ )’

where ®,  (4,1,) is a 2D-BPFs vector of dimension (mm,), K is the
(mymy )x(mym,) two-dimensional block pulse coefficient matrix in the follow-

ing form
K= (Kalbl )mlxml ’ Kalbl = (kalazblbz )szmz ’

a;,b,=1---,m;,i=1,2 and two-dimensional block pulse coefficients &,,,;

are given by
1 Lelplpl
oot =707 L (tt5005:) 0, (1582)8, 0, (51052 didrdsds, |- (13)
2
The more details can also reference to [7].

3. Operational Matrix of Integration

Let M= ((jj )MlxMz and N = (771.1. )leNz be matrices. M,,N, are positive
integers, /=1,2. We have
fllN 512N (:gleN
N N - N
M®N = (SK,,N) _ 521' ‘fzz ' 4:21\4.2 .
§M|1N §M12N §M|M2N MNyxM,N,
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where ® denotes the Kronecker product defined as [13]. Each fijN is a block
of size N,xN,, M®N isofsize M,N,xM,N,.
Then the vector @, (1,,1,) can be showed as following
q)mlmz (t] > t2 )
= (Dml (tl ) ® csz (t2 )

=(¢1(t1)’¢2(tl)’“.’¢ml (11))T®(¢1(12)s¢2(12)v""¢m2 (tz))T
= (40081 (1), (6) by (2): o, (6)44 (1), 08, ()8, (1))

where ¢, (#,) are one dimensional BPFs, o, (#,) are vectors of one dimen-
sional BPFs, g, =1,2,---,m,i=12.
The integration of the vector @, (t,,t,) defined in (7) can be approx-

imately obtained as following

1) (14)

where 1 €[0,1),2, €[0,1), P is the (mm,
integration for 2D-BPFs and P, (i=1,2) are the operational matrix of

x(mm,) operational matrix of

one-dimensional BPFs [12] defined over [0,1) as following.

122 2
01 2 - 2
h

P="1o 01 . 2
2|,

000 ()

For details, see [7], so

,[tzj. S15S2 deS J.tZJ. gy Loy (SI’SZ)dsldsz
=X! PO, . (1,,1,).

mymy

(15)

4. Stochastic Integration Operational Matrix

Similarly, we obtain the stochastic integration of the vector ®,  (#.t,) de-
fined in (7) as following

[0 @, (5155 )AB(5,)dB(s,)

=i, (s) @@, (s >dB<sl>dB<sz>

= [l @, (s)dB(s) @J ®,, (s,)dB(s,) (16)
~P®, (1)OP,, (1)

=(P, ®P, )CDmlmZ t.t,)=P®, (1.1,),
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where 1 €[0,1),1, €[0,1), P, is the (mm,)x(mm,) stochastic operational
matrix of integration for 2D-BPFs and P,, (i=1,2) are the stochastic opera-

tional matrix of one-dimensional BPFs [12] defined over [0,1) as following.

B(h) B() B()
3h,
0 3(7}3(@.) (21)-B(h) B(2h)-B(h)
0 B[STh"j—B(Shi) (3h)- B(2h) 7)
(2m, —1)h,

0 0 [ 5 —B((m,—1)h) -

For details, see [7]. Therefore,
J- J-tl Sl,sz)dB Sl dB 32 I!zj‘fl s mlmz Slasz)dB(Sl)dB(SZ) (18)

=X, PO, (4.t).

nymy

5. Numerical Method

In this section, we first provide a useful result for solving two-dimensional non-
linear stochastic It6-Volterra integral Equation (3).

Lemma 1. Let o(t)=)a;t’, g(t)=) bt be the analytic functions for
positive integer j € (0,0), then

a(xmlm2 (1,1, )) =o' (Xmlm2 )(I)mlm2 (1,1,),

g(xmlmz (6:12)) = 8" (X, )d)mlm2 (1,,1,),

where ®, () and X, arederived in (7) and (12),
" (X )= (0 (30)5 0 (310 )50 (500 )s 550 (0 )

gT (Xmﬂ"z):(g(xl’l)’”"g(xl’mz)’.”’g(xml,l)’.“’g(xmhmz ))

Proof. By virtue of the known conditions and the disjointness properties of
2D-BPFs defined in (4), we can get

& (e (6:)) = 2, (%0, (1:85)) = Ta [ZZ oy (1151 )T

e
=Y (2, () + 3, B (001) 402, B (600)
+"'+xm1,mz¢m1.m2 (tl’tz):|j
= a5 e X Xl ) @ (685)
= 0" (Ko, ) P, (8:82)-
thus,

O-(xmlmz (tl’tz )) - h )O-(Xmlmz )’ (19)

GT (Xmlmz )cDmlmz (t15t2 ) = CD—Vll;lmz (tl’
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g(xm]m2 (t.1, )) =g" (XmlmZ )(I)mlmZ (1,8,)= d)rTn]m2 (t.1, )g(Xmlm2 ) (20)

The proof is completed. (]

Now we suppose x(tt) > x(6.t) > o(x(t.8)) » g(x(4.4))
k(t,t,,5,,5,) and k(t,t,,5,,s,) canbe approximated in terms of 2D-BPFs.

x(t,t,) =~ X, (1.,1,)= X»Tqmchmlmz (1,1,) = chnlmz (1.1, )Xmlm2 , (21)

6 (h)=x, (6.6)=X, @, (6.,)=0
o(x(t.6,))~ (xmlm2 (1,,8,) ) " (X )@, (1515)
g(x(t:,)) = & (%, (11:12)) = &' (X, ) @ m]mz(nfz)

k(tty,5,8,) >k (621,80,8,) = @) (6.6) K@, (s.5,), (25

k(tsty050,8,) =k (1213,5,,5,) = @) (6.0) K@, (515,), (26)

where X, ., X, O—(Xmlmz) and g(Xmlmz) are two-dimensional block
—

myny

mymy (tl’t2 XO (22)

B
mymy

I
S

mlmz tl’tz G(Xmlm2)3(23)
(

g ermz )’ (24)

mymy

)
)
,,, (4:1:)
(
(

pulse coefficient vectors. K, and K, are two-dimensional block pulse coeffi-
cient matrices.

Now, by (21)-(26), we approximate the Equation (3)
Xy @ (£1527)
:)(()Tmlmszmlm2 (t .4 )
O 1 Ky (50520 BL 5050 (o
o, %<s”s2><bzmz<sps2>g<xmlmz>dB<s1>dB<sz>
=X OTW @, (t A )
+ @ (5.6)K [ 1D, (5.5,)®), (5.5,)0(X,,, )dsds,
+ O () K [P, (515,) @ (5155:) (X, ) 4B (s)dB(s,)
=Xy, @, (1:1,)

.

+<I),Tnlm2 tl,t _[2_[[16'()( ) gy (sl,s2)dslds2
+(I),Tnlm2 J L:l (X ) sl,sz)dB(sl)dB(sz)

:X(;r q)m|m2 (tl’tZ)

mmy

myny

+(D;1m2 (tl’IZ)KZg(Xmlmz ).[(;2.[;1(1)’"1’"2 tl’t2)dB(S1)dB(S2)’
by (15) and (18), we have
Xy @, (1,1)

nmymy nymy

= X(;FMImZ CDmImz (tI’tZ ) + (Djnlmz (tl ’tZ )Kla-(Xmlmz )Pq)mlmz (tI’tZ)

+¢)Izlmz (tl’tZ )KZg(Xm]mz )PScDmlmz (tl’tZ )7

let Q=K16-(Xmlm2)P and Qyszg(Xml,nz)Ps,theyboth are (mm,)x(mm,)

+CDT (tlﬂtZ)Klo-( mymy )J.tz th)mlmz ( Z)dSldSZ
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matrices. By (10), we have

Xy @, (6,6,)=X,

mymy iy Oy

(Dmlmz (tl ’t2 ) + QT®m1m2 (tl ’tZ ) + QAsTcDrnlmz (tl’tZ )’

where O and QS are (m,m,)-vectors with elements equal to the diagonal en-
tries of matrices Q@ and Q,.Then

Ko, =Xo + 0"+ (27)

mlmz
There are various methods to solve the nonlinear system of Equation (27) of

. In this paper, we will use the int () function provided by Matlab 2015b
, we obtain that the

m nmy

[14] to solve it. According to the coefficient vector X

nymy

approximation solution of Equation (3) x,,,. (1.5,)=X,, @, (4.,).

mymy

6. Error Analysis

In this section, for convenience, we assume m, =m, =m and prove that the
1

approximation solution is convergent of order O(h),h=—.
m

Lemma 2. Let v(s,,s,) be an arbitrary bounded function on D =[0,1)x[0,1)
and &,, (s,,5,)=v(8,,5,) =V, (51,5,)» which v,, (s,,s,) is nT" approximations

of2D-BPFs of v(s,,s, ), then
"é";(D) = I;j;érim (Sl’sz )ds,ds, < O(hz ) (28)

Proof Similar to [15] [16]. O
Lemma 3. Let v(t,,t,,s,,s,) be an arbitrary bounded function on DxD
and é,, (1,,t,,5,8,) =v(t,,1,,8,,8,) =V, (1,13,5,,8,) » which v, (1.1,,s,,s,)

Is n* approximations of 2D-BPFs of v(t,,t,,s,,s, ), then
el (00) j j j jo (15,555, ) ds,ds,dr,dt, < O(h*), (29)

Proof. Similar to [15] [16]. O
Next, let

emm (tl’t ):x(tlat ) mm (tl’t )
I 1 T

_lg (tlatzaslasz ( Xom S15S2 )] (30)

+ 0L (tss) g (x(55))
kmm(tl’t2’sl’s2)g(x (51,52)):|dB(S1)dB(S2).

where x,, (,t,) is the approximation solution of x(#,z,) defined in (3),
X, (tsty)s Ky (tty.5,,5,) and ky (t,,1,,5,,5,) are nf* approximations of
2D-BPFsof x,(1,1,),k(4.t,,5,,5,) and k(,,t,,s,,s,), respectively.

Theorem 1. For analytic functions ¢ and g, there are constant numbers sa-
tisty the follo Wing conditions:

D) |o(x) |<11|x—y|’ lg(x)-2(»)<

2) |0' Je(y )|§l4,
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where x,ye R and let |l€(tl,t2,s1,sz)|sls,

k(tl,tz,sl,sz)
bounded kernel functions, where /,, i=1,2,---,6 are constant numbers. Then,

J.oT.[oTE(|emm (tl’tz )|2 )dtldt2
:_[()TI()TE(|x(tl,t2)—xmm (tl’t2)|2)dtldt2 SO(hz), TE[O,l)_

Proof For (30), we have

E( e (15 t)| )§3[E(|x0(tl,tz)—xom (tl,t2)|2)

+B(|[2 ) [F(totaos)or(x(5.5.)

o 1125:)0 (o 5,52 |
LR TR (tss) g (x(s105,)

-k, (tlatzaslasz)g( X (Slﬂsz ))]dB(Sl)dB(SZ)

<I, be determinate

+B(

)]

According to It6 isometry, Cauchy-Schwartz inequality and Lipschitz condi-
tions, we can write

(e, (1.1 )

<3( (|3 (1.t) -, (0] )

B R0 (e (50920) =R (185052 5 (55 s

{92 (5052)) o 109 (5 55 58 )|

- 3[E(|x0 (RABE (XA )|2)
(LB (x(s, )0 o5
+o(x, (s,,sz))[ (1255055 ) = Ky (1:155,.5,)

SN
(

(xmm Slﬂsz))|: (tlatzaslasz) tlstzsslasz

2

ldSZ

)

lds2:|

)
)
k(1, tz,sl,sz g(x(s51,5,)) =g (%, (5155,)
I)

< 3[|x0 (tl »h ) = %o, (t‘ & )|2
2R [ e

mm

(s,,s2)|2)dslds2
+ 21 J‘er' |k f,ty,8,,8,)— i (tl’tz’slﬂsz)rdSldSZ
+ 20217 -[o -[0 (|emm sl,S2)| )dsldsz

+21§L§2J‘(:1‘lg(tl,tz,sl,sz)—lgmm (tl,tz,sl,sz)2

dsldsz}.

Then, we can get
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B([e,, (612 )< A1)+ [ [ B ey, (5105, s,
where,

=6(L+L17).

2
ﬂ(tl oh ) = 3|:|x0 (tl N ) X0, (tl A )|

w28 [N |k (1,10,518,) K, (tl,tz,sl,s2)| ds,ds,

+2lf_f0 IO ‘k(tl,tz,sl,sz)—kmm (tl,tz,sl,sz) dsldsz}

Let f(1.1,)= E(|emm (4.1, )|2) , e get
f(tl,tz)Sﬁ(tl,t2)+aj:j;f(q,r2)dTldrz, 7, €[0,4,),7, €[0,2,).
By Gronwall’s inequality, we have
F(0uty) S Btat) +a[ [0 g (0 7)Y drde,, 1.1, €[0,1).
Then, for T [0,1)
j j f(t.8,)dds,
- (

SJ. J‘ (ﬂ( +aJ-tzJ-t1 (22 ]ads, mz Tl,Tz)dTIde)dtldtz

(1.1, | )dtldtz

m m

= [ [ Bt duds, +af) [ 2[00 g (2, 7, )drde,dhdr,
<[] B(t.1,)dede, +ae™ [ [T [ [ B (7,7, ) drydr,ddr,
_3jf ¥ (1) =, (5, )|2dtdt2

+6l J J. .[tz.rl|k tl’t2’s1’s2 (t19t29s1ssz)| dsldszdl‘]dtz

53 ’1

k(tty,5,,5,)~k, (t],t2,s],s2)

[ I J ftzj"lxo (71,72) =%, rl,rz)| dr,dr,de,de,
NN NARN
GG LTI

=31+ 61, + 6111, + ™ [ 31, + 611, + 611, |,

ds,ds,dz,dt,

2
rl,rz,sl,sz -k, (T],Tz,s],s2)|dsdsdrldrzdtdt

k(rl,‘rz,sl,s2 (rl,rz,sl,sz) ds,ds,dr,dz,ds,d¢ }

by using (28) (29), the integrals
I <ch’, i=1,2,--,6,

the last equation can be converted into
J'OT LTE|emm (1.1, )|2 dr,dz,
< [(3c1 6L, + 61, )+ ae™” (3¢, +6l2¢, + 612, )} i <0(I).

where ¢;,i=1,2,---,6 are independent nonnegative constants.
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0.106

0.104

0.102

0.1

0.098

0.096

The proof is completed. O

7. Numerical Examples

In the last section, we give a numerical example which illustrates the feasibility
of the above method. The approximation solutions and mean solutions of the
equations are shown in Figures 1-4.

Example 1. Consider the following two-dimensional nonlinear stochastic
It6-Volterra integral equation (one-dimensional case can reference to Example 1
in [17]).

2
x(tl,t2)=%—[ioj j;zjélx(sl,sz)(l_xZ (5.5,)) ds,ds,
b [T (15 (5052)) 4B (5, dB s,).

The front view and the top view of the approximation solutions of the Exam-
ple 1 for m = 8 are given in Figure 1.

The front view and the top view of the mean solutions of the Example 1 for m
= 8 are given in Figure 2.

The front view and the top view of the approximation solutions of the Exam-
ple 1 for m = 16 are given in Figure 3.

The front view and the top view of the mean solutions of the Example 1 for m
=16 are given in Figure 4.

From these figures, we find the general trends of the solutions are similar for
different m, and the absolute error of mean solution is very small. This method

is efficient and the accuracy is credible.

8. Conclusion

For some stochastic Volterra integral equations, exact solutions cannot be ex-
pressed. But, the numerical solution can be conveniently obtained based on dif-

ferent stochastic numerical methods. As the complexity of the system, we use
0.104 0.104

0.103 0.103

0.102 0.102

0.101 0.101

0.1
0.099 0.099
0.098 0.098

0.097 0.097

Figure 1. The front view and top view of the approximation solutions for m = 8.
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0.1004 0.1004
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0.1002 0.1002

0.0995

0.1

0.0998 0.0998

0 o

Figure 2. The front view and top view of the mean solutions for m = 8.

0.104 0.104
0.106 -, 0.103 0.103
0.104 0102 0.102
0.102
0101 1 0.101
0.1
0.1
0.098 01
0.096 0.099 0.099

0.098 0.098

0 o0

Figure 3. The front view and top view of the approximation solutions for m = 16.

0.1006 0.1006
0.1008 0.1005 0.1005
0.1006 0.1004 +0.1004
0.1004 01003 0.1003

0.1002
0.1002 0.1002

0.1
0.1001 0.1001

0.0998

1 0.1 0.1
1
0.5

0.5 0.0999 0.0999

0 o

Figure 4. The front view and top view of the mean solutions for m = 16.

BPFs as the basis function to solve the two-dimensional nonlinear stochastic

Volterra integral equation. This numerical method is simple and effective. In the
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future, we will try to extend it to n-dimensional space and solve more problems.
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