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Abstract 
With symmetries measured by the Lie group and curvatures revealed by dif-
ferential geometry, the continuum stored energy function possesses a transla-
tional deformation component, a rotational deformation component, and an 
ellipsoidal volumetric deformation component. The function, originally de-
veloped for elastomeric polymers, has been extended to model brittle and 
ductile polymers. The function fits uniaxial tension testing data for brittle, 
ductile, and elastomeric polymers, and elucidates deformation mechanisms. A 
clear distinction in damage modes between brittle and ductile deformations 
has been captured. The von Mises equivalent stress has been evaluated by the 
function and the newly discovered break-even stretch. Common practices of 
constitutive modeling, relevant features of existing models and testing me-
thods, and a new perspective on the finite elasticity-plasticity theory have also 
been offered. 
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1. Introduction 

Constitutive modeling for finite deformations of polymeric materials requires 
accurate theoretical predictions combined with experimental characterizations. 
Experimental tests cannot characterize materials in all deformation modes 
although experimental tests are more complete than theoretical models. As a 
result, a theoretical model is fitted with experimental data tested in certain 
deformation modes and the fitted model predicts deformations in untested 
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modes. Thus, the theoretical development of constitutive models and their 
numerical implementations into finite element methods are crucial in designs 
and analyses of polymer components, which have been heavily applied in the 
aerospace, automotive, consumer electronics, medical device, and space exploration 
industries. 

For elastic-plastic constitutive models, great progress has been made in 
continuum mechanics. Earlier achievements in kinematics, conservation principles, 
and constitutive relations were archived in the classic treatise on continuum 
mechanics by Truesdell and Noll (1965) [1]. Fundamental theories of plasticity 
were presented in the monographs by Hill (1950) [2], Simo and Hughes (1998) 
[3], and Haupt (2002) [4]. 

Incremental strain as well as total strain theories of plasticity, featuring 
assumptions, models, and computer implementations, have been comprehen- 
sively reviewed by Armen (1979) [5]. Rate-independent theories of plasticity, 
emphasizing the strain-based approach over the stress-based approach, have 
been critically reviewed by Naghdi (1990) [6]. Both hyperelastic-based and 
hypoelastic-based theories of plasticity, highlighting theoretical inconsistencies 
and physical pertinent formulations, have been concisely reviewed by Xiao, 
Bruhns, and Meyers (2006) [7]. Constitutive theories of plasticity and visco- 
plasticity, with thermodynamic and alternative frameworks, have been briefly 
reviewed by Chaboche (2008) [8]. Recent phenomenological and physical 
theories of plasticity and viscoplasticity for polymers, including volumetric 
damage, have been thoroughly summarized by Ponçot, Addiego, and Dahoun 
(2013) [9]. 

Accurate constitutive relations and further computer implementations are 
crucial to maintaining the required numerical properties of accuracy, efficiency, 
and stability. Among them, accuracy is one of the most important numerical 
properties. The five key elements of existing elastic-plastic constitutive relations 
are stress-strain relations, decompositions of strains, yield criteria, hardening 
laws, and flow rules. The current theories of plasticity can only maintain the 
numerical stability in terms of normality of the incremental plastic strain vector 
and convexity of initial and subsequent yield surfaces but cannot accurately 
predict plastic deformations in general modes, as noticed by Michno and Findley 
(1976) [10]. Polymers under loadings are primarily involved with chain 
stretching, chain rotating, and volumetric strengthening or damaging and the 
physical relevant behaviors of polymers need to be captured. Some semi- 
crystalline polymers can sustain 3000% to 4000% of stretches without breaking, 
which is far beyond the deformation range for regular metallic materials (except 
for super-plastic metals) and a truly finite deformation theory of plasticity is 
needed. For resolving the existing issues of accurate predictions, physical 
relevancies, and finite elastic-plastic deformations, a physically relevant and 
mathematically covariant stored energy function is needed. 

The continuum stored energy (CSE) function, originally developed for 
modeling elastomeric polymers by Zhao (2016) [11], has been extended to 

https://doi.org/10.4236/apm.2017.710036


F. Z. Zhao 
 

 

DOI: 10.4236/apm.2017.710036 599 Advances in Pure Mathematics 
 

model brittle and ductile polymers. The main objectives, therefore, are to fit the 
CSE function to experimental data for three types of isotropic polymer materials, 
to study their deformation mechanisms and damage modes, to examine the 
validity of von Mises equivalent stress and equivalent strain equations, and to 
recommend a new approach for the finite elasticity-plasticity theory.  

2. Continuum Stored Energy for Isotropic Polymers  

For isothermal processes, the general CSE function for isotropic materials at 
finite deformations, Ψ , has been postulated to be balanced with its stress work 
done as1  

:
2

Ψ =
CS                             (1) 

where the second Piola-Kirchhoff stress tensor, S , reads  

1
1 3

1 2 2 3

2 I I
I I I I

−  ∂Ψ ∂Ψ ∂Ψ ∂Ψ
= + − +  ∂ ∂ ∂ ∂   

S I C C               (2) 

the right Cauchy-Green tensor, C , is given by  
T=C F F                             (3) 

and F  is the deformation gradient tensor. 
The three invariants of right Cauchy-Green tensor, 1I , 2I , and 3I , are 

related by  
2 2 2

1 1 2 3trI λ λ λ= = + +C                      (4) 

( )2 2 1 2 2 2 2 2 2
2 3 1 2 2 3 3 1

1 tr tr tr
2

I I λ λ λ λ λ λ− = − = = + + C C C           (5) 

2 2 2
3 1 2 3detI λ λ λ= =C                        (6) 

the trace of the tensor C  is denoted by trC , the determinant of the tensor C  
is denoted by det C , and 1λ , 2λ , and 3λ  are principal stretches in three 
mutually orthogonal directions. The stretch vector 

0aλ  in the direction of the 
unit vector 0a  is defined as  

0 0=a Faλ                             (7) 

with the length 
0

λ = aλ , which has been documented by Holzapfel (2000) [12]. 
Substituting (2) into (1), simplifying, and rearranging yields the following 

partial differential equation  

1 2 3
1 2 3

2 3I I I
I I I

∂Ψ ∂Ψ ∂Ψ
Ψ = + +

∂ ∂ ∂
                  (8) 

Based on Lie group methods, the characteristic system for the partial 
differential Equation (8) is  

31 2

1 2 3

dd d d
2 3 Ψ

II I
I I I

Ψ
= = =                      (9) 

 

 

1The general CSE function, Ψ , is covariant to :Ψ =E S E  under the transformation of  

( ) 2= −E C I , which has been emphasized by Zhao (2016) [11]. 
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and taking its three first-integrals, 2
1 2 1I Iψ = , 3

2 3 1I Iψ = , and 3 1Iψ = Ψ , the 
general solution has been obtained and written as  

( ) ( )2 3
1 2 1 3 1 0I f I I g I I c Ψ = + +                  (10) 

where f and g are two arbitrary functions, 0c  is an integration constant, and the 
general solution defines a group of CSE functions. 

The general solution (10) has two arbitrary functions to be determined for 
practical applications. Translational, rotational, and ellipsoidal deformations are 
indispensable components for isotropic polymeric materials. Thus, the curvatures 
of the three types of deformations have been used to select the two arbitrary 
functions. By doing so, the particular CSE function turns out to be  

( )
4

1
1 2 3 0 1 1 2 2 3

3

, ,p
II I I c c I c I c
I

Ψ = + + +              (11) 

where the three coefficients, 1c , 2c , and 3c , are unknown constitutive 
constants to be determined by experimental tests. 

For the initially undeformed referential configuration, we have the normalized 
stretches of 1 2 3 1λ λ λ= = = , resulting in the three constant invariants of 

1 2 3I I= =  and 3 1I =  from (4), (5), and (6). The CSE function at the unde- 
formed mode is usually assumed to be zero  

( )3,3,1 0pΨ =                         (12) 

Substituting the 0c  determined by (12) into (11) and collecting terms yields 
the following three-component CSE function  

( ) ( ) ( )
4

1
1 2 3 1 1 2 2 3

3

, , 3 3 81p
II I I c I c I c
I

 
Ψ = − + − + − 

 
       (13) 

For curve fittings with the CSE function (11), the engineering stress and the 
true stress as a function of principal stretches in uniaxial tension have been 
derived, respectively. With the constraint of incompressibility, the engineering 
stress in uniaxial tension tests, uP , as a function of principal stretches reads  

( ) ( )32 1 2
1 2 33

12 8 2
2 1

uP c c cλ λ λ λ
λ

− − 
= + + + − 

+ 
        (14) 

and the true stress in uniaxial tension tests, u uPσ λ= , as a function of principal 
stretches is  

( ) ( )32 1 2 1
1 2 33

12 8 2
2 1

u c c cσ λ λ λ λ
λ

− − 
= + + + − 

+ 
       (15) 

The true stress in equibiaxial tension tests, bσ , as a function of principal 
stretches is  

( ) ( )32 4 2 4
1 2 36

12 8 2
1 2

b c c cσ λ λ λ λ
λ

− −

−

 
= + + + − 

+ 
       (16) 

The true stress in pure shear tests, sσ , as a function of principal stretches is  
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( ) ( )32 2 2 2
1 2 32 2

12 8 1
1

s c c cσ λ λ λ λ
λ λ

− −

−

 
= + + + + − 

+ + 
      (17) 

For finite elastic-plastic deformations of semi-crystalline polymers, there 
exists a break-even stretch, bλ , between translational and rotational deforma- 
tion curves in uniaxial tension tests. Equating the first term and the second term 
from either (14) or (15) and solving gives  

1
2 3

2

1

1 4
2b

c
c

λ
  
 = − 
   

                   (18) 

The break-even stretch will be used to study the von Mises equivalent stress.  

3. Fitting the CSE Function to Testing Data  

The deformation mechanisms in polymers are usually classified as brittle, ductile 
(necked and unnecked), and elastomeric, as documented by Meyers and Chawla 
(2009) [13]. The typical load-extension curves for polymeric materials are sche- 
matically shown in Figure 1. 

3.1. Modeling for Brittle Polymeric Materials  

General-purpose polystyrene (GPPS), as a brittle polymeric material, deforms 
mainly elastic and breaks at about 2% strain, which can be found in the book by 
Smith (1993) [14]. The uniaxial tension experimental data of GPPS has been 
used to fit the uniaxial tension model (14) by the linear least square method and 
the three coefficients have been solved as 1 362341.54826 MPac = ,  

2 41595.99417 MPac = − , and 3 3237.57424 MPac = − . The comparison between 
the continuum model and the uniaxial tension test data of GPPS is shown in 
Figure 2. The CSE function is excellently suited to fit the brittle polymer GPPS.  
 

 
Figure 1. Typical load-extension curves for polymers. 
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Figure 2. Continuum modeling for brittle polymer material GPPS. 

3.2. Modeling for Ductile Polymeric Materials 

The two ductile polymeric materials selected for uniaxial tension tests are 
low-density polyethylene (LDPE) and isotactic polypropylene (iPP). Both LDPE 
and iPP are semicrystalline polymers, containing both amorphous and crystalline 
phases. Under uniaxial tensions with constant elongation rates and temperatures, 
semicrystalline polymers are characterized as elastic-plastic materials. The true 
stress Equation (15) for uniaxial tension tests will be used to model ductile 
polymeric materials. 

The uniaxial tension test of LDPE conducted at the elongation speed of 15 mm/ 
min by Nitta and Yamana (2012) [15] is selected to fit the continuum constitutive 
model. The three coefficients, 1 0.3235954 MPac = , 2 14.63827 MPac = , and 

10
3 1.40847 10 MPac −= − × , are obtained. The comparison between the continuum 

model and the uniaxial tension test data of LDPE is shown in Figure 3. The 
continuum constitutive model is excellently suited to fit the ductile polymer 
LDPE. 

The uniaxial tension test of iPP conducted at the elongation speed of 5 mm/ 
min by Nitta and Yamana (2012) [15] is selected to fit the continuum constitutive 
model. The data for iPP was recorded and converted from both the unnecked 
and the necked stages during uniaxial tension tests. The three coefficients,  

1 0.1680651 MPac = , 2 60.2789629 MPac = , and 12
3 1.09346 10 MPac −= − × , 

are obtained. The comparison between the continuum model and the uniaxial 
tension test data of iPP is shown in Figure 4. The continuum constitutive model 
is excellently suited to fit the necked ductile polymer iPP.  
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Figure 3. Continuum modeling for ductile polymer material LDPE. 

 

 
Figure 4. Continuum modeling for necked ductile polymer material iPP. 

3.3. Modeling for Elastomeric Polymeric Materials  

Rubber exhibits finite elastic deformations under tensile loading and fully 
recovered deformations after unloading. 

The benchmark experimental data of vulcanized rubber containing 8% sulfur 
was accomplished by Treloar (1944) [16]. The continuum constitutive model is 
remarkably well suited to fit elastomeric polymers such as the vulcanized rubber 
with 8% sulfur. The three coefficients of 1 0.1409441 MPac = ,  

2 0.1425925 MPac = , and 7
3 3.19703 10 MPac −= ×  and detailed plots have 

been obtained by Zhao (2016) [11]. 
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4. Discussion 
4.1. Physical Interpretations 

The general solution (10) of the CSE partial differential Equation (8) establishes 
the generic CSE function for isotropic materials under isothermal processes. 
Based on the requirements of translational, rotational, and ellipsoidal 
deformations, the general solution boils down to a particular three-component 
solution, in which mechanical behavior of materials is concisely described by the 
three constants: 1c , 2c , and 3c . In the three-component CSE function (13) for 
isotropic materials, the first component, ( )1 1 3c I − , represents the work done of 
normal stress and translational deformation. The second component, ( )2 2 3c I − , 
describes the work done of shear stress and rotational deformation. The third 
component, ( )4

3 1 3 81c I I − , captures the work done of volumetric stress and 
ellipsoidal deformation. 

Physical relevancies of the CSE function are further demonstrated through 
uniaxial tension tests with the fitted constants for selected polymeric materials 
with different deformation mechanisms. In addition to the representative 
materials, the curve-fitting results of PMMA (PLEXIGLAS), HDPE by Nitta and 
Yamana (2012) [15], and Entec Enflex S4035A thermoplastic elastomer (TPE) by 
Zhao (2016) [11] are also included. The specific values of the three constants for 
the seven materials with the three deformation mechanisms are listed in Table 1. 

4.2. Damage Modes for Different Deformation Mechanisms  
4.2.1. Brittle Polymer: GPPS 
For the GPPS row in Table 1, the largest positive value is 1c , indicating that the 
dominant deformation is a translational deformation since the first term of the 
continuum constitutive model represents translational deformations produced 
by normal stresses. 

Damage modes for polymers2. have been revealed through the CSE function. 
The CSE function predicts that the fractures of brittle material GPPS are due to 
both shearing and ellipsoidal volumetric damaging. The second term in the 
continuum constitutive model corresponds to a shear stress and a rotational  
 
Table 1. Constitutive constants with different deformation mechanisms. 

Material c1 (MPa) c2 (MPa) c3 (MPa) Mechanism 

GPPS 362341.55 −41595.99 −3237.57 Brittle 

PMMA 66039.41 −17555.19 −560.67 Brittle 

LDPE 0.3235954 14.6382743 −1.40847 × 10−10 Ductile 

iPP 0.1680651 60.2789629 −1.09346 × 10−12 Ductile, Necked 

HDPE 0.1508911 50.2522535 −1.68669 × 10−13 Ductile, Necked 

Rubber 0.1409441 0.1425925 3.19703 × 10−7 Elastomeric 

S4035A 0.1027292 0.0310506 2.03450 × 10−7 Elastomeric 

 

 

2A polymer fails by either shearing or crazing, as pointed out by Kausch (1987) [17]. 
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deformation. Thus, the negative second term describes the damage in shearing 
mode. The third term in the continuum constitutive model corresponds to a 
volumetric stress and an ellipsoidal deformation. Thus, the negative third term 
captures the damage in the ellipsoidal volumetric opening mode. This mode will 
be further described in ductile polymer cases.  

4.2.2. Ductile Polymers: LDPE and iPP 
For the LDPE and iPP rows in Table 1, the positive values of 1c  and 2c  
indicate that the dominant deformations are translational and rotational 
deformations. The negative values of 3c  for both LDPE and iPP indicate that 
elastic-plastic deformations of ductile polymers experience ellipsoidal volumetric 
damages. Ellipsoidal volumetric damage accelerates at relatively large stretches. 
Ductile fractures can be described in three stages.3 The scanning electron 
microscopy (SEM) micrographies show large ellipsoidal cavities for isotactic 
polypropylene filled with ethylene-propylene rubber particles (iPP/EPR) pro- 
duced by the tensile tests by Mae, Omiya, and Kishimoto (2008) [19] and by 
Ponçot, Addiego, and Dahoun (2013) [9].  

4.2.3. Elastomeric Polymer: Vulcanized Rubber with 8% Sulfur 
The positive values of 1c , 2c , and 3c  for rubber under uniaxial tension tests 
predict no damage in the combination of translational, rotational, and ellipsoidal 
volumetric deformations within the test range. 

The 1 1c I  term was used in modeling elastomeric polymers. Stored energy 
functions with only 1I  terms, however, will fail to model simple torsion 
experiments for isotropic elastomeric polymers demonstrated by Horgan and 
Saccomandi (1999) [20]. The 2 2c I  term accurately describe shear stresses 
and rotational deformations for isotropic materials. 

The 4
3 1 3c I I  term captures the ellipsoidal volumetric strengthening for 

elastomeric polymers at finitely large stretches.  

4.3. Equivalent Stresses and Elastic-Plastic Deformations  

The key to the yield criterion, hardening law, and flow rule formulations is the 
von Mises equivalent stress. Thus, the von Mises equivalent stress and strain play 
a crucial role in existing theories of plasticity documented by Khan and Huang 
(1995) [21]. The von Mises equivalent stress and strain are given respectively by  

( )23 3 1S : : tr
2 2 2

′ ′= = −S S S S S                  (19) 

and 
22 2

31 2

2 3 1

2E ln ln ln
3

λλ λ
λ λ λ

        
= + +        

            
           (20) 

where ′S  is the deviatoric stress tensor, S  is the von Mises equivalent stress, 

 

 

3The three stages of ductile fractures are void nucleation, void growth, and void coalescence, as 
summarized by Garrison and Moody (1987) [18]. 
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and E  is the equivalent logarithmic strain in terms of principal stretches. 
Stress-based formulations, however, possess some significant shortcomings. 

Substituting (2) into (19)2, applying the Cayley-Hamilton equation, collecting 
terms, and simplifying yields the von Mises equivalent stress in terms of the CSE 
function  

( ) ( ) ( )
22

2 2
1 2 2 1 3 1 2 3

2 3 2 3

S 2 3 3 9I I I I I I I I
I I I I

  ∂Ψ ∂Ψ ∂Ψ ∂Ψ
= − + − + −  ∂ ∂ ∂ ∂   

   (21) 

where no 1I∂Ψ ∂  related terms are noticed. 
The Kirchhoff stress tensor, τ , can be converted from the second 

Piola-Kirchhoff stress tensor by the push-forward operation by F   
T

3I= = FSFτ σ                        (22) 

where σ  is the Cauchy stress tensor or the true stress tensor. 
With the CSE function and 3 1I = , the von Mises equivalent stress (21) in 

terms of invariants boils down to  

2
2 1 2 3pS c I I= −                       (23) 

The 2c  term in (23) indicates that shear stresses drive elastic-plastic 
deformations. Clearly, the contribution of the 1c  and 3c  terms in the CSE 
function is excluded from the von Mises equivalent stress equation since it was 
formulated on the assumption that plastic deformations depend only on shear 
stress instead of normal stress and volumetric stress. Many studies in the past 
and present show that the von Mises equivalent stress does not produce very 
good results for isotropic as well as anisotropic ductile metallic materials by 
Michno and Findley (1976) [10] and by Barsanescu and Comanici (2017) [22], 
which have far less deformation ranges than those of ductile polymeric 
materials. 

In order to better understand finite elastic-plastic deformations of polymers, 

1c , 2c , and 3c  terms in the continuum constitutive model are individually 
depicted for both LDPE and iPP ductile polymers. The true stress-stretch 
component curves for both LDPE and iPP are shown in Figure 5 and Figure 6, 
respectively. 

All three terms of the continuum constitutive model contribute to elastic- 
plastic deformations.4 The first term and the second term are the major 
contributors to elastic-plastic deformations, meaning that both the normal stress 
and the shear stress contribute to elastic-plastic deformations. As the stretch 
increases, both normal stress and shear stress increase. Between the curves of the 
first term and the second term, there exists a break-even stretch, bλ , defined in 
(18). When principal stretches are much smaller than the break-even stretch, the 
rotational deformation dominates elastic-plastic deformations and shear stress 
contributes more than normal stress. At the break-even stretch, shear stress  

 

 

4Deformations of ductile polymers are the chain orientation and the volume damage, mentioned by 
Ponçot, Addiego, and Dahoun (2013) [9]. 
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Figure 5. True stress-stretch component curves for ductile polymer LDPE. 

 

 
Figure 6. True stress-stretch component curves for necked ductile polymer iPP. 

 
contributes the same as normal stress. When principal stretches are much 
greater than the break-even stretch, the translational deformation dominates 
further elastic-plastic deformations and normal stress contributes more than 
shear stress. The third term only contributes minor volumetric damages at very 
large stretches. The break-even stretches for the selected ductile polymers have 
been evaluated and determined as 6.34374bλ =  for LDPE and 25.24009bλ =  
for iPP, respectively. As stretches fall within 0 and 1, deformations are 
compressive. In compressive deformations, shear stress indeed dominates plastic 

https://doi.org/10.4236/apm.2017.710036


F. Z. Zhao 
 

 

DOI: 10.4236/apm.2017.710036 608 Advances in Pure Mathematics 
 

deformations while normal stress contributes little as predicted and depicted in 
both Figure 5 and Figure 6. In compressive deformations, shear stress 
dominates but normal stress cannot be ignored at very small stretches although 
no compressive break-even stretches exist. Thus, the shear stress dominated 
equivalent stress is only approximately fit for both small tensile and compressive 
elastic-plastic deformations. 

The equivalently converted stress-strain curves in different deformation 
modes should coincide with its uniaxial tension stress-strain curve for both 
elastic and elastic-plastic deformations. The equivalent stress (21), along with 
(22), and the equivalent logarithmic strain (20) for Treloar’s experimental data 
in uniaxial tension, equibiaxial tension, and pure shear modes have been 
calculated and depicted in Figure 7. Similarly, the equivalent true stress and 
equivalent true strain curves for iPP have been calculated from its uniaxial 
tension data, the continuum model predicted equibiaxial tension and pure shear 
data and plotted in Figure 8. In both cases, the von Mises stresses at different 
deformation modes are only equivalent at very small strains. 

Unlike the von Mises equivalent stress or the equivalent strain, the CSE 
function captures the finite elastic-plastic deformations of ductile polymers in 
the following aspects:  

1) Different combinations of three coefficients for the selected ductile 
polymers given in Table 1 indicate that the contributions of normal stress, shear 
stress, and volumetric stress on elastic-plastic deformations vary with materials. 

2) There exist tensile break-even stretches for finite deformations of the 
selected ductile polymers defined in (18) and shown in Figure 5 and Figure 6, 
demonstrating that the proportion of a normal stress and a shear stress of the 
same material changes with principal stretches. 
 

 
Figure 7. Equivalent engineering stress-equivalent true strain curves for rubber. 
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Figure 8. Equivalent true stress-equivalent true strain curves for iPP. 

 
3) The values of 3c  in Table 1 for the selected ductile polymers are all nega- 

tive, implying energy dissipation and capturing corresponding volumetric 
damage. 

4) The combination of three invariants of stretches in the CSE function (11) 
possesses three different deformation components, generating physically relevant 
deformations. 

5) The CSE function is a physically relevant and mathematically covariant 
model established from continuum mechanics, predicting deformations in other 
untested modes.  

Thus, a new algorithm based on the CSE function for the finite elasticity- 
plasticity theory is recommended for future research and development.  

4.4. Common Practices in Constitutive Modeling of Polymers 

The most commonly used experimental tests for material characterizations are 
uniaxial tension, pure shear, equibiaxial tension, uniaxial compressions, 
confined compression, and torsion tests, as reviewed by Charlton, Yang, and 
Teh (1994) [23]. 

Common practices to characterize and model elastomeric polymers are to take 
the uniaxial tension, pure shear, and equibiaxial tension tests, to fit several 
theoretical models with the three test results, and to select the best possible 
theoretical model based on accuracy, stability, and efficiency. Among the three 
tests, the pure shear test can produce the same accuracy as the uniaxial tension 
test, but the deformation range is far less than that of the uniaxial tension. The 
equibiaxial tension fails to match both the accuracy and the deformation range 
of the uniaxial tension. Thus, the uniaxial tension test is the best method 
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available to characterize the mechanical behavior of materials. When theoretical 
constitutive models are fitted by the test in one mode, predictions of other 
deformation modes will indicate the quality of theoretical models, as noticed by 
Steinmann, Hossain, and Possart (2012) [24]. When constitutive models are 
fitted by the three tests, let alone the errors introduced by the tests with different 
accuracies, material costs, sample preparations, extra tests, and data treatments, 
the prediction of the deformations other than the three deformation modes are 
still suspicious if the constitutive models do not possess a full predictability. In 
other words, fully predictive models and uniaxial tests are the best combination 
for constitutive modeling of polymeric materials. 

To characterize and model finite deformations of ductile polymers, uniaxial 
tension and compression tests are usually used. Intrinsic material nonlinearities, 
however, could be coupled with boundary and geometric nonlinearities during 
experimental tests. In order to capture intrinsic material nonlinearities, 
symmetries should also be applied in experimental designs and tests. For necked 
specimen in uniaxial tension tests, their deformations are no longer homo- 
geneous and traditional extensometers are no longer accurate. Video-based 
extensometers by G’sell and Jonas (1979) [25] and G’sell, Hiver, and Dahoun 
(2002) [26] and the laser speckle extensometer combined with the digital image 
correlation method by Laraba-Abbes, Ienny, and Piques (2003) [27] have been 
applied to deal with inhomogeneous deformations in uniaxial tension tests. In 
uniaxial compression tests, for standard compression samples as well as tension 
samples done by Poulain et al. (2013) [28], barreling occurs during large 
compressions. Thus, compressive strengths are usually overestimated due to 
inhomogeneous deformations, non-uniform force distributions, and hydrostatic 
pressure effects. The extra work for barreling is unavoidably counted as part of 
the total work for uniaxial compressions. Unlike uniaxial tension tests, 
non-uniform force distributions and hydrostatic pressure effects in uniaxial 
compression tests become worse as the compression goes. An integrated 
computational-experimental method has been developed to circumvent the 
overestimation of compressive elastic-plastic stress-strain curves for ductile 
polymeric thin films by Zhao (1998) [29]. For predictions of finite elastic-plastic 
deformations in other modes, however, von-Mises stress-based equations were 
traditionally used. Since the von-Mises equivalent stress is only approximately 
accurate within a narrow stretching range, predictions of untested deformation 
modes for ductile polymeric materials by these types of theories are 
questionable. 

In the CSE constitutive modeling for isotropic polymeric materials, both 
experimental characterizations and theoretical predictions are indispensible. 
Experimental tests are used to determine the three unknown constitutive 
constants in the CSE function for a specific material. The CSE function as a 
theoretical model is applied to predict the deformations of untested deformation 
modes since exclusive experimental tests cannot cover all possible deformation 
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modes. For isotropic polymeric materials with different deformation me- 
chanisms, applications of the CSE function and uniaxial tension tests minimize 
errors and tests in traditional constitutive modeling processes.  

5. Conclusions  

The CSE function, originally developed for modeling elastomeric polymers, has 
been extended in its application to brittle and ductile polymers. The CSE 
function fits uniaxial tension data for GPPS and PMMA as brittle polymers, 
LDPE, iPP, and HDPE as ductile polymer materials both with and without 
necking, and vulcanized rubber containing 8% sulfur and Entec Enflex S4035A 
TPE as elastomeric polymers remarkably well. 

The CSE function as a physically relevant and mathematically covariant model 
elucidates the three major deformation mechanisms of polymers. For brittle 
polymer materials, deformations are mainly elastic, then slightly elastic-plastic 
deformations before fracture, and the failure modes are both shearing and 
ellipsoidal volumetric opening. For ductile polymeric materials, deformations 
begin with slightly elastic, then mainly elastic-plastic, and ellipsoidal volume 
damages at relatively large stretches. For elastomeric polymeric materials, 
deformations are rather homogeneous and fully elastic with no damages within 
the testing range. 

The difference between brittle and ductile elastic-plastic deformations is that 
brittle polymers take little shearing deformation while ductile polymers endure 
both finite translational deformation by normal stress and rotational deformation 
by shear stress. 

The von Mises equivalent stress has been studied in terms of the CSE function. 
In large enough tensile deformations, all three terms in the continuum 
constitutive model contribute to elastic-plastic deformations and a break-even 
stretch exists between the normal stress component curve and the shear stress 
component curve. The von Mises equivalent stress is only approximately 
accurate within a narrow stretching range. 

Common practices in constitutive modeling of polymeric materials have been 
briefly reviewed, the advantages and disadvantages of existing models and testing 
methods have been concisely discussed, and the CSE function and uniaxial tension 
tests have been selected for the constitutive modeling of polymeric materials. A 
new algorithm based on the CSE function for the finite elasticity-plasticity 
theory of ductile polymers has been evident.  
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