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Abstract 
It is often said that music has reached its supreme and highest level in the 
18th and 19th centuries. One of the main reasons for this achievement seems 
to be the robust structure of compositions of music, somewhat remindful of 
robust structure of mathematics. One is reminded of the words of Goethe: 
Geometry is frozen music. Here, we may extend geometry to mathematics. 
For the Middle Age in Europe, there were seven main subjects in the univer-
sities or in higher education. They were grammar, logic and rhetoric—these 
three (tri) were regarded as more standard and called trivia (trivium), the ori-
gin of the word trivial. And the remaining four were arithmetic, geometry, 
astronomy and music—these four (quadrus) were regarded as more advanced 
subjects and were called quadrivia (quadrivium). Thus for Goethe, geometry 
and mathematics seem to be equivocal. G. Leibniz expresses more in detail in 
his letter to C. Goldbach in 1712 (April 17): Musica est exercitium arithmeti-
cae occultum nescientis se numerari animi (Music is a hidden arithmetic ex-
ercise of the soul, which doesn’t know that it is counting). Or in other re-
spects, J. Sylvester expresses more in detail: Music is mathematics of senses. 
Mathematics is music of reasons. Thus, the title arises. This paper is a sequel 
to [1] and examines mathematical structure of musical scales entailing their 
harmony on expanding and elaborating material in [2] [3] [4] [5], etc. In sta-
tistics, the strong law of large numbers is well-known which claims that 

lim 1.
n

rP
n→∞

  = 
 

 This means that the relative frequency r
n

 of occurrences of 

an event A tends to the true probability p of the occurrences of A with proba-
bility 1. In music, harmony is achieved according to Pythagoras’ law of small 
numbers, which claims that only the small integer multiples of the funda-
mental notes can create harmony and consonance. We shall also mention the 
law of cyclotomic numbers according to Coxeter, which elaborates Pythago-
ras’ law and suggests a connection with construction of n-gons by ruler and 
compass. In the case of natural scales (just intonation), musical notes appear 
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in the form 2 3 5p q r  (multiples of the basic note), where p∈ ,  
3, 2, 1,0,1, 2,3q = − − −  and 1,0,1r = − . We shall give mathematical details of 

the structure of various scales. 
 

Keywords 
Pythagorean Scale, Just Intonation, Temperament, Beat, Pythagoras’ Law of 
Small Numbers, Law of Cyclotomic Numbers 

 

1. Distance Functions 

The pitch of a musical note (hereafter abbreviated as a note) is defined by its 
frequency measured in Herz (Hz), cycles per second. 

The bigger the frequency, the higher the pitch. 
The frequencies of all musical notes are the set of positive reals + . The 

interval between them is expressed by the ratio of their frequencies. As will be  

shown below, in just intonation, 9
8

D =  and 5
3

A =  and the interval between 

them are calculated by division 405 9
3 8 27

= . The reason for this is that use is  

made of the logarithmic distance and the subtraction of logarithms is expressed as 
division of the anti-logs. In turn, the main reason why the logarithmic distance is 
used comes from the Weber-Fechner law (cf. e.g. [6]) to the effect that stimuli 
are sensed logarithmically. For two notes a and b define 

( ), log log log 0.d a b a b a b= = − ≥  

Then this is a distance function. For ( ), 0d a a = , ( ) ( ), ,d b a d a b=  and 

( )

( ) ( )

, log log log log

log log log log

, , .

d a c a b b c

a b b c

d a b d b c

= − + −

≤ − + −

= +

 

Hence, ( ),d+  is a metric space. Thus, we think of intervals between two 
notes as the logarithmic difference, which we substitute by the quotient, say b/a, 
of corresponding frequencies b a>  and say that the interval between a and b is 
b/a (by which we understand the logarithmic interval log logb a− ). 

2. Equivalence Classes 

We introduce the relation 


 by 

2na b a b n⇔ = ∈ .               (2.1) 

Then this is an equivalence relation. For 02a a = , and if 2na b = , then 
2 nb a −= . Finally, if 2ma b =  and 2nb c = , then 2m na c += . Hence +  is 

classified into equivalence classes: +  . 
This may be also viewed group-theoretically. The multiplicative group +  or 

its subgroup +  of all positive rationals contains the cyclic subgroup 
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{ }2 2 |n n= ∈ . And the quotient group 2+  may be considered as the 
set of all musical notes up to octaves. 

Two musical notes whose frequencies are different by powers of 2 are thought of 
as belonging to the same equivalence class, or those which sound alike. Musicians 
express the equivalence relation by using the same label for those notes in the same 
class. E.g. if the middle C has frequency 260 Hz, then the note three octaves higher 
than middle C has frequency 3260 2 2080× =  Hz while the note two octaves 
below middle C has frequency 2260 2 65−× ≈  Hz. They are denoted by the same 
symbol C and are referred to high C or low C, respectively. The concert pitch 
which is used today is A 440= . Then with this value, in Pythagoras scale, the 
middle C 261=  while in just intonation it is C 264= , cf. also (6.1). 

Definition 1. Two intervals which combine to give an octave is called an 
inversion to each other. 

After the octave, the next simplest is the perfect fifth 3:2 containing 7 
semitones whose inversion is the perfect fourth 4:3 containing 5 semitones. The 
major third 5:4 is the interval containing 4 semitones whose inversion is the 
minor sixth 8:5 which contains 8 semitones (Figure 1 & Figure 2). 

The sequence of three notes arranged in the order of the major third and the 
minor third is called a major triad. 

The common major chord (do-mi-so-do) has the ratio 4 : 5 : 6 : 8 , while the 
common minor chord (do-mi-so-do) has the ratio 10 :12 :15 : 20  (Figure 3). 

Remark 2.1 For the meaning of “fifth’’, cf. Remark 5.1 below. There are three 
ratios with the prefix “perfect’’, which are perfect first (which is nothing but the 
unison), perfect fifth and perfect fourth. The major third is the interval from 
( )440A f =  to ( )# 550C f = , which is a representative of the equivalence class 

consisting of the intervals 5/4, 5/2, 5/1, 10/1,…. 

3. Pythagoras Law of Small Numbers and the 
Helmholtz-Joahim Scale 

Pythagoras was the first who raised the question “Why is consonance associated 
with the ratios of small numbers?’’ Here “numbers’’ means integers. This is 
referred to as Pythagoras’ law of small numbers to the effect that only the small 
integer multiples of the fundamental notes can create harmony and consonance. 
There is a variation of this law, the law of cyclotomic numbers, cf. §7. 

In this section as a partial explanation of Pythagoras’ law of small numbers, 
we refer to the experiment of Helmholtz and Joahim stated in [3] and we refer to 
 

 
Figure 1. Natural harmonic series. 
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Figure 2. Inversions. 

 

 
Figure 3. Common chords. 

 
their result as the Helmhotz-Joahim scale. H. von Helmholtz with the help of the 
renowned violinist J. Joachim, made an experiment and tabulated the notes 
which are the most pleasing to the ears (Table 1). 

Table 2 is the basis of Coxeter’s speculation of the law of cyclotomic numbers 
in §7. 

4. Various Scales 

When we pile up the notes starting from a basic note, we obtain an increasing 
sequence of pitches. The way of piling up is not at one’s disposal and one has to 
struggle to achieve good consonants among them. There are several sequences 
constructed and they are called a scale or sometimes pitch with the inventor’s 
name or with the describing term (sometimes also called an intonation). 

In the case of Pythagorean scale (§5), it is formed using only powers of 2 and 
3. 

Since one whole-tone consists of two semi-tones and there are two semi-tones 
and five whole-tones in one octave, it follows that one octave has 12 semitones, 
cf. (8.6) below. Therefore, piling up the notes on the basic one, the 12th power is  
very important. In the case of the Pythagorean scale, what are piled up are 

powers of 3
2

, so that 

123 129.7,
2

  ≈ 
 

 

which is a little higher than 7 octaves: 72 128= . The interval 

129.7
128

 

is known as the comma of Pythagoras. This discrepancy accounts for many 
difficulties in obtaining an organized system of pitches. 

In the equal tempered system, one octave is equally divided into 12 semitones 
with ratio being the 12th root of unity 

1 121 tempered semitone 2 1.05946= =                 (4.1) 
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Table 1. (a) Helmholtz-Joachim scale. (b) Helmholtz-Joachim scale (cont.). 

(a) 

 C E E F G A 

int. unison minor 3rd major 3rd perfect 4th perfect 5th minor 6th 

ratio 1
1

 6
5

 5
4

 4
3

 3
2

 8
5

 

note do mi# mi fa sol la# 

(b) 

from C A C 

interval major sixth octave 

ratio 5
3

 2
1

 

note la do 

 
Table 2. Multiples of low C. 

mult. 1 2 3 4 5 6 7 8 9 10 11 12 

note C C G C E G - C D E - G 

5. The Pythagorean Scale 

The Pythagorean scale is made of 2 3p q , ,p q∈ , 3 3q− ≤ ≤ . As is explained 

above, starting from middle C, A (la) is obtained as 
33 27

2 16
 
 
 

 . 

From middle C (doh) by piling up 3
2

, we get G (sol), then 
23 9 9

2 4 8
  = 
 

 , 

which is D (re). The next is 
33 27 27

2 8 16
  = 
 

 , which is A (la) with frequency 

440 Hz. The 5th is 
4 23 81 81 3

2 16 64 2
   = =   
   

 , which is E (mi). 

Definition 2. These 5 notes C, D, E, A, G form the pentatonic scale. It is the 
basis of many folk-songs in Scotland. Figure 4. 

The 6th is 
5

2

3 243 243 1 243
2 32 32 1282

  = = 
 

 , which is B (si). Thus C (doh), G (sol), 

D (re), A (la), E (me), B (si). The 7th F (fa) is obtained by coming back from 

higher C. i.e. 
13 32

2 2

−
 ⋅ = 
 

. 

This is the scale used by the Greeks and early medieval composers as the basis 
of the Ecclesiastic Mode. The scale is suitable for melodic writing but not 
satisfactory for harmonic writing (for modulation) (Figure 5). 

We remark that the sequence 3
2

n    
   
     

 is very much relevant to number  

theory, esp. in connection with the Waring problem, cf. e.g. [7], where the 
Gaussian symbol will be defined after (5.1). 
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Figure 4. Pentatonic scale. 

 

 
Figure 5. The Pythagorean Scale. 

5.1. Major and Minor Chords 

The home key could be any one of seven notes but what survived in 
tone-centered music nowadays are the Ionian scale beginning and ending on C 
and the Aeolian scale (with key-note A). The Ionian and Aeolian scales are 
known as the ordinary major and minor scales (Table 3). 

Definition 3. The major triad is the piling up of the major third followed by 
the perfect fifth on the root. The minor triad is the piling up of the minor third 
followed by the perfect fifth on the root (Figure 6). 

On [2] there are two speculations for the reason why those two chords remain. 
One is that the interval from si to do is very small and gives the impression that 
it is coming to an end. The other is more convincing that as one can see, the 
major triads are situated symmetrically over the octave, and so these chords 
survived. But although in the figure it is apparent, it is not certain whether one 
senses this symmetry by ears. We guess that this is not a reasoning by senses but 
by reasons. On [2], it is stated that Bach’s music is quite mathematical but for 
Bach, music comes first and the accompanying mathematical structure is rather 
the by-products of composing music—as mathematics of senses. [8] [9] [10] [11] 
etc. on Bach’s music and its plausible relation with mathematics. 

5.2. Arithmetic of the Pythagorean Scale 

In §5, the piling up method is given of constructing Pythagorean scale, but 
each time one has to think which power p of 12−  is to be multiplied to shift the 
note into the interval [ ]1,2 . In this section we show the following theorem 
which gives the value of the exponent p of 2 uniquely, given q of the exponent of 
3. Here we extend the range of q to 6q ≤ . We appeal to the numerical values 

log3log 2 0.69315, log3 1.09861, ,
log 2

α= = =  
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Table 3. The Ionian and Aeolian scales are known as the ordinary major and minor scales. 

 begin key-note 

Ionian C major 

Aeolian A minor 

 

 
Figure 6. The position of major triads. 

 
where the logarithm means the natural logarithm. 

Theorem 5.1 1) The unique integer p satisfying the conditions 

1 2 3 2, 5p q q< ≤ ≤                       (5.1) 

is [ ] 1p qα= − + , where the symbol [ ]x  indicates the integral part (the Gauss 
symbol) of the real number x. 

2) For an integer p to exist that satisfies 

31 2 3 , 4
2

p q q< ≤ ≤                       (5.2) 

the inequality 

{ } 2 1.42qα α− > − =                       (5.3) 

must hold. Cf. Table 4 & Table 5. 
Proof. The restriction (5.1) amounts to 

1,q p qα α− < ≤ − +  

and the interval ( ), 1q qα α− − +  has length exactly 1, so that it contains a 
unique integer, which is [ ] 1p qα= − + . (5.3) follows similarly.             □ 

Remark 5.1. 1) We note that the value 729
512

 for Fis invalidates the law of 

small numbers in §3. In order to overcome this difficulty, we choose the fraction 

x such that 243 729F
128 512

⋅ = , i.e. 4F
3

= . Then this awkward number appears as 

the distance between B and F: 243 3 729B F
128 4 512

÷ = × = . Also the fractions 16
9

, 

32
27

, 128
81

 appear as the difference between D and (high) C, F and D, and E and 

C. 
2) From Figure 5.1 we see that there are 5 tones under G including G itself: C, 

D, E, F, G, thus justifying the name “5th’’ in Definition 1. 2) The semi-tone s  
and # in Definition 4 are called limma and apotome, respectively. 
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Table 4. Values associated to Theorem 5.1. 

value of q qα−  { }qα−  p 2 3p q  note 

1q =  1.58495−  0.42  1p = −  3
2

 G 

2q =  3.16−   0.94  3p = −  9
8

 D 

3q =  4.74−   0.26  4p = −  27
16

 A 

4q =  6.32−   0.68  6p = −  
29

8
 
 
 

 E 

5q =  7.90−   0.10  7p = −  243
128

 B 

6q =  9.50−   0.50  9p = −  
61 3 729

8 2 512
  = 
 

 Fis 

7q =  11.06−   0.50  11p = −  2187
2048

 # 

1q = −  1.58  0.58  2p =  4
3

 F 

2q = −  3.16  0.16  4p =  16
9

 D−C 

3q = −  4.74  0.74  5p =  32
27

 D−F 

4q = −  6.32  0.32  7p =  128
81

 E−C 

5q = −  7.90  0.90  8p =  256
243

 s  

 
Table 5. Frequency ratios in Pythagorean scale. 

 C 261 D 293 E 330 F 348 G 391 A 440 B 495 C 521 

C × 9
8

 81
64

 4
3

 3
2

 27
16

 243
128

 2 

D  × 9
8

 32
27

 4
3

 3
2

 27
16

 16
9

 

E   × 256
243

 32
27

 4
3

 3
2

 128
81

 

F    × 9
8

 81
64

 729
512

 3
2

 

G     × 9
8

 81
64

 4
3

 

A      × 9
8

 32
27

 

B       × 256
243

 

 
8 7

5 11

2 256 3 21871.05350, # 1.06787
243 20483 2

s = = = = = =         (5.4) 

6. The Verdi Pitch 

The Verdi pitch is the scale which fixes the freq. of A to be 432. In [6] the 
following theorem has been found. 
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Theorem 6.1 The reason for the 432A =  is that in the Pythagorean scale, 
1

827C 432 256 2 .
16

−
 = × = = 
 

                 (6.1) 

This makes some of the calculations simpler but this was not used much. The 
reason is that the instruments are tuned not from C but from A and in just  

intonation it gives a fractional frequency to A: 5 3A 256 426 427
3 2

= × = ≈ . This  

is approximately the standard pitch used in the time of Beethoven (Figure 7). 

7. The Just Intonation and the Law of Cyclotomic Numbers 

The Pythagorean major 3rd 81
64

m =  is slightly bigger than the major 3rd 5
4

 of  

just intonation. The Pythagorean major 3rd is said to let the melody sound 
beautifully, but it diminishes harmony because of the beats contained. In 
{ },d m  the number of beats caused by the 4 times and 5 times of m is 

814 5 1 0.0625 ,
64 16

dd d × − × = = 
 

 

which is 16.5 times/s for 264d =  Hz, say. Hence in the Pythagorean major triad 
4q 81 31, , 1, ,q 1, , ,

4 64 2
m sd d d
d d

    = =     
    

 

there occur beats between the root and the major 3rd. To eliminate this beat, we 
decrease the major third by multiplying by the syntonic comma 

1 80
81

=
∆

 

to make it 5
4

m = . This yields the just intonation, in which the major 3rd 

consists of 

{ }
4q 5 3 11, , 1, ,q 1, , 4,5,6 .
4 4 2 4

m s
d d

 ∆   = = =     
    

 

Figure 8 and Table 6. 
On the basis of Table 2, Coxeter [3] states a speculation that the agreeable 

harmonics 

3,4,5,6,8,10,12                      (7.1) 

correspond to the number of sides of regular polygons that can be constructed 
by a ruler and a compass. A natural inverse question is where there are 
corresponding harmonics to 15 and 17 since 15-gon was constructed by Euclid 
while 17-gon was by Gauss in 1797. The interval 15 from a low C to high B 
which thrilled the audience appears as the appoggiatura in the end of St. 
Matthew Passion (Figure 9). The interval 17 were used by the remaining two of 
the 3 B’s, i.e. by Beethoven and Brahms. Since regular polygons inscribed in a 
circle divides it into equal parts, cyclotomy, Coxeter refers to the law of 
cyclotomic numbers rather than the law of small numbers. 

https://doi.org/10.4236/apm.2018.812052


H. L. Li et al. 
 

 

DOI: 10.4236/apm.2018.812052 854 Advances in Pure Mathematics 
 

 
Figure 7. The Verdi pitch. 

 

 
Figure 8. Just intonation scale. 

 

 
Figure 9. Appoggiatura at the end of St. Matthew Passion. 

 
Table 6. Frequency ratios in just intonation scale. 

 C 264 D 297 E 330 F 352 G 396 A 440 B 495 C 528 

C × 9
8

 5
4

 4
3

 3
2

 5
3

 15
8

 2 

D  × 10
9

 32
27

 4
3

 40
27

 15
9

 16
9

 

E   × 16
15

 6
5

 4
3

 3
2

 8
5

 

F    × 9
8

 5
4

 45
32

 3
2

 

G     × 10
9

 5
4

 4
3

 

A      × 9
8

 6
5

 

B       × 16
15
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8. Modulation 

Part of the contents of this section is an elaboration of material in [4]. In this 
section we use the notation { }, , , , , , , 2d r m f s l t d , which are the initials in tonic 
sol-fa notation, doh, ray, me fah, soh, lah, te, doh. We also think of this as an 
increasing sequence of frequencies denoted by the corresponding symbols. We 
may conveniently write 

{ }, , , , , , , 2 1, , , , , , , 2r m f s l td r m f s l t d d
d d d d d d

 =  
 

       (8.1) 

to express the ratios of each note against the basic d. We consider the 
modulation from C to G. In order to express the correspondence, we expand (8.1) 
to obtain 

{ }, , , , #, , , , 2 , 2 , 2 , 2 , 2 #,2

# #1, , , , , , , 2, 2 , 2 , 2 , 2 , 2 .

F d r m f f s l t d r m f f s

r m f f s l t r m f f sd
d d d d d d d d d d d d

=

 =  
 

     (8.2) 

To modulate C major into G major is just to replace the basic note d in (8.2) 
by s by which we obtain the sequence, thereby adding the prime to indicate the 
correspondence 

{ }, , , , , , , , , , ,

, , , , , , 2, , , , , 2 ,

f s l t d r m f s l t d

f s l t d r m f s l t ds
s s s s s s s s s s s s

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ =  
 

        (8.3) 

where we used the relation d s′ = . In general by comparing the frequencies, we 
obtain 

, , , 2 , 2 , 2 , 2 #.d s r l m t f d s r l m t f′ ′ ′ ′ ′ ′ ′= = = = = = =        (8.4) 

Also comparing the ratios in (8.2) and (8.3), we find that the ratios with prime 
are equal to those without:  

x x x
s d d
′ ′
= =

′
                       (8.5) 

for all x F∈ , e.g. s s s
s d d
′ ′
= =

′
, the far-right side member we denote by q. 

q .s
d

=  

Then (8.5) amounts to 
q .x x′ =  

With d and q as parameters, we may express all other notes in terms of them. 

First qs d= . Using (8.4) and (8.5), we have 2 qr s s′= = , whence 21 q
2

r d= . 

Similarly, from 2 qd f f′= =  we have 2 q
q

f d= . Since ql r r′= =  we deduce 

that 
3

21 qq q
2 2

l d d= = . From 2 qm l l′= =  we deduce that 

4
31 qq q

2 4
m d d= = . From qt m m′= = , it follows that 

5q
4

t d= . Finally, from  
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62 q2 # 2 # q
q 4

d f t t d′= = = = , it follows that 
7q#

16
= . 

Theorem 8.1 The major chord in Table 3 is expressed as 

{ }
2 4 3 5

, , , , , , , 2

q q 2 q q1, , , ,q, , , 2
2 4 q 2 4

F d r m f s l t d

d

=

 
=  

 

 

while the minor chord as 

{ }
2

3 4 2

, , , , , , , 2

q 4 2 8 41, , , ,q, , , 2 .
2 qq q q

F l t d r m f s l

l

=

 
=  

 

 

Corollary 8.1 The Pythagorean scale is the case with 3q
2

= . 

Remark 8.1 Although Theorem 8.1 explains the reason why f is chosen as 2
q

,  

it is a typical hindsight since Pythagoras had no concept of modulation and he 
must have followed the reasoning given in Remark 5.1, 1) based on the law of 
small numbers.  

Corollary 8.2 There are three major triads, { }
4q1, ,q , , CEG

4
d m s

 
= = 

 
, 

{ }, , FACf l d = , { }, , GBDs t r = . 

Proof. There are three major thirds 
4q , ,

4
m l t
d f s

 
=  
 

 and so the piling up of 

minor thirds are possible only for those starting with , ,m l t .               □ 
Definition 4 The major 2nd is usually called tome and denoted by w and the 

minor 2nd is called semi-tome denoted s : 
2

5

q 8, .
2 q

w s= =  

1 octave consists of 5 tones and 2 semi-tones: 

5 22 2d r m f s l t d wwswwws w s
d d r m f s l t

= = =                 (8.6) 

in conformity with the statement in §4. Table 7. 

9. Equal Temperament 

The law of cyclotomic numbers work well within the same key, but produces a 
contradiction if we modulate into other keys. In Table 6, the whole tone from E  

to F or from G to A is 4 5 10
3 6 9

=  while for the tone from F to G is 3 3 9
2 4 8

=  and 

they are different by 9 9 81
8 10 80

= , which the Greeks called a comma. To overcome  

this difficulty, the well-tempered scale was invented shortly before the time of 
Bach (Figure 10). Bach composed “Well-tempered Clavier’’. a masterpiece  

https://doi.org/10.4236/apm.2018.812052


H. L. Li et al. 
 

 

DOI: 10.4236/apm.2018.812052 857 Advances in Pure Mathematics 
 

Table 7. Full range of musical intervals. 

name ratio nat. temp. semi-tones 

unison d
d

 1
1

 1.0000 1 

octave 2d
d

 2
1

 2.0000 12 

perfect 5th 2 qs l m
d r l
= = = =  3

2
 1.4983 7 

perfect 4th 2 qf s m
d r t
= = = =  4

3
 1.3348 5 

major 3rd 
4q

4
m l t
d f s
= = =  5

4
 1.2599 4 

minor 3rd 3

2 2 4
q

f s d r
r m l t
= = = =  6

5
 1.1892 3 

major 6th 
32 2 q

2
l t r m
d r f s
= = = =  5

3
 1.6818 9 

minor 6th 4

8
q

m l t
d f s
= = =  8

5
 1.5874 8 

major 2nd 
2q

2
r m s l t
d r f s l
= = = = =  9

8
 1.1225 2 

minor 7th 2

4
q

r m s l t
d r f s l
= = = = =  16

9
 1.7818 10 

minor 2nd 5

2 8
q

f d
m t
= =  16

15
 1.05946 1 

major 7th 
52 2 q

4
m d
f t
= =  15

8
 1.8877 11 

chromatic 
52 2 q

4
m d
f t
= =  25

24
 1.05946 1 

aug. 4th 
6q

8
t
f
=  45

32
 1.4142 6 

dim. 5th 6

2 16
q

f
t
=  64

45
 1.4142 6 

dim. 7th 9

64
q

 128
75

 1.6818 9 

 
 

 
Figure 10. Equal temperament. 
 
collection of 48 preludes and fugues. In this system every semitone is exactly the 
12th root of 2 as given in (4.1). 

Theorem 9.1 The infinite group of tempered intervals ( ){ }1 122 |
k

k ∈  
modulo octaves is isomorphic to the cyclic group 12  , i.e. 

( ){ }1 122 | 2 12 .
k

k ∈ ≅    
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The proof follows from the isomorphism theorem on noting that the kernel of 
the homomorphism 

( ){ }1 12: 2 |
k

f k→ ∈   

is 12 . 
Example 1 As defined in §1, the major third consists of 4 semi-tones, and so 

in equal tempered system it is ( )41 122 . The interval from 
7

122A f
 

=  
 

 to 11
# 122C f
 

=  
 

 being 
4

122 , it is the major third corresponding to 5/4. It is a 
representative of the equivalence class consisting of the intervals 

( ) ( ) ( ) ( ) ( )4 16 8 20 281 12 1 12 1 12 1 12 1 122 , 2 , 2 , 2 , 2 ,  

10. Bach’s Fifth 

Recall Corollary 8.2. We consider Kellner’s tuning, cf. e.g. [11]. In the major  

triad { } { } { }
4q1, , , , , , , , ,

4
d m s f l d s t r

 
= 

 
, we make q a little smaller than natural  

5th so that the number of beats caused by three times the root and twice the 5th 
note be equal to that of the beat caused by the four times the the 3rd and the 5th 
times of the root, i.e. writing such a q by qB, we have  

4
B

B
q

3 1 2 q 4 5 1
4

× − × = × − ×  

whence we are led to the Quartic Equation 
4
B Bq 2q 8 0+ − =                       (10.1) 

called Bach’s equation. Numerically 

Bq 1.495953506.=                      (10.2) 

Solution of Quintic Equation 

t is well-known that equations with rational (or algebraic) coefficients of degree 
≤4 are soluble algebraically, i.e. by ordinary arithmetic operations plus 
extraction of roots. For our curiosity we shall find the (real) roots of a quintic 
equation 

4 2 0X aX bX c+ + + =                   (10.3) 

with 0, 2, 8a b c= = = − , i.e. (15). This can be solved using its resolvent equation 
of degree 3: 

( )3 2 2 22 4 0X aX a c X b− + − + =  

which is in the present case 
3 32 4 0X X− + =                       (10.4) 

with discriminant 

( ) ( )3 24 32 27 4 16 8192 27 16 8165D = − − − × = − = ×  

Since D ∉ , it follows that the Galois group of (10.3), 4 2 8 0X X+ − = , is 
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the 4th symmetric group 4S . There exists an explicit formulas for solutions due 
to Cardano but it is too cumbersome to state. Here we adopt the method of 
Ohtuska [4], which is indeed Cardano’s method. To solve (10.4) one puts 

3 3 4
3 32
u v
uv

 + = −


= −
                       (10.5) 

Then (10.4) becomes 

( )( )3 3 3 2 2 20 3 ,X uvX u v X u v X u v uX vX uv= − + + = + + + + + + +  

whence X u v= − − . On the other hand, (10.5) is easily soluble:  
3

3 322 4
3

u  = − ± +  
 

 and we choose 

1 3
3322 4 3.329053233

3
u  − = + + = 

 
.  

At the same time, 

1 3
3322 4 3.204114179

3
v  − = + − = − 

 
, so that  

0.124939054X u v= − − = . 
Now recall how the resolvent Equation (10.4) was derived. With y a new 

variable and a a parameter, we add ( )222aX y ay+  to both sides of 
4X bX c= − −  with 2, 8b c= = −  to obtain 

( )
2 2

22 12 2 2 2 ,
4 4 4
b bX ay ay x X ay
ay ay ay

     + = − − + =        
    (10.6) 

provided that 
2

2 2 0
8
ba y c
ay

− − =  

or 
2

3 3
2 3 2 3

8 10, 0.
8 2

c by y
a a a a

− − = + − =              (10.7) 

For this to coincide with the resolvent Equation (10.4) we choose 1
2

a =  and 

write X−  for y. Hence (10.6) amounts to 

2 1 1 ,
2

X y y X
y

 
+ = − − 

 
                  (10.8) 

whence 
1 2

1 4 ,
2

X y y
y

   = − + −     
                 (10.9) 

which gives the value (10.2) for Bach’s fifth. 

11. Music as Duende 
11.1. Art vs. Technique 

A singer is said to be non-standard original if he or she sings in his or her own 
original way, not necessarily following exactly the musical notes. The same 
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applies to machine music. 
The non-standard singer sings a song in his or her original way so that the 

song is much more appealing to the minds than scholarly way of singing 
according exactly to the musical notes or machine music. 

Thus the music heavily depends on the talent of performers and those 
non-standard original singers or players are those who are talented enough to 
grasp the message and intension of the composer to convey it to the audience by 
expressing it by their “duende’’. 

This class of singers include Hibari Misora, Hideaki Tokunaga, Yumi 
Matsutoya, or more recent ones, Hikaru Utada, Lia., et al. 

It can be speculated that we feel comfortable when we receive stimuli whose 
frequency are the same as ours, i.e. 1/f-noise. This includes the case of music. If 
it shows 1/f-noise, then it gives us comfort. 

11.2. HiFi vs. WiFi 

In ([12], pp. 30-33) the principle of CD is stated. The pitch of the sound can be 
divided into 162 65536=  parts because a CD can record 16 convex-concave as 
one information and transforms into 0 and 1 signal. The CD reads these 16 
information 44,100 times per second. The reason for this depends on the 
assumption that human ears can hear the sound whose frequencies are up to 
20 kHz 20000 Hz= . Since the sound with frequency 20,000 Hz oscillates 20,000 
times per second and so more than this times of sampling is needed. And for 
stereo recording, we need twice as many, whence the sampling frequency 44,100. 

The assumption that all the frequencies higher than 20,000 Hz may be 
neglected is rather controversial. For recording simple conversation may not 
need more, but as supreme art, this omission can be a serious problem because 
what is missing is often more meaningful as art. We recall that as soon as the 
real sound is transformed into digital signals, it is not the real signal but an 
approximation. 

Not only in music but flower arrangement, it is said that what is important is 
rather the space surrounding the arranged flowers. We recall a poem of R. 
Kinoshita 

Peony flowers 
So stable and in full bloom 
The solidness of the position 
The flowers occupy. 

12. Fluctuations 

On fluctuations, there is a bunch of literature. We mention only a few [13] [14] 
[15] [16] [17]. Let ( )X t  be a signal and consider its discrete Fourier transform 
(DFT) 

( ) ( )2π

1

ˆ e
M

ift

t
X f X t−

=

= ∑                      (12.1) 
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for the frequency f. Let the power spectrum be defined by 

( ) ( )
2ˆ .XS f X f=                      (12.2) 

For a more general treatment of finite power signals, we refer to [1]. 
It was found (e.g. [15]) that many natural phenomena possess the power 

spectrum depending on the frequency 1 f β . This kind of phenomena is called 
1/f-noise or fluctuation. 

In [17], the distribution of primes is considered from the point of view of 
1/f-fluctuation. However, in [18], there is criticism against the interpretation of 
power spectrum, saying that it applies to non-living. 

We are to study music as something that lies at this threshold of living and 
non-living. 
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