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Abstract 
The least squares method is one of the most fundamental methods in Statistics 
to estimate correlations among various data. On the other hand, Deep Learn-
ing is the heart of Artificial Intelligence and it is a learning method based on 
the least squares. In this paper we reconsider the least squares method from 
the view point of Deep Learning and we carry out the computation thorough-
ly for the gradient descent sequence in a very simple setting. Depending on 
the values of the learning rate, an essential parameter of Deep Learning, the 
least squares methods of Statistics and Deep Learning reveal an interesting 
difference. 
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1. Introduction 

The least squares method in Statistics plays an important role in almost all dis-
ciplines, from Natural Science to Social Science. When we want to find proper-
ties, tendencies or correlations hidden in huge and complicated data we usually 
employ the method. See for example [1]. 

On the other hand, Deep Learning is the heart of Artificial Intelligence and 
will become a most important field in Data Science in the near future. As to 
Deep Learning see for example [2] [3] [4] [5] [6]. 

Deep Learning may be stated as a successive learning method based on the 
least squares method. Therefore, to reconsider it from the view point of Deep 
Learning is very natural and we carry out the calculation thoroughly of the suc-
cessive approximation called gradient descent sequence. 
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When the learning rate changes a difference in method between Statistics and 
Deep Learning gives different results. 

Theorem I and II in the text are our main results and a related problem (exer-
cise) is presented for readers. Our results may give a new insight to both Statis-
tics and Data Science. 

First of all let us explain the least squares method for readers in a very simple 
setting. For n pieces of two dimensional real data 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx y x y x y  

we assume that their scatter plot is like Figure 1 
Then a model function is linear  

( ) .f x ax b= +                           (1) 

For this function the error (or loss) function is defined by  

( ) ( ){ }2

1

1, .
2

n

i i
i

E a b y ax b
=

= − +∑                    (2) 

The aim of least squares method is to minimize the error function (2) with 
respect to { },a b . A little calculation gives  

( ) 2 2 2 2

1 1 1 1 1

1, 2 2 2 .
2

n n n n n

i i i i i i
i i i i i

E a b x a x ab nb x y a y b y
= = = = =

 = + + − − + 
 
∑ ∑ ∑ ∑ ∑  

Then the equations for the stationality  

0E E
a b

∂ ∂
= =

∂ ∂
                           (3) 

give a linear equation for a and b  
2

1 1 1

1 1

n n n
i i i ii i i

n n
i ii i

x x x ya
bx n y

= = =

= =

       =        

∑ ∑ ∑
∑ ∑

                  (4) 

 

 
Figure 1. Scatter plot 1. 
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and its solution is given by  
1

2
1 1 1

1 1

.
n n n

i i i ii i i
n n

i ii i

x x x ya
b x n y

−

= = =

= =

        =          

∑ ∑ ∑
∑ ∑

                (5) 

Explicitly, we have  

( ) ( )( )
( ) ( )

( )( ) ( )( )
( ) ( )

1 1 1
2

2
1 1

2
1 1 1 1

2
2

1 1

,

.

n n n
i i i ii i i

n n
i ii i

n n n n
i i i i ii i i i

n n
i ii i

n x y x y
a

n x x

x x y x y
b

n x x

= = =

= =

= = = =

= =

−
=

−

− +
=

−

∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

             (6) 

To check that a and b give the minimum of (2) is a good exercise. 
Note We have an inequality  

( ) ( )22 2 2
1 2 1 2n nn x x x x x x+ + + ≥ + + +                 (7) 

and the equal sign holds if and only if  

1 2 .nx x x= = =  

Since { }1 2, , , nx x x  are data we may assume that i jx x≠  for some i j≠ . 
Therefore  

( ) ( )22 2 2
1 2 1 2 0n nn x x x x x x+ + + − + + + >   

gives  
2

1 1

1

0.
n n

i ii i
n

ii

x x

x n
= =

=

>
∑ ∑
∑

                      (8) 

2. Least Squares Method from Deep Learning 

In this section we reconsider the least squares method in Section 1 from the view 
point of Deep Learning. 

First we arrange the data in Section 1 like  

( ) ( ) ( ){ }1 2Input data : ,1 , ,1 , , ,1nx x x  

{ }1 2Teacher signal : , , , ny y y  

and consider a simple neuron model in [7] (see Figure 2) 
 

 
Figure 2. Simple neuron model 1. 
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Here we use the linear function (1) instead of the sigmoid function ( )z xσ= . 
In this case the square error function becomes  

( ) ( )( ) ( ){ }2 2

1 1

1 1, .
2 2

n n

i i i i
i i

L a b y f x y ax b
= =

= − = − +∑ ∑  

We usally use ( ),L a b  instead of ( ),E a b  in (2). 
Our aim is also to determine the parameters { },a b  in order to minimize 
( ),L a b . However, the procedure is different from the least squares method in 

Section 1. This is an important and interesting point. 
For later use let us perform a little calculation  

( )( ) ( )( )

( )( ) ( )( )
1 1

1 1

,

.

n n

i i i i i
i i
n n

i i i i
i i

L fy f x y f x x
a a
L fy f x y f x
b b

= =

= =

∂ ∂
= − − = − −

∂ ∂
∂ ∂

= − − = − −
∂ ∂

∑ ∑

∑ ∑
           (9) 

We determine the parameters { },a b  successively by the gradient descent 
method, see for example [8]. For 0,1, , ,t n=     

( )
( )

( )
( )

( )
( )

0 1
0 1

a a t a t
b b t b t
     + 

→ → → →     +     
 

 

and  

( ) ( ) ( )

( ) ( ) ( )

1 ,

1 ,

La t a t
a t
Lb t b t

b t

∂
+ = −

∂

∂
+ = −

∂




                    (10) 

where  

( ) ( )( ) ( ) ( )( ){ }2

1

1,
2

n

i i
i

L L a t b t y a t x b t
=

= = − +∑  

and ( )0 1< <   is small enough. The initial value ( ) ( )( )T
0 , 0a b  is given 

appropriately. As will be shown shortly in Theorem I, their explicit values are 
not important. 

Comment The parameter  is called the learning rate and it is very hard to 
choose  properly as emphasized in [7]. In this paper we provide an estimation 
(see Theorem II). 

Let us write down (10) explicitly:  

( ) ( ) ( ) ( )( ){ }

( ) ( )

1

2

1 1 1

1

1

n

i i i
i

n n n

i i i i
i i i

a t a t y a t x b t x

x a t x b t x y

=

= = =

+ = + − +

   = − − +   
   

∑

∑ ∑ ∑



  
 

and  

( ) ( ) ( ) ( )( ){ }

( ) ( ) ( )

1

1 1

1

1 .

n

i i
i

n n

i i
i i

b t b t y a t x b t

x a t n b t y

=

= =

+ = + − +

 = − + − + 
 

∑

∑ ∑



  
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These are cast in a vector-matrix form 

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )

2
1 1 1

1 1

2
1 1 1

1 1

2
1 1

1

11
1 1

1

1

1 0
0 1

n n n
i i i ii i i

n n
i ii i

n n n
i i i ii i i

n n
i ii i

n n
i ii i

n

i

x a t x b t x ya t
b t x a t n b t y

x x x ya t
b tx n y

x x

x

= = =

= =

= = =

= =

= =

=

 − − + +   =   +  − + − + 
 
   − −     = +    − −     

 
= − 

 

∑ ∑ ∑

∑ ∑

∑ ∑ ∑
∑ ∑

∑ ∑
∑

  

  

  

  


( )
( )

1

1

.
n

i ii
n

i ii

x ya t
b tn y

=

=

         +           

∑
∑



   (11) 

For simplicity by setting  

( ) ( )
( )

2
1 1 1

1 1

, ,
n n n

i i i ii i i
n n

i ii i

x x x ya t
t A

b t x n y
= = =

= =

        = = =          

∑ ∑ ∑
∑ ∑

x f  

we have a simple equation  

( ) ( ) ( )1t E A t+ = − +x x f                     (12) 

where E is a unit matrix. Due to (8) the matrix A is invertible ( 1A−∃ ), that is, we 
exclude the trivial and uninteresting case 1 2 nx x x= = = . 

The solution is easy and given by  

( ) ( ) ( ) ( ){ } 10 .t tt E A E E A A−= − + − −x x f             (13) 

Note Let us consider a simple difference equation  

( ) ( ) ( )1 1x n ax n b a+ = + ≠  

for 0,1,2,n =  . Then, the solution is given by  

( ) ( ) ( )1 10 0 .
1 1

n n
n na ax n a x b a x b

a a
− −

= + = +
− −

 

Check this. 
Comment The solution (13) gives  

( ) 1lim
t

t A−

→∞
=x f                         (14) 

if  

( )lim t

t
E A O

→∞
− =                         (15) 

where O is a zero matrix. (14) is just the equation (5). 
Let us evaluate (13) further. For the purpose we make some preparations from 

Linear Algebra [9]. For simplicity we set  
2

1 1 1

1 1

,
n n n

i i i ii i i
n n

i ii i

x x x y e
A

fx n y

α β
β δ

= = =

= =

         = ≡ = ≡            

∑ ∑ ∑
∑ ∑

f  

and want to diagonalize A. 
The characteristic polynomial of A is  
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( ) ( )( )

( )

2

2 2

f E A
λ α β

λ λ λ α λ δ β
β λ δ

λ α δ λ αδ β

− −
= − = = − − −

− −

= − + + −

 

and the solutions are given by  

( ) ( ) ( )
2 2 2 24 4

.
2 2

α δ α δ αδ β α δ α δ β
λ±

+ ± + − − + ± − +
= =     (16) 

It is easy to see  

0,λ λ+ −> >  

( )1 and 2 .n nλ δ+ > = ≥                     (17) 

We set the two eigenvectors of matrix A, corresponding to λ+  and λ− , in a 
matrix form  

.Q
λ δ β
β λ α

+

−

− 
=  − 
  

It is easy to see  

( ) ( )2 22 2 2λ δ β λ α β+ −− + = − + ≡ Λ  

from (16) and we also set  

1 .Q
λ δ β
β λ α

+

−

− 
=  −Λ  

                    (18) 

Then it is easy to see  
T T T 1.Q Q QQ E Q Q−= = ⇒ =  

Namely, Q is an orthogonal matrix. Then the diagonalization of A becomes  

T0
.

0
A Q Q

λ
λ

+

−

 
=  

 
                      (19) 

By substituting (19) into (13) and using  

T1 0
0 1

E A Q Q
λ

λ
+

−

− 
− =  − 





 

we finally obtain 
Theorem I A general solution to (12) is  

( )
( )

( )
( )

( )
( )

( )

( )

T

T

1 0 0
00 1

1 1
0

.
1 1

0

t

t

t

t

a t a
Q Q

b t b

e
Q Q

f

λ

λ

λ
λ

λ
λ

+

−

+

+

−

−

 −   
 =    −    
 − −
 

  
+   

 − − 
 
 









         (20) 

This is our main result. 
Lastly, let us show how to choose the learning rate ( )0 1< <  , which is a 
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very important problem in Deep Learning. Let us remember  

0 and 1λ λ λ+ − +> > >  

from (17). From (15) the equations  

( ) ( ) ( )lim lim 1 lim 1 0t t t

t t t
E A O λ λ+ −→∞ →∞ →∞
− = ⇔ − = − =    

determine the range of . Noting  

( ) ( )1 1 0 2 lim 1 0n

n
x x x

→∞
− < ⇔ < < ⇒ − =  

we obtain 
Theorem II The learning rate  must satisfy an inequality  

20 2 0 .λ
λ+
+

< < ⇔ < <                       (21) 

From (21)  becomes very small when λ+  is large enough. It is easy to see 
that the second condition ( )lim 1 0t

t λ→∞ −− =  is automatically satisfied. 
Under Theorem II we can recover (14)  

( )
( )

T 1

1 0
lim

10
t

a t e
O O A

b t f
λ

λ

+ −

→∞

−

 
     = =         
 

f  

by (19). 
Comment For example, if we choose  like  

2 1
λ+

< <  

then we cannot recover (14), which shows a difference between Statistics and 
Deep Learning. Let us emphasize that the choice of the initial values 

( ) ( ){ }0 , 0a b  is irrelevant when the convergence condition (21) is satisfied. 
As a result, how to choose  properly in Deep Learning becomes a very 

important problem when the number of data is huge. As far as we know the 
result like Theorem II has not been obtained. 

3. Problem 

In this section we present the outline of a simple generalization of the results in 
Section 2. The actual calculation is left as a problem (exercise) to readers. 

For n pieces of three dimensional real data  

( ) ( ) ( ){ }1 1 1 2 2 2, , , , , , , , ,n n nx y z x y z x y z  

we assume that its scatter plot is like Figure 3 
Then a model function is linear  

( ),f x y ax by c= + +                       (22) 

and the error (or loss) function is defined by  
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Figure 3. Scatter plot 2. 

 

 
Figure 4. Simple neuron model 2. 

 

( ) ( )( ) ( ){ }2 2

1 1

1 1, , , .
2 2

n n

i i i i i i
i i

E a b c z f x y z ax by c
= =

= − = − + +∑ ∑       (23) 

The aim of least squares method is to minimize the error function (22) with 
respect to { }, ,a b c . 

As we want to treat the least squares method above from the view point of 
Deep Learning, we again arrange the data like  

( ) ( ) ( ){ }1 1 2 2Input data : , ,1 , , ,1 , , , ,1n nx y x y x y  

{ }1 2Teacher signal : , , , nz z z  

and consider another simple neuron model (see Figure 4) 
Then we present 
Problem Carry out the corresponding calculation as given in Section 2. 

4. Concluding Remarks 

In this paper we discussed the least squares method from the view point of Deep 
Learning and carried out calculation of the gradient descent thoroughly. A 
difference in methods between Statistics and Deep Learning delivers different 
results when the learning rate  is changed. The result of Theorem II is the first 
one as far as we know. 

Deep Learning plays an essential role in Data Science and maybe in almost all 
fields of Science. Therefore it is desirable for undergraduates to master it as soon 
as possible. To master it they must study Calculus, Linear Algebra and Statistics 
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from Mathematics. However we don’t know a good and compact textbook 
leading to Deep Learning. 

I am planning to write a comprehensive textbook in the near future [10]. 
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