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Abstract 
Let p be a prime and K be a number field with non-trivial p-class group 
Cl p K . A crucial step in identifying the Galois group G pG K∞=  of the 
maximal unramified pro- p  extension of K  is to determine its two-stage 

approximation 2G p K=M , that is the second derived quotient G G′′
M . 

The family 1Kτ  of abelian type invariants of the p -class groups Cl p L  of 
all unramified cyclic extensions L K  of degree p  is called the index- p  
abelianization data (IPAD) of K . It is able to specify a finite batch of 
contestants for the second p -class group M  of K . In this paper we 
introduce two different kinds of generalized IPADs for obtaining more 
sophisticated results. The multi-layered IPAD ( )1 2,K Kτ τ  includes data on 

unramified abelian extensions L K  of degree 2p  and enables sharper 
bounds for the order of M  in the case ( )Cl , ,p K p p p , where current im- 
plementations of the p-group generation algorithm fail to produce explicit 
contestants for M , due to memory limitations. The iterated IPAD of second 
order ( )2 Kτ  contains information on non-abelian unramified extensions  
L/K of degree p2, or even p3, and admits the identification of the p-class tower 

group G  for various infinite series of quadratic fields ( )K d=   with 

( )Cl ,p K p p  possessing a p-class field tower of exact length 3p K =  as a 
striking novelty. 
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1. Introduction 
In a previous article [1], we provided a systematic and rigorous introduction of 
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the concepts of abelian type invariants and iterated IPADs of higher order. 
These ideas were communicated together with impressive numerical appli- 
cations at the 29th Journées Arithmétiques in Debrecen, July 2015 [2]. The 
purpose and the organization of the present article, which considerably extends 
the computational and theoretical results in [1] [2], is as follows. 

Index-p abelianization data (IPADs) are explained in §2. Our Main Theorem 
on three-stage towers of 3-class fields is communicated in §3. Basic definitions 
concerning the Artin transfer pattern [1] [3] [4] are recalled in §4. Then we 
generally put 3p =  and consider 3-class tower groups (§7). In §5, we first 
restate a summary of all possible IPADs of a number field K  with 3-class 
group 3Cl K  of type (3,3) [[1], Thm. 3.1-3.2, pp. 290-291] in a more succinct 
and elegant form avoiding infinitely many exceptions, and emphasizing the role 
of two distinguished components, called the polarization and co-polarization, 
which are crucial for proving the finiteness of the batch of contestants for the 
second 3-class group 2

3G K=M . Up to now, this is the unique situation where 
all IPADs can be given in a complete form, except for the simple case of a 
number field K  with 2-class group 2Cl K  of type (2,2) [[5], § 9, pp. 501-503]. 
We characterize all relevant finite 3-groups by IPADs of first and second order 
in §§7.1, 7.3, 7.6, 7.9. These groups constitute the candidates for 3-class tower 
groups 3G K∞  of quadratic fields ( )K d=   with 3-class group 3Cl K  of 
type (3,3). In §7.2, results for the dominant scenario with 3-principalization 

1K  of type a are given. In §§7.5, 7.8, we provide evidence of unexpected 
phenomena revealed by real quadratic fields K  with types 1K  in Scholz 
and Taussky’s section E  [[6], p. 36]. Their 3-class tower can be of length 

32 3K≤ ≤  and a sharp decision is possible by means of iterated IPADs of 
second order. We point out that imaginary quadratic fields with type E must 
always have a tower of exact length 3 3K =  [3] [7]. In §§7.10, 7.11, resp. 
§§7.12, 7.13, results for quadratic fields K  with 3-principalization type H.4 , 

( )1 4111K  , resp. G.19 , ( )1 2143K  , are proved. 
In the last section §8 on multi-layered IPADs, it is our endeavour to point out 

that the rate of growth of successive derived quotients ( )G nn
p K G G , 2n ≥ , 

of the p -class tower group G pG K∞=  is still far from being known for 
imaginary quadratic fields K  with p -class rank 3ρ ≥ , where the criterion of 
Koch and Venkov [8] ensures an infinite p -class tower with p K = ∞ . 

2. Index- p  Abelianization Data 

Let p  be a prime number. According to the Artin reciprocity law of class field 
theory [9], the unramified cyclic extensions L K  of relative degree p  of a 
number field K  with non-trivial p -class group Cl p K  are in a bijective 
correspondence to the subgroups of index p  in Cl p K . Their number is given  

by 1
1

p
p
−
−



 if   denotes the p -class rank of K  [[10], Thm. 3.1]. The reason  

for this fact is that the Galois group ( )1 1G : Gal Fp pK K K=  of the maximal 
unramified abelian p -extension 1Fp K K , which is called the first Hilbert p - 
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class field of K , is isomorphic to the p -class group Cl p K . The fields L  are 
contained in 1Fp K  and each group )/F(Gal 1 LKp  is of index p  in  

1G Clp pK K . 
It was also Artin’s idea [11] to leave the abelian setting of class field theory 

and to consider the second Hilbert p -class field ( )2 1 1F F Fp p pK K= , that is the 
maximal unramified metabelian p -extension of K , and its Galois group 

( )2 2: G : Gal Fp pK K K= =M , the so-called second p -class group of K  [[5] [6], 
p. 41], for proving the principal ideal theorem that Cl p K  becomes trivial when 
it is extended to ( )1Cl Fp p K  [12]. Since 1 1 2F F Fp p pK L K L K≤ ≤ ≤ ≤  is a non- 
decreasing tower of normal extensions for any assigned unramified abelian p - 
extension L K , the p -class group of L ,  

( ) ( ) ( )1 2 2 1Cl Gal F Gal F Gal F Fp p p p pL L L K L K L  , is isomorphic to the ab- 
elianization H H ′  of the subgroup ( )2: Gal FpH K L=  of the second p -class 
group ( )2Gal Fp K K  which corresponds to L  and whose commutator sub- 
group is given by ( )2 1Gal F Fp pH K L′ = . 

In particular, the structure of the p -class groups Cl p L  of all unramified 
cyclic extensions L K  of relative degree p  can be interpreted as the abelian 
type invariants of all abelianizations H H ′  of subgroups ( )2Gal FpH K L=  
of index p  in the second p -class group ( )2Gal Fp K K , which has been 
dubbed the index- p  abelianization data, briefly IPAD, 1Kτ  of K  by Boston, 
Bush, and Hajir [13]. This kind of information would have been incomputable 
and thus useless about twenty years ago. However, with the availability of 
computational algebra systems like PARI/GP [14] and MAGMA [15] [16] [17] it 
became possible to compute the class groups Cl p L , collect their structures in 
the IPAD 1Kτ , reinterpret them as abelian quotient invariants of subgroups 
H  of 2G p K , and to use this information for characterizing a batch of finitely 
many p -groups, occasionally even a unique p -group, as contestants for the 
second p -class group 2G p K=M  of K , which in turn is a two-stage approxi- 
mation of the (potentially infinite) pro- p  group ( ): G : Gal Fp pG K K K∞ ∞= =  of 
the maximal unramified pro- p  extension Fp K∞  of K , that is its Hilbert p - 
class tower. 

As we proved in the main theorem of [[4], Thm. 5.4], the IPAD is usually 
unable to permit a decision about the length : p K=   of the p -class tower of 
K  when non-metabelian candidates for G p K∞  exist. For solving such 
problems, iterated IPADs ( )2 Kτ  of second order are required. 

3. The p -Principalization Type 

Until very recently, the length   of the p -class tower  
1 2 1F F F F Fp p p p pK K K K K K+ ∞< < < = = = 

   

over a quadratic field ( )K d=   with p -class rank 2= , that is, with p - 
class group Cl p K  of type ( ),u vp p , 1u v≥ ≥ , was an open problem. Apart 
from the proven impossibility of an abelian tower with 1=  [[5], Thm. 4.1.(1)], 
it was unknown which values 2≥  can occur and whether = ∞  is possible 
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or not. In contrast, it is known that 1=  for any number field K  with p - 
class rank 1= , i.e., with non-trivial cyclic p -class group Cl p K , and that 
= ∞  for an imaginary quadratic field with p -class rank 3≥ , when p  is 

odd [8]. 
The finite batch of contestants for 2G p K=M , specified by the IPAD 1Kτ , 

can be narrowed down further if the p -principalization type of K  is known. 
That is the family 1K  of all kernels ,ker K LT  of p -class transfers  

, : Cl ClK L p pT K L→  from K  to unramified cyclic superfields L  of degree p  
over K . In view of the open problem for the length of the p -class tower, there 
arose the question whether each possible p -principalization type 1K  of a 
quadratic field K  with Cl p K  of type ( ),p p  is associated with a fixed value 
of the tower length p K . 

For 3p =  and 3Cl K  of type (3,3), there exist 23 distinct 3-principalization 
types [[18], Tbl. 6-7], designated by X.n , where X  denotes a letter in  
{ }A,D,E,F,G,H,a,b,c,d  and n  denotes a certain integer in { }1, , 25 , more 
explicitly:  

A.1, D.5, D.10, E.6, E.8, E.9, E.14, F.7, F.11, F.12, F.13, G.16, G.19, H.4, 
a.1, a.2, a.3, b.10, c.18, c.21, d.23, d.25. 
In this article, we establish the last but one step for the proof of the following 

solution to the open problem for 3p =  and quadratic fields K  with 
( )3Cl 3,3K  . 

Theorem 3.1. (Main theorem on the length of the 3-class tower for 3-class 
rank two)  

1) For each of the 13 types of 3-principalization X.n  with upper case letter 
X A≠ , there exists an imaginary quadratic field ( )K d=  , 0d < , of that 
type such that 32 3K≤ ≤ .  

2) For each of the 22 types of 3-principalization X.n A.1≠ , there exists a real 
quadratic field ( )K d=  , 0d > , of that type such that 32 3K≤ ≤ .  

Remark 3.1. Type A.1  must be excluded for quadratic base fields K , 
according to [[5], Cor. 4.2]. It occurs, however, with 2=  for cyclic cubic 
fields with two primes dividing the conductor [19].  

Concerning the steps for the proof, we provide information in the form of 
Table 1. An asterisk indicates the present paper. The last step has been com- 
pleted in collaboration with M. F. Newman but has not been published yet [20]. 
Only the types G.16 and G.19 must be distinguished by their integer identifier, 
otherwise the types denoted by the same letter behave completely similar. 
Additionally, we give the smallest logarithmic order ( ) 3lo : logG G= . 

Remark 3.2. None of the types sets in with a length 4≥ . Type D behaves 
completely rigid with 2= , fixed class 3, and coclass 2. Type a is also confined 
to 2=  but admits unbounded nilpotency class with fixed coclass 1. For type 
E, we have 3=  with unbounded class and coclass for imaginary fields, and 
the unique exact dichotomy { }2,3∈  for real fields. For type c , the length 

3=  is fixed with unbounded class and coclass for real fields. The most 
extensive flexibility is revealed by fields of the types F,G,H  and b,d , where  
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Table 1. Steps of the proof with references. 

Type D  E  F  G.16  G.19  H  a  b  c  d  Base Fields 

3K  2 3 3≥  3≥  3≥  3≥   imaginary 

( )lo G  5 8≥  20≥  11≥  11≥  8≥   quadratic 

Ref. [6] [7] [20] [20] ∗  ∗   fields 

3K  2 2 or 3 3≥  3≥  3≥  3≥  2 3≥  3 3≥  real 

( )lo G  5 7≥  10≥  9≥  7≥  7≥  4≥  10≥  7≥  10≥  quadratic 

Ref. [21] ∗  [20] [20] ∗  ∗  ∗  [20] 
[22] 
[23] 

[20] fields 

 
any finite unbounded length 3≥  can occur with variable class and coclass. 
We expect that an actually infinite tower with = ∞  is impossible for 

( )3Cl 3,3K  .  

4. The Artin Transfer Pattern 

Let p  be a prime number and G  be a pro- p  group with finite abelianization 
G G′ , more precisely, assume that the commutator subgroup G′  is of index 
( ): vG G p′ =  with an integer exponent 0v ≥ . 

Definition 4.1. For each integer 0 n v≤ ≤ , let  
( ){ }Lyr : : n

nG G H G G H p′= ≤ ≤ =  be the nth layer of normal subgroups of G  
containing G′ .  

Definition 4.2. For any intermediate group G H G′ ≤ ≤ , we denote by 

, :G HT G H H ′→  the Artin transfer homomorphism from G  to H H ′  [[4], 
Dfn. 3.1], and by , :G HT G G H H′ ′→  the induced transfer.  

1) Let ( ) [ ]0:= ; ; vG G Gτ τ τ  be the multi-layered transfer target type (TTT)  
of G , where ( ) Lyr:

nn H GG H Hτ
∈

′=  for each 0 n v≤ ≤ .  

2) Let [ ]0( ) := ; ; vG G G    be the multi-layered transfer kernel type (TKT)  
of G , where ( ), Lyr

: ker
n

n G H H G
G T

∈
=   for each 0 n v≤ ≤ .  

Definition 4.3. The pair ( ) ( ) ( )( )AP : ,G G Gτ=   is called the (restricted) 
Artin pattern of G .  

Definition 4.4. The first order approximation ( ) [ ]1
0 1:= ;G G Gτ τ τ  of the TTT, 

resp. ( ) [ ]1
0 1:= ;G G G    of the TKT, is called the index- p  abelianization 

data (IPAD), resp. index- p  obstruction data (IPOD), of G .  

Definition 4.5. ( ) ( )( )
1

2 1
0 Lyr

:= ;
H G

G G Hτ τ τ
∈

 
  

 is called iterated IPAD of nd2   

order of G .  
Remark 4.1. For the complete Artin pattern ( )APc G  see [[4], Dfn. 5.3].  
1) Since the 0th layer (top layer), { }0Lyr G G= , consists of the group G  

alone, and , :G GT G G G′→  is the natural projection onto the commutator 
quotient with kernel ( ),ker G GT G′= , we usually omit the trivial top layer 0G  
and identify the IPOD ( )1 G  with the first layer 1G  of the TKT.  

2) In the case of an elementary abelianization of rank two, ( ) 2:G G p′ = , we 
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also identify the TKT ( )G  with its first layer 1G , since the 2nd layer 
(bottom layer), { }2Lyr G G′= , consists of the commutator subgroup G′  alone, 
and the kernel of , :G GT G G G′ ′ ′′→  is always total, that is ( ),ker G GT G′ = , 
according to the principal ideal theorem [12].  

5. All Possible IPADs of 3-Groups of Type (3,3)  

Since the abelian type invariants of certain IPAD components of an assigned 
3-group G  depend on the parity of the nilpotency class c  or coclass r , a 
more economic notation, which avoids the tedious distinction of the cases odd 
or even, is provided by the following definition [[24], §3]. 

Definition 5.1. For an integer 2n ≥ , the nearly homocyclic abelian 3-group 
( )A 3,n  of order 3n  is defined by its type invariants ( ) ( ), 3 ,3ˆ q r qq r q ++ = , 

where the quotient 1q ≥  and the remainder 0 < 2r≤  are determined un- 
iquely by the Euclidean division 2n q r= + . Two degenerate cases are included 
by putting ( ) ( ) ( )A 3,1 : 1 3ˆ= =  the cyclic group 3C  of order 3, and  
( ) ( )A 3,0 : 0 1ˆ= =  the trivial group of order 1.  
In the following theorem and in the whole remainder of the article, we use the 

identifiers of finite 3-groups up to order 38 as they are defined in the 
SmallGroups Library [25] [26]. They are of the shape <order, counter>, where 
the counter is motivated by the way how the output of descendant computations 
is arranged in the p -group generation algorithm by Newman [27] and O'Brien 
[28]. 

Theorem 5.1. (Complete classification of all IPADs with ( )0 3,3τ   [24]) Let 
G  be a pro-3 group with abelianization G G′  of type (3,3) and metabe- 
lianization G G′′=M  of nilpotency class ( )cl 2c = ≥M , defect  

( )0 1k k≤ = ≤M , and coclass ( )cc 1r = ≥M . Assume that M  does not 
belong to the finitely many exceptions in the list below. Then the IPAD 

( ) [ ]1
0 1= ;G G Gτ τ τ  of G  in terms of nearly homocyclic abelian 3-groups is 

given by  

( )

( ) ( )

2
0

polarization co polarization

1 3 4

1 ;

A 3, ,A 3, 1 , , ,

G

G c k r T T

τ

τ
−

=

 
 = − +
 
 

                 (5.1) 

where the polarized first component of 1Gτ  depends on the class c  and 
defect k , the co-polarized second component increases with the coclass r , and 
the third and fourth component are completely stable for 3r ≥  but depend on 
the coclass tree containing M  for 1 2r≤ ≤  in the following manner  

( )

( )( )
( )( )

( )( )

2 2

3 2
3 4

23 2

A 3, 1 if    2, 243,8    or   1,

, 1 ,A 3, 1 if    2, 243,6 ,

1 if    2, 243,3    or  3.

r r r

T T r r

r r

 + = ∈ 〈 〉 =
= + = ∈

 = ∈ ≥


M

M

M







    (5.2) 

Anomalies of finitely many, precisely 13, exceptional groups are summarized 
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in the following list.  

( )( )
( )( )
( )( )

( )( )
( )( )

( ) ( )( )
( )( )

4
1

32
1

33 2
1

33
1

33
1

2 23
1

4
1

1 for   9, 2 , 1, 1,

1 , 2 for  27,4 , 2, 1,

1 , 1 for  81,7 , 3, 1,

1 ,21 for  243,4 , 3, 2,

1 , 21 for  243,5 , 3, 2,

1 , 21 for  243,7 , 3, 2,

21 for  243,9 ,

G c r

G c r

G c r

G c r

G c r

G c r

G c

τ

τ

τ

τ

τ

τ

τ

= = =

= = =

= = =

= = =

= = =

= = =

=















M

M

M

M

M

M

M

( )( )
( )( )

33
1

4
1

3, 2,

1 , 21 for  729,44 47 , 4, 2,

21 for  729,56 57 , 4, 2.

r

G c r

G c r

τ

τ

= =

= = =

= = =

 

 

M

M

     (5.3) 

The polarization and the co-polarization we had in our mind when we spoke 
about a bi-polarization in [[29], Dfn. 3.2, p. 430]. Meanwhile, we have provided 
yet another proof for the existence of stable and polarized IPAD components 
with the aid of a natural partial order on the Artin transfer patterns distributed 
over a descendant tree [[4], Thm. 6.1-6.2]. 

Proof. Equations (5.1) and (5.2) are a succinct form of information which 
summarizes all statements about the first TTT layer 1Gτ  in the formulas (19), 
(20) and (22) of [[1], Thm. 3.2, p. 291] omitting the claims on the second TTT 
layer 2Gτ . Here we do not need the restrictions arising from lower bounds for 
the nilpotency class ( )clc = M  in the cited theorem, since the remaining cases 
for small values of c  can be taken from [[1], Thm. 3.1, p. 290], with the 
exception of the following 13 anomalies in formula (5.3): 

The abelian group ( )9,2 3,3 , the extra special group 27,4 , and the 
group ( )3 981,7 Syl A  do not fit into the general rules for 3-groups of 
coclass 1. These three groups appear in the top region of the tree diagram in the 
Figure 1 and Figure 2. 

The four sporadic groups 243, n  with { }4,5,7,9n∈  and the six sporadic 
groups 729,n  with { }44, , 47,56,57n∈   do not belong to any coclass-2 
tree, as shown in Figure 5, whence the conditions in Equation (5.2) cannot be 
applied to them. 

On the other hand, there is no need to list the groups 27,3  and 
81,8 10  in formula (14), the groups 243, n  with { }3,6,8n∈  in formula 

(15), and the groups 729, n  with { }34, ,39n∈   in formula (16) of [[1], 
Thm. 3.1, p. 290], since they perfectly fit into the general pattern.           □ 

Remark 5.1. The reason why we exclude the second TTT layer 2Gτ  from 
Theorem 5.1, while it is part of [[1], Thm. 3.1-3.2, pp. 290-291], is that we want 
to reduce the exceptions of the general pattern to a finite list, whereas the 
irregular case of the abelian quotient invariants of the commutator subgroup 
G′ , which forms the single component of 2Gτ , occurs for each even value of  



D. C. Mayer  
 

142 

 
Figure 1. Distribution of absolute frequencies of 2

3G K  on the coclass tree 1 9,2 . 

 
the coclass ( ) ( )cc 0  mod 2r = ≡M  and thus infinitely often.  

Theorem 5.2. (Finiteness of the batch of contestants for the second p -class 
group 2G p K=M ) If 3p = , ( )2

0 1τ = , and 1τ  denotes an assigned family 
( )( )1 1 4i
iτ

≤ ≤
 of four abelian type invariants, then the set ( )2

0 1Cnt ,p τ τ  of all 
(isomorphism classes of) finite metabelian p -groups M  such that  
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Figure 2. Distribution of minimal discriminants for 2

3G K  on the coclass tree 1 9,2 . 

 

0 0τ τ′= M M M  and ( )
11 1LyrHH Hτ τ

∈
′= 

M
M  is finite.  

Proof. We have ( )2
0 1Cnt ,p τ τ = ∅ , when 1τ  is malformed [[1], Dfn. 5.1, p. 

294]. For 3p =  and ( )2
0 1τ = , Theorem 5.1 ensures the validity of the 

following general Polarization Principle: There exist a few components of a 
non-malformed family 1τ  which determine the nilpotency class ( ): clc = M  
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and the coclass ( ): ccr = M  of a finite metabelian p -group M  with 
( )

11 1LyrHH Hτ τ
∈

′= 

M
M . Together with the Coclass Theorems [[30], §5, p. 164, 

and Equation (10), p. 168], the polarization principle proves the claim.      □ 

6. Tables and Figures of Possible 3-Groups K2
3G  and K3G∞  

6.1. Tables 

In this article, we shall frequently deal with finite 3-groups G  of huge orders 
93G ≥  for which no identifiers are available in the SmallGroups database [25] 

[26]. For instance in Table 6, and in the Figure 6 and Figure 7. A work-around 
for these cases is provided by the relative identifiers of the ANUPQ (Australian 
National University p -Quotient) package [31] which is implemented in our 
licence of the computational algebra system MAGMA [15] [16] [17] and in the 
open source system GAP [32]. 

Definition 6.1. Let p  be a prime number and G  be a finite p -group with 
nuclear rank 1ν ≥  [[30], Equation (28), p. 178] and immediate descendant 
numbers 1, ,N Nν  [[30], Equation (34), p. 180]. Then we denote the ith 
immediate descendant of step size s  of G  by the symbol  

# ;G s i−                          (6.1) 

for each 1 s ν≤ ≤  and 1 si N≤ ≤ . 
Recall that a group with nuclear rank 0ν =  is a terminal leaf without any 

descendants.  
All numerical results in this article have been computed by means of the 

computational algebra system MAGMA [15] [16] [17]. The p -group gene- 
ration algorithm by Newman [27] and O’Brien [28] was used for the recursive 
construction of descendant trees ( )R  of finite p -groups G . The tree root 
(starting group) R  was taken to be 9,2  for Table 2 and the Figure 2, 
Figure 1, Figure 5, 243,6  for Table 3 and Figure 3, 243,8  for Table 4 
and Figure 4, 243,4  for Table 5 and Figure 6, and 243,9  for Table 6 and 
Figure 7. For computing group theoretic invariants of each tree vertex G , we 
implemented the Artin transfers ,G HT  from a finite p -group G  of type 

( ),G G p p′
  to its maximal subgroups H G  in a MAGMA program script 

as described in [[4], §4.1]. 

6.2. Figures 

Basic definitions, facts, and notation concerning descendant trees of finite p - 
groups are summarized briefly in [[29], §2, pp. 410-411], [33]. They are 
discussed thoroughly in the broadest detail in the initial sections of [30]. Trees 
are crucial for the recent theory of p -class field towers [34] [35] [36], in 
particular for describing the mutual location of 2

3G K  and 3G K∞ . 
Generally, the vertices of coclass trees in the Figures 1-4, of the sporadic part 

of a coclass graph in Figure 5, and of the descendant trees in the Figure 6 and 
Figure 7 represent isomorphism classes of finite 3-groups. Two vertices are 
connected by a directed edge G H→  if H  is isomorphic to the last lower  
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Table 2. IPOD 1G  and iterated IPAD ( )2 Gτ∗  of 3-groups G  of coclass ( )cc 1G = . 

lo id type 1G  0Gτ  0Hτ        1Hτ         2Hτ  

2 2 a.1 0000 12 [ ]41 0 0  

3 3 a.1 0000 12 ( )
4421 1 0 

   

3 4 A.1 1111 12 
12          ( )41          0 

[ ]32 1 0  

4 7 a.3 2000 12 

13         ( )1321         ( )131  

12         ( )421          1 

( )
232 21 1 , 2 1 

   

4 8 a.3 2000 12 

21        ( )321 , 2         ( )41  

12         ( )421           1 

( )
232 21 1 , 2 1 

   

4 9 a.1 00000 12 
21        ( )321 , 2        ( )41  

( )
342 21 1 1 

   

4 10 a.2 1000 12 
21         ( )321 , 2        ( )41  

( )
332 21 1 , 2 1 

   

5 25 a.3 2000 12 
22          ( )421       ( )1221 , 2  

( )
332 2 21 21, 1 1 

   

5 
5 

26 
27 

a.1 
a.2 

0000 
1000 

IPAD like id 25 
IPAD like id 25 

5 28···30 a.1 0000 12 
21          ( )421        ( )321 , 2  

( )
332 2 21 21, 1 1 

   

6 95 a.1 0000 12 
32         ( )322 , 31     ( ) ( )4 921 , 3  

( )
332 2 21 2 , 1 21 

   

6 
6 

96 
97/98 

a.2 
a.3 

1000 
2000 

IPAD like id 95 

IPAD like id 95 

6 99···101 a.1 0000 12 
22        ( )322 , 31      ( ) ( )4 921 ; 3  

( )
332 2 21 2 , 1 21 

   

7 386 a.1 0000 12 
32          ( )432       ( )1222 , 31  

( )
332 2 21 32, 1 2 

   

7 
7 

387 
388 

a.2 
a.3 

1000 
2000 

IPAD like id 386 

IPAD like id 386 
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Continued 

7 389···391 a.1 0000 12 
32          ( )432       ( )1222 , 31  

( )
332 2 21 32, 1 2 

   

8 2221 a.1 0000 12 
43         ( )323 , 42    ( ) ( )4 932 , 41  

( )
332 2 21 3 , 1 32 

   

8 
8 

2222 
2223/2224 

a.2 
a.3 

100 
2000 

IPAD like id 2221 

IPAD like id 2221 

8 2225···2227 a.1 0000 12 

23         ( )323 , 42     ( ) ( )4 932 , 41  

( )
332 2 21 3 , 1 32 

   

 
central quotient ( )cG Gγ , where ( )clc G=  denotes the nilpotency class of 
G , and either 3G H= , that is, ( )c Gγ  is cyclic of order 3, or 9G H= , 
that is, ( )c Gγ  is bicyclic of type (3,3). See also [[29], §2.2, p. 410-411] and [[30], 
§4, p. 163-164]. 

The vertices of the tree diagrams in Figure 1 and Figure 2 are classified by 
using various symbols:  

1) big full discs •  represent metabelian groups M  with defect ( ) 0k =M ,  
2) small full discs •  represent metabelian groups M  with defect 
( ) 1k =M .  
In the Figures 3-5,  
1) big full discs •  represent metabelian groups M  with bicyclic centre of 

type (3,3) and defect ( ) 0k =M  [[29], §3.3.2, p. 429],  
2) small full discs •  represent metabelian groups M  with cyclic centre of 

order 3 and defect ( ) 1k =M ,  
3) small contour squares □  represent non-metabelian groups G .  
In the Figure 6 and Figure 7,  
1) big contour squares □  represent groups G  with relation rank ( )2 3d ≤G ,  
2) small contour squares □  represent groups G  with relation rank  
( )2 4d ≥G .  

A symbol n∗  adjacent to a vertex denotes the multiplicity of a batch of n  
siblings, that is, immediate descendants sharing a common parent. The groups 
of particular importance are labelled by a number in angles, which is the 
identifier in the SmallGroups Library [25] [26] of GAP [32] and MAGMA [17]. 
We omit the orders, which are given on the left hand scale. The IPOD 1  [[18], 
Thm. 2.5, Tbl. 6-7], in the bottom rectangle concerns all vertices located 
vertically above. The first, resp. second, component ( )1 1τ , resp. ( )1 2τ , of the 
IPAD [[1], Dfn. 3.3, p. 288] in the left rectangle concerns vertices G  on the 
same horizontal level with defect ( ) 0k G = . The periodicity with length 2 of 
branches, ( ) ( )2j j +   for 4≥j , resp. 7≥j , sets in with branch ( )4 , 
resp. ( )7 , having a root of order 34, resp. 37, in Figure 1 and Figure 2, resp. 3 
and 4. The metabelian skeletons of the Figure 3 and Figure 4 were drawn by  
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Table 3. IPOD 1G  and iterated IPAD ( )2 Gτ∗  of 3-groups G  on 2 53 ,6 . 

lo id type  1G  0Gτ  0Hτ         1Hτ            2Hτ  

5 6 c.18  0122 12 

31         ( ) ( )4 93 21 , 1           ( )1321  

( )
333 2 4     21                  1 , 21                          (1 )       

   

6 48 H.4  2122 12 

22           ( )4221            ( )1231 , 21  

31         ( ) ( )3 92 3 221 , 1 , 1      ( ) ( )933 21 , 21 , 1  

( ) ( )
23 32 3     21                  21 , 21                   1 , 21      

   

6 
6 
6 

Q = 49 
50 
51 

c.18   0122 
E.14  3122 
E.6   1122 

 
 
 

IPAD like id 48 
IPAD like id 48 
IPAD like id 48 

7 284 c.18  0122 12 

22            ( )4221           ( )122 221 , 2  

31          ( ) ( )4 92 221 , 1        ( ) ( )3 92 321 , 1 , 21  

( ) ( )
23 32 2     21                     21 , 21                   21 , 21      

   

7 285 c.18  0122 12 

32           ( )32 22 1, 31         ( ) ( )4 9221 , 31  

31          ( ) ( )3 92 22 1, , 131      ( ) ( )3 92 2 221 , 2 , 1  

( ) ( )
23 32 2     21                 2 1, 21                  21 , 21      

   

7 
7 
7 

286/287 
288 

289/290 

H.4  2122 
E.6  1122 
E.14  3122 

 
 
 

IPAD like id 285 
IPAD like id 285 
IPAD like id 285 

7 291 c.18  0122 12 

22              ( )4221          ( ) ( )3 92 221 , 2 , 31  

31           ( ) ( )3 92 3 221 , 1 , 1       ( ) ( )932 221 , 12 , 1  

21             ( )3221 , 31           ( )3221 , 21  

21             ( )3221 , 21           ( )3221 , 21  

8 613 c.18  0122 12 

32             ( )32 22 1, 31          ( ) ( )4 922 1 , 32  

31          ( ) ( )3 92 2 22 1, 1 , 12        ( ) ( ) ( )3 3 62 3 22 1, 1 , 2 , 21  

( ) ( )
2332 2 2     21                 2 1, 31                  2 1, 2      

   

8 
8 
8 

614/615 
616 

617/618 

H.4  2122 
E.6  1122 
E.14  3122 

 
 
 

IPAD like id 613 
IPAD like id 613 
IPAD like id 613 

 
Nebelung [[37], p. 189 ff], the complete trees were given by Ascione and 
coworkers [38], [[39], Fig. 4.8, p. 76, and Fig. 6.1, p. 123]. 

We define two kinds of arithmetically structured graphs   of finite p - 
groups by mapping each vertex V ∈  of the graph to statistical number theo- 
retic information, e.g. the distribution of second p -class groups 2G p K=M  or 
p -class tower groups G pG K∞= , with respect to a given kind of number fields 
K , for instance real quadratic fields ( ) ( ):K K d d= =   with discriminant  
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Table 4. IPOD 1G  and iterated IPAD ( )2 Gτ∗  of 3-groups G  on 2 53 ,8 . 

lo id type  1G  0Gτ  0Hτ          1Hτ                 2Hτ  

5 8 c.21  2034 12 ( ) ( )
4433 2   21                1 , 21                               1      

   

6 52 G.16  2134 12 
22         ( )4221             ( )1231 , 21  

( ) ( )
33 32 3   21                21 , 21                          1 , 21    

   

6 
6 
6 

53 
U = 54 

55 

E.9   2434 
c.21   2034 
E.8   2234 

 
 
 

IPAD like id 52 
IPAD like id 52 
IPAD like id 52 

7 301/305 G.16   2134 12 
32       ( )32 22 1, 31           ( ) ( )4 9221 , 31  

( ) ( )
3332 2 2   21                2 1, 1                          21 , 2    

 2  

7 
7 
7 

302/306 
303 
304 

E.9    2334 
c.21   2034 
E.8    2234 

 
 
 

IPAD like id 301 
IPAD like id 301 
IPAD like id 301 

7 307 c.21    2034 12 

22         ( )4221               ( )122 221 , 2  

21       ( )3221 , 31              ( )3221 , 21  

( ) ( )
23 32 2   21                21 , 21                          21 , 21    

   

7 308 c.21   2034 12 

22         ( )4221             ( ) ( )3 92 221 , 2 , 31  

21       ( )3221 , 31               ( )3221 , 21  

( ) ( )
23 32 2   21                21 , 21                          21 , 21    

   

8 619/623 G.16   2134 12 
32       ( )32 22 1, 31             ( ) ( )4 922 1 , 32  

( ) ( )
3332 2 2   21                2 1, 1                           2 1, 2    

 3      

8 
8 
8 

620/624 
621 
622 

E.9   2334 
c.21   2034 
E.8    2234 

 
 
 

IPAD like id 619 
IPAD like id 619 
IPAD like id 619 

 
0d > . 

Definition 6.2. Let p  be a prime and   be a subgraph of a descendant tree 
  of finite p -groups.  
• The mapping  

{ } ( ){ }2MD : , inf G pV d K d V→ ∪ ∞             (6.2) 

is called the distribution of minimal discriminants on  .  
• For an assigned upper bound 0B > , the mapping  

{ } ( ){ }2AF : 0 , # < G pV d B K d V→ ∪            (6.3) 

is called the distribution of absolute frequencies on  .  
For both mappings, the subset of the graph   consisting of vertices V  with  
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Table 5. IPOD 1G  and iterated IPAD ( )2 Gτ∗  of sporadic 3-groups G of type H.4. 

lo id type  1G  0Gτ  0Hτ           1Hτ                    2Hτ  

5 4 H.4   4111 12 

13        ( ) ( )4 93 21 , 1                 ( )1321  

( ) ( ) ( ) ( )
29 43 93 3 2 2   1                1 , 21 , 1                           1 , 2    

   

21        ( )331 , 21                   ( )421  

6 N = 45 H.4  4111 12 

13       ( ) ( )3 92 3 221 , 1 , 1              ( ) ( )933 21 , 21 , 1  

( ) ( )
212 123 2 2   1                      21 , 21                           21 , 21    

   

21        ( )3221 , 21                 ( )32 221 , 2  

7 270 H.4  4111 12 

13        ( ) ( )4 92 221 , 1              ( ) ( )3 92 321 , 1 , 21  

( ) ( )
212 123 2 2   1                      21 , 21                           21 , 21    

   

21         ( )3221 , 21                ( )32 221 , 2  

7 271/272 H.4  4111 12 

13        ( ) ( )3 92 3 221 , 1 , 1           ( ) ( )3 92 2 221 , 2 , 1  

( ) ( )
212 123 2 2   1                      21 , 21                           21 , 21    

   

21          ( )3221 , 31               ( )3221 , 21  

7 273 H.4  4111 12 

13        ( ) ( )3 92 3 221 , 1 , 1           ( ) ( )932 221 , 21 , 1  

13          ( )12221 , 21              ( )12221 , 21  

13         ( ) ( )4 92 221 , 2               ( )13221  

21          ( )3221 , 21               ( )3221 , 21  

8 605/606 H.4  4111 12 

13         ( ) ( )4 92 221 , 1           ( ) ( ) ( )3 3 62 3 22 1, 1 , 2 , 21  

( ) ( ) ( )
24 9 123 2 2 2 2   1                     21 , 2                           2 1, 21    

   

21          ( )3221 , 31               ( )32 22 1, 2  

 

( )MD V ≠ ∞ , resp. ( )AF 0V ≠ , is called the support of the distribution. The 
trivial values outside of the support will be ignored in the sequel.  

Whereas Figure 1 displays an AF -distribution, the Figures 2-4 show MD - 
distributions. The Figures 5-7 contain both distributions simultaneously. 

7. 3-Class Towers of Quadratic Fields and Iterated IPADs of  
Second Order 

7.1. 3-Groups G  of Coclass ( )Gcc 1=  

Table 2 shows the designation of the transfer kernel type [37], the IPOD 1G , 
and the iterated multi-layered IPAD of second order,  

( )2
0 0 1 2 Lyr1

= ; ; ; ,H GG G H H Hτ τ τ τ τ∗ ∈
  

                  (7.1) 

for 3-groups G of maximal class up to order 83G = , characterized by the logari- 
thmic order, lo , i.e. ( ) 3lo : logG G= , and the SmallGroup identifier, id. [25] [26]. 
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Table 6. IPOD 1G  and iterated IPAD ( )2 Gτ∗  of sporadic 3-groups G  of type G.19. 

lo id    w.r.t. type  1G  0Gτ  0Hτ            1Hτ         2Hτ  

5 9 G.19  2143 12 ( ) ( )
4433 2  21                   1 , 21              1      

   

6 57W =  G.19  2143 12 ( ) ( )
4434 3  21                   1 , 21              1      

   

7 311 G.19  2143 12 

21          ( )34 21 , 12      ( )34 31 , 1  

21          ( )341 , 21        ( )441  

( ) ( )
2334 4 3  21                   1 ,              1 , 1      

 21  

8 625···630 G.19  2143 12 ( ) ( )
43 34 5 4  21                   1 ,             1 , 1     

 
221  

9 #1;2      Φ  G.19  2143 12 ( ) ( )
43 44 2 5  21                    1 , 21                1     

   

9 #1;2      Ψ  G.19  2143 12 ( ) ( )
43 34 2 5 3  21                    1 , 21                1 , 21     

   

9 #1;2      Y  G.19  2143 12 ( ) ( )
43 34 2 6 4  21                    1 , 21                1 , 1     

   

9 #1;2      Z  G.19  2143  IPAD like id #1;2Y −  

9 #1;3      Z  G.19  2143  IPAD like id #1;2Ψ −  

10 #1;1      1Y  G.19  2143 12 
21          ( )34 21 , 13        ( )35 421 , 1  

( ) ( )
33 34 2 5 4  21                    1 , 1                21 , 1     

 2  

10 #1;1      1Z  G.19  2143 12 
21          ( )34 21 , 2 1        ( )35 421 , 1  

( ) ( )
33 34 2 5 4  21                    1 , 21                21 , 1     

   

10 #2;7      Z  G.19  2143 12 ( ) ( )
43 34 2 6 3  21                    1 , 21                1 , 21     

   

11 #2;1/2     1Y  G.19  2143 12 ( ) ( )
43 34 2 2 4 4  21                    1 , 1                2 1 , 1     

 3  

11 #2;1 4    1Z  G.19  2143 12 ( ) ( )
43 34 2 4 4  21                    1 ,                2 1 , 1     

 
22 1  

11 #1;1      2Z  G.19  2143 12 
21          ( )34 21 , 2 1        ( )35 321 , 21  

( ) ( )
33 34 2 5 3  21                    1 , 21                21 , 21     

   

11 #1;5      2Z  G.19  2143 12 
21          ( )34 21 , 21        ( )36 2 21 , 2 1  

( ) ( )
33 34 2 6 3  21                    1 , 21                1 , 21     

   

12 #2;1      2Z  G.19  2143 12 ( ) ( )
43 34 2 4 3  21                    1 ,                2 1 , 21     

 
22 1  

12 #2;62      2Z  G.19  2143 12 

21          ( )34 21 , 2 1        ( )35 2 221 , 2 1   

( ) ( )
43 34 2 5 3  21                    1 , 21                21 , 21     

   

( ) ( )
33 34 2 5 3  21                    1 , 21                21 , 21     

   

12 #2;87     2Z  G.19  2143 12 

21          ( )34 21 , 2 1        ( )35 321 , 21  

21          ( )34 21 , 21        ( )35 2 221 , 2 1  

( ) ( )
23 34 2 5 3  21                   1 , 21               21 , 21     

   

14 #4;1 43   2Z  G.19  2143 12 ( ) ( )
43 34 2 4 2 2  21                  1 ,               2 1 , 2 1     

 
22 1  
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Figure 3. Distribution of minimal discriminants for 2

3G K  on the coclass tree 2 243,6 . 

 
The groups in Table 2 are represented by vertices of the tree diagrams in 

Figure 1 and Figure 2. 
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Figure 4. Distribution of minimal discriminants for 2

3G K  on the coclass tree 2 243,8 . 



D. C. Mayer 
 

153 

 
Figure 5. Distribution of second 3-class groups 2

3G K  on the sporadic graph ( )0 3,2 . 

7.2. Real Quadratic Fields of Types a.1, a.2 and a.3 

Sound numerical investigations of real quadratic fields ( )K d=   with 
fundamental discriminant 0d >  started in 1982, when Heider and Schmithals 
[40] showed the first examples of a Galois cohomology structure of Moser’s type 
α  on unit groups of unramified cyclic cubic extensions, L K  which are 
dihedral of degree 6 over   [[5], Prop. 4.2, p. 482], and of IPODs 1K  with 
type a.1 ( 62501d = ), type a.2 ( 72329d = ), and type a.3 ( 32009d = ), in the  
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Figure 6. Distribution of 3-class tower groups 3G K∞  on the descendant tree 243,4∗ . 
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Figure 7. Distribution of 3-class tower groups 3G K∞  on the descendant tree 243,9∗ . 

 
notation of Nebelung [37]. See Figure 2. 

Our extension in 1991 [41] merely produced further examples for these 
occurrences of type a. In the 15 years from 1991 to 2006 we consequently were 
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convinced that this type with at least three total 3-principalizations is the only 
possible type of real quadratic fields. 

The absolute frequencies in [[5], Tbl. 2, p. 496] and [[24], Tbl. 6.1, p. 451], 
which should be corrected by the Corrigenda in the Appendix, and the extended 
statistics in Figure 1 underpin the striking dominance of type a. The distribution 
of the second 3-class groups 2

3G K=M  with the smallest order 34, resp. 36, 
alone reaches 79.7%  for the accumulated types a.2 and a.3 together, resp. 
6.4%  for type a.1. 

So it is not astonishing that the first exception 214712d =  without any total 
3-principalizations did not show up earlier than in 2006 [[5], Tbl. 4, p. 498], 
[[24], Tbl. 6.3, p. 452]. See Figure 5. 

The most extensive computation of data concerning unramified cyclic cubic 
extensions L K  of the 481,756 real quadratic fields ( )K d=   with dis- 
criminant 90 10d< <  and 3-class rank 3 2Kρ =  has been achieved by M. R. 
Bush in 2015 [42]. In the following, we focus on the partial results for 3-class 
groups of type (3,3), since they extend our own results of 2010 [5] [24]. 

Proposition 7.1. (IPADs of fields with type a up to 910d <  [42])  
In the range 0 < d < 109 with 415,698 fundamental discriminants d of real qua- 

dratic fields ( )K d=   having 3-class group of type (3,3), there exist precisely 
208236  cases ( 50.1% ) with IPAD ( ) ( )31 2 2= 1 ;21, 1Kτ  

  
, 

122955  cases ( 29.6% ) with IPAD ( ) ( )31 2 3 2= 1 ;1 , 1Kτ  
  

, 

26678  cases ( 6.4% ) with IPAD ( ) ( )31 2 2 2= 1 ;2 , 1Kτ  
  

, and 

11780  cases ( 2.8% ) with IPAD ( ) ( )31 2 2= 1 ;32, 1Kτ  
  

.  

Proof. The results were computed with PARI/GP [14], double-checked with 
MAGMA [17], and kindly communicated to us by M. R. Bush, privately [42]. □ 

For establishing the connection between IPADs and IPODs we need the 
following bridge. 

Corollary 7.1. (Associated IPODs of fields with type a)  

1) A real quadratic field K  with IPAD ( ) ( )31 2 2= 1 ;21, 1Kτ  
  

 has IPOD  

either ( )1 1000K =  of type a.2 or ( )1 2000K =  of type a.3.  

2) A real quadratic field K  with IPAD ( ) ( )31 2 3 2= 1 ;1 , 1Kτ  
  

 has IPOD 

( )1 2000K =  of type a.3, more precisely a.3*, in view of the exceptional IPAD.  

3) A real quadratic field K  with IPAD ( ) ( )31 2 2 2= 1 ;2 , 1Kτ  
  

 has IPOD  

( )1 0000K =  of type a.1.  

4) A real quadratic field K  with IPAD ( ) ( )31 2 2= 1 ;32, 1Kτ  
  

 has IPOD  

either ( )1 1000K =  of type a.2 or ( )1 2000K =  of type a.3.  
Proof. Here, we again make use of the selection rule [[29], Thm. 3.5, p. 420] 

that only every other branch of the tree 1 23 , 2  is admissible for second 
3-class groups 2

3G K=M  of (real) quadratic fields K . 
According to Table 2, three (isomorphism classes of) groups G  share the 
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common IPAD ( ) ( )31 2 2= 1 ;21, 1Gτ  
  

, namely 81,8 10 , whereas the IPAD 

( ) ( )31 2 3 2= 1 ;1 , 1Gτ  
  

 unambiguously leads to the group 81,7  with IPOD 

( )1 2000G = . 

In Theorem 7.4 we shall show that the mainline group 81,9  cannot occur 
as the second 3-class group of a real quadratic field. Among the remaining two 
possible groups, 81,8  has IPOD ( )1 2000G =  and 81,10  has IPOD 

( )1 1000G = . 

The IPAD ( ) ( )31 2 2 2= 1 ;2 , 1Gτ  
  

 leads to three groups 729,99 101  with  

IPOD ( )1 0000G =  and defect of commutativity 1k =  [[29], §3.1.1, p. 412]. 

Concerning the IPAD ( ) ( )31 2 2= 1 ;32, 1Gτ  
  

, Table 2 yields four groups G   

with SmallGroup identifiers 729,95 98 . The mainline group 729,95  is 
discouraged by Theorem 7.4, 729,96  has IPOD ( )1 1000G = , and the two 
groups 729,97 98  have IPOD ( )1 2000G = . 

By the Artin reciprocity law [9] [11], the Artin pattern ( )AP K  of the field 
K  coincides with the Artin pattern ( )AP M  of its second 3-class group 

2
3G K=M .                                                      □ 

Remark 7.1. The huge statistical ensembles underlying the computations of 
Bush [42] admit a prediction of sound and reliable tendencies in the population 
of the ground state. If we compare the smaller range 710d <  in [5] with the 
extended range 910d <  in [42], then we have a decrease 

1382 20823653.6% 50.1%
2576 415698

≈ ≈  by 3.5%  for the union of types a.2 and  

a.3, 
and increases 

698 12295527.1% 29.6%
2576 415698

≈ ≈  by 2.5%  for type a.3*, and 

150 266785.8% 6.4%
2576 415698

≈ ≈  by 0.6%  for type a.1. 

Of course, the accumulation of all types a.2, a.3, and a.3* with absolute 
frequencies 

1382 698 2080+ = , resp. 208236 122955 331191+ = , shows a resultant de- 
crease 

2080 33119180.7% 79.7%
2576 415698

≈ ≈  by 1.0% . 

For the union of the first excited states of types a.2 and a.3, we have a 
stagnation 

72 117802.8% 2.8%
2576 415698

≈ ≈ ≈  at the same percentage. 

Unfortunately, the exact absolute frequency of the ground state of type a.2, 
resp. type a.3, is unknown for the extended range 910d < . It could be computed 
using Theorem 7.1. However, meanwhile we succeeded in separating all states of 
type a.2 and type a.3 up to 810d <  by immediately figuring out the 3- 
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principalization type with MAGMA V2.22-1. In [21], we compare the results of 
this most recent tour de force of computing with asymptotic densities predicted 
by Boston, Bush and Hajir (communicated privately and yet unpublished, 
similar to [13]).  

Figure 1 visualizes 3-groups of section §7.1 which arise as 3-class tower 
groups 3GG K∞=  of real quadratic fields ( )K d=  , 0d > , with princi- 
palization types a.2 and a.3 and the corresponding absolute frequencies and 
percentages (relative frequencies with respect to the total number of 415,698 real 
quadratic fields with discriminants in the range 0 d B< <  for 910B = ) which 
were given in Proposition 7.1. 

Figure 2 visualizes 3-groups of section §7.1 which arise as 3-class tower 
groups 3GG K∞=  of real quadratic fields ( )K d=  , 0d > , with 3- 
principalization types a.1, a.2 and a.3 and the corresponding minimal dis- 
criminants in the sense of Definition 6.2. 

As mentioned in [1], we have the following criterion for distinguishing 
subtypes of type a: 

Theorem 7.1. (The ground state of type a [[29], §3.2.5, pp. 423-424])  
The second 3-class groups 2

3G K=M  with the smallest order 34 possessing 
type a.2 or a.3 can be separated by means of the iterated IPAD of second order  

( ) [ ]2
0 0 1 Lyr1

= ; ;
H

H Hτ τ τ τ
∈

 
  M

M M .  

Proof. This is essentially [[1], Thm. 6.1, p. 296] but can also be seen directly by 
comparing the column 1Hτ  with the IPAD for the rows with lo 4=  and 

{ }id 7, ,10∈   in Table 2. Here the column 2Hτ , containing the second layer 
of the IPAD, does not permit a distinction.                             □ 

Unfortunately, we also must state a negative result: 
Theorem 7.2. (Excited states of type a [[29], §3.2.5, pp. 423-424])  

Even the multi-layered IPAD ( ) [ ]2
0 0 1 2 Lyr1

= ; ; ;
H

H H Hτ τ τ τ τ∗ ∈
 
  M

M M  of  

second order is unable to separate the second 3-class groups 2
3G K=M  with 

order 36 and type a.2 or a.3. It is also unable to distinguish between the three 
candidates for M  of type a.1, and between the two candidates for M  of type 
a.3, both for orders 63≥M .  

Proof. This is a consequence of comparing both columns 1Hτ  and 2Hτ  for 
the rows with { }lo 6,8∈  and { }id 95, ,101∈  , resp. { }id 2221, , 2227∈   in 
Table 2. According to the selection rule [[29], Thm. 3.5, p. 420], only every 
other branch of the tree 1 23 , 2  is admissible for second 3-class groups 

2
3G K=M  of (real) quadratic fields K .                              □ 

Theorem 7.3. (Two-stage 3-class towers of type a) For each (real) quadratic 
field K  with second 3-class group 2

3G K=M  of maximal class the 3-class 
tower has exact length 3 2K = .  

Proof. Let G  be a 3-group of maximal class. Then G  is metabelian by [[29], 
Thm. 3.7, proof, p. 421] or directly by [[43], Thm. 6, p. 26]. Suppose that H  is 
a non-metabelian 3-group of derived length ( )dl 3H ≥  such that H H G′′

 . 
According to [[4], Thm. 5.4], the Artin patterns ( )AP H  and ( )AP G  coincide, 
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in particular, both groups share a common IPOD 1 1H G=  , which contains 
at least three total kernels, indicated by zeros, ( )1 000= ∗  [18]. However, this 
is a contradiction already, since any non-metabelian 3-group, which necessarily 
must be of coclass at least 2, is descendant of one of the five groups 243,n  
with { }3,4,6,8,9n∈  whose IPODs possess at most two total kernels, and a 
descendant cannot have an IPOD with more total kernels than its parent, by [[4], 
Thm. 5.2]. Consequently, the cover ( )cov G  of G  in the sense of [[23], Dfn. 
5.1] consists of the single element G . 

Finally, we apply this result to class field theory: Since 2
3G K=M  is assumed 

to be of coclass ( )cc 1=M , we obtain ( ) { }3G covG K∞= ∈ =M M  and the 
length of the 3-class tower is given by ( ) ( )3 dl dl 2K G= = = M .          □ 

Remark 7.2. To the very best of our knowledge, Theorem 7.3 does not appear 
in the literature, although we are convinced that it is well known to experts, 
since it can also be proved purely group theoretically with the aid of a theorem 
by Blackburn [[43], Thm. 4, p. 26]. Here we prefer to give a new proof which 
uses the structure of descendant trees.  

Theorem 7.4. (The forbidden mainline of coclass 1) The mainline vertices of 
the coclass-1 tree cannot occur as second 3-class groups K2

3G=M  of (real) 
quadratic fields K  (of type a.1).  

Proof. Since periodicity sets in with branch ( )4  in the Figure 1 and Figure 
2, and MAGMA shows that the groups 33 ,3  and 43 ,9  have p -multi- 
plicator rank 4, all mainline vertices V  must have p -multiplicator rank 
( ) 4Vµ =  and thus relation rank ( )2 4d V Vµ= = . However, a real quadratic 

field K  has torsion free Dirichlet unit rank 1r =  and certainly does not 
contain the (complex) primitive third roots of unity. According to the corrected 
version [[23], Thm. 5.1] of the Shafarevich theorem [44], the relation rank 2d G  
of the 3-tower group 3GG K∞= , which coincides with the second 3-class group 

2
3G K=M  by Theorem 7.3, is bounded by 22 2 1 3d G rρ ρ= ≤ ≤ + = + = , 

where 2ρ =  denotes the 3-class rank of K .                          □ 

7.3. 3-Groups G of Coclass ( )Gcc 2=  Arising from 53 ,6  

Table 3 shows the designation of the transfer kernel type [6] [37], the IPOD 

1G , and the iterated multi-layered IPAD of 2nd order,  

( ) [ ]2
0 0 1 2 Lyr1

= ; ; ; ,
H G

G G H H Hτ τ τ τ τ∗ ∈
 
  

 

for 3-groups G  on the coclass tree 2 53 ,6  up to order 83G = , characte- 
rized by the logarithmic order, lo , and the SmallGroup identifier, id , [25] [26]. 
To enable a brief reference for relative identifiers we put 6: 3 , 49Q = , since this 
group was called the non-CF group Q  by Ascione [38] [39]. 

The groups in Table 3 are represented by vertices of the tree diagram in 
Figure 3. 

Theorem 7.5. (Smallest possible 3-tower groups 3GG K∞=  of type E.6 or 
E.14 [1]). Let G  be a finite 3-group with IPAD of first order ( ) [ ]1

0 1= ;G G Gτ τ τ , 
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where 2
0 1Gτ =  and ( )( )23

1 32,1 , 21Gτ =  is given in ordered form. 
If the IPOD of G  is of type E.6, ( )1 1122G = , resp. E.14,  

( ) ( )1 3122 4122G =  , then the IPAD of second order  
( ) ( )2

0 0 1 1 4
= ; ;i i i

G G H Hτ τ τ τ
≤ ≤

   , where the maximal subgroups of index 3 in G  
are denoted by 1 4, ,H H , determines the isomorphism type of G  in the 
following way:  

1) ( ) ( ) ( )3 91 3 2 3 2
2 = 1 ;2 1, , 1Hτ  

  
1  if and only if ( ) ( )31 2= 21;2 1, 1iHτ  

 2  for 

{ }3,4i∈  if and only if 73 ,G 288 , resp. 73 ,G 289  or 73 ,G 290 ,  

2) ( ) ( ) ( )3 91 3 2 2 2
2 = 1 ;2 1, 1 , 1Hτ  

  
2  if and only if ( ) ( )31 2= 21;2 1, 1iHτ  

 3  for 

{ }3,4i∈  if and only if 83 ,G 616 , resp. 83 ,G 617  or 83 ,G 618 ,  

whereas the component ( ) ( )31 2 2
1 = 32;2 1, 31Hτ  

  
 is fixed and does not admit a 

distinction.  
Proof. This is essentially [[1], Thm. 6.2, pp. 297-298]. It is also an immediate 

consequence of Table 3, which has been computed with MAGMA [17]. As a 
termination criterion we can now use the more precise [[4], Thm. 5.1] instead of 
[[7], Cor. 3.0.1, p. 771].                                             □ 

Figure 3 visualizes 3-groups which arise as second 3-class groups 2
3G K=M  

of real quadratic fields ( )K d=  , 0d > , with 3-principalization types E.6 
and E.14 in section §7.3 and the corresponding minimal discriminants. 

7.4. Parametrized IPADs of Second Order for the Coclass Tree  
2 53 ,6  

Let 2 53 ,6G∈  be a descendant of coclass ( )cc 2G =  of the root 53 ,6 . 
Denote by ( ): clc G=  the nilpotency class of G , by ( ): dl 2t G= −  the 
indicator of a three-stage group, and by ( ):k k G= , resp ( ): πk k G= , the defect 
of commutativity of G  itself if 0t = , and of the metabelian parent πG  if 

1t = . 
Theorem 7.6. In dependence on the parameters c , t  and k , the IPAD of 

second order of G  has the form  

( ) ( ) ( ) ( )( )( )
( ) ( )( )
( ) ( ) ( )( )
( )

32 2
3 3

3
3

3 93 3 2
3

1 ; 3, ; 3, 1 , 3, 1 ,

                                21; 3, 1 , 21 ,

                                1 ; 3, 1 , 1 , 1 ,

                               21; 3, 1

G A c k t A c k t C B c k t C

A c k t C

A c k t C

A c k t

τ = − − − − − × − − − ×

− − − ×

− − − ×

− − − × ( )( )3
3 , 21 ,C

 (7.2) 

where a variant of the nearly homocyclic abelian 3-group of order 2n ≥  in 
Definition 5.1, which can also be defined by ( )A 3,0 : 1= , ( ) 3A 3,1 : C= , and  

( )
13 3

3 3

if      2 1   odd,
A 3, :

if         2      even,
m m

m m

C C n m
n

C C n m
+ × = +=  × =

           (7.3) 

is given by ( ) 23
B 3,2 : C=  and  
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( )
13 3

23 3

if         2 1   odd,
B 3, :

if         2 2   even.
m m

m m

C C n m
n

C C n m
+

+

× = +=  × = +
         (7.4) 

7.5. Number Fields with IPOD of Type E.6 or E.14 

Let K  be a number field with 3-class group 3 3 3Cl K C C×  and first layer 
{ }1 1 4Lyr , ,K L L=   of unramified abelian extensions. 

Theorem 7.7. (Criteria for { }3 2,3K ∈ .) Let the IPOD of K  be of type E.6, 
( )1 1313K  , resp. E.14, ( )1 2313K  . If ( )( )3

1 A 3, , 21, 1 , 21K cτ   with 
4c ≥ , then  

• ( ) ( ) ( )( )92
3 1 3 32 A 3, 1 , , 1K L c Cτ= ⇔ − × 

331   

( ) ( )( )1 3A 3, 1 ,jL c Cτ⇔ − × 321  for { }2,4j∈ ,  

• ( ) ( ) ( )( )92
3 1 3 33 A 3, 1 , , 1K L c Cτ= ⇔ ∼ − ×

3221   

( ) ( )( )1 3A 3, 1 ,jL c Cτ⇔ − × 331  for { }2,4j∈ .  

Proof. Exemplarily, we conduct the proof for 5c = , which is the most 
important situation for our computational applications.  

Searching for the Artin pattern ( )1 1 1AP ,τ=   with ( )3
1 32,21,1 ,21τ   and 

( )1 1313 , resp. ( )2313 , in the descendant tree ( )R  with abelian root 
2

3 3: 3 , 2R C C= × , unambiguously leads to the unique metabelian descendant  
with path 3 5 6 73 ,3 3 ,6 3 ,49 3 ,288 =:R ← ← ← ← M  for type E.6, resp. 

two descendants 73 , 289 290  for type E.14. The bifurcation at the vertex 
63 , 49  with nuclear rank two leads to a unique non-metabelian descendant 

with path 3 5 6 83 ,3 3 ,6 3 ,49 3 ,616 :R G← ← ← ← =  for type E.6, resp. 

two descendants 83 ,617 618  for type E.14 The cover of 2
3G K=M  is  

non-trivial but very simple, since it contains two elements ( ) { }cov ,G=M M  
only. The decision whether 3 2K =  and 3

3G K =M  or 3 3K =  and 
3
3G K G=  requires the iterated IPADs of second order ( )2τ  of M  and G , 

which are listed in Table 3. The general form ( ) 3A 3, 1c C− ×  of the component 
of ( )2τ  which corresponds to the commutator subgroup G G′ ′ ′′

M  is a 
consequence of [[24], Thm. 8.8, p.461], since in terms of the nilpotency class c  
and coclass 2r =  of M  we have 2 1m c− = −  and 2 1e r− = − .        □ 

The proof of Theorem 7.7, immediately justifies the following conclusions for 
5c ≤ . 

Corollary 7.2. Under the assumptions of Theorem 7.7, the second and third 
3-class groups of K  are given by their SmallGroups identifier [25] [26], if 

5c ≤ . Independently of 3K ,  
if 4c = , then 2 6

3G 3 ,51K   for type E.6, resp. 63 ,50  for type E.14, and  

if 5c = , then 2 7
3G 3 ,288K   for type E.6, resp. 73 , 298 290  for type 

E.14.  
In the case of a 3-class tower 3F K∞  of length 3 3K = ,  
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if 4c = , then 2 7
3G 3 ,293K   for type E.6, resp. 73 , 292  for type E.14, 

and  
if 5c = , then 2 8

3G 3 ,616K   for type E.6, resp. 83 ,617 618  for type 
E.14.  

The range 70 10d< <  of fundamental discriminants d  of real quadratic 
fields ( )K d=   of type E, which underlies Theorem 7.8 in this section, resp. 
7.12 in the next section, is just sufficient to prove that each of the possible groups 
G  in Theorem 7.5, resp. 7.9, is actually realized by the 3-tower group 3G K∞  of 
some field K . 

Proposition 7.2. (Fields ( )d  with IPOD of type E.6 or E.14 for 
70 10d< <  [5] [24].) In the range 70 10d< <  of fundamental discriminants 

d  of real quadratic fields ( )K d=  , there exist precisely 3, resp. 4, cases 
with 3-principalization type E.6, ( )1 1313K  , resp. E.14, ( )1 2313K  .  

Proof. The results of [[24], Tbl. 6.5, p. 452], where the entry in the last column 
freq. should be 28 instead of 29 in the first row and 4 instead of 3 in the fourth 
row, were computed in 2010 by means of the free number theoretic computer 
algebra system PARI/GP [14] using an implementation of our own princi- 
palization algorithm in a PARI script, as described in detail in [[24], §5, pp. 
446-450]. The accumulated frequency 7 for the second and third row was 
recently split into 3 and 4 with the aid of the computational algebra system 
MAGMA [17]. See also [[5], Tbl. 4, p. 498].                            □ 

Remark 7.3. The minimal discriminant 5264069d =  of real quadratic fields 

( )K d=   of type E.6, resp. 3918837d =  of type E.14, is indicated in 
boldface font adjacent to an oval surrounding the vertex, resp. batch of two 
vertices, which represents the associated second 3-class group 2

3G K , on the 
branch ( )6  of the coclass tree 243,6  in Figure 3.  

Theorem 7.8. (3-Class towers ( )3F d∞  with IPOD of type E.6 or E.14 for 
70 10d< < ) Among the 3 real quadratic fields ( )K d=   with IPOD of type 

E.6 in Proposition 7.2,  
• the 2 fields ( %67 ) with discriminants  

{ }5264069,6946573d ∈  

have the unique 3-class tower group 83 ,G 616  and 3-tower length  

3K = 3 ,  
• the single field ( %33 ) with discriminant  

7153097d =  
has the unique 3-class tower group 73 ,G 288  and 3-tower length 3K = 2 .  

Among the 4 real quadratic fields ( )K d=   with IPOD of type E.14 in  

Proposition 7.2,  
• the 3 fields ( %75 ) with discriminants  

{ }3918837,8897192,9991432d ∈  

have 3-class tower group 73 ,G 289  or 73 ,G 290  and 3-tower length 

3K = 2 ,  
• the single field ( 25% ) with discriminant  



D. C. Mayer 
 

163 

9433849d =  
has 3-class tower group 83 ,G 617  or 83 ,G 618  and 3-tower length 

3K = 3 .  
Proof. Since all these real quadratic fields ( )K d=   have 3-capitulation  

type ( )1 1122K =  or ( )3122  and st1  IPAD ( ) ( )21 2 3= 1 ; ,1 , 21Kτ  
 32 , and 

the 4 fields with { }3918837,7153097,8897192d ∈  have nd2  IPAD  

( )( ) ( ) ( )( ) ( )( ) ( )( )3 92 2 2 2 2 2
1 1 1 2 1 3 1 42 1, 31 , 2 1, , 1 , 2 1, , 2 1, ,L L L Lτ τ τ τ= = = =

3 3 331 21 21  

whereas the 3 fields with { }5264069, 6946573, 9433849d ∈  have nd2  IPAD  

( )( ) ( ) ( )( ) ( )( ) ( )( )3 92 2 2 2 2 2
1 1 1 2 1 3 1 42 1, 31 , 2 1, , 1 , 2 1, , 2 1, ,L L L Lτ τ τ τ= = = =

3 3 3221 31 31  

the claim is a consequence of Theorem 7.5.                             □ 
Remark 7.4. The computation of the 3-principalization type E.14 of the field 

with 9433849d =  resisted all attempts with MAGMA versions up to V2.21-7. 
Due to essential improvements in the change from relative to absolute number 
fields, made by the staff of the Computational Algebra Group at the University 
of Sydney, it actually became feasible to figure it out with V2.21-8 [17] for 
UNIX/LINUX machines or V2.22-3 for any operating system.  

7.6. 3-Groups G of Coclass ( ) =cc 2G  Arising from 53 ,8
 

Table 4 shows the designation of the transfer kernel type, the IPOD 1G , and 
the iterated multi-layered IPAD of second order,  

( ) [ ]2
0 0 1 2 Lyr1

= ; ; ; ,
H G

G G H H Hτ τ τ τ τ∗ ∈
 
  

 

for 3-groups G  on the coclass tree 2 53 ,8  up to order 83G = , characte- 
rized by the logarithmic order, lo , and the SmallGroup identifier, id  [25] [26]. 
To enable a brief reference for relative identifiers we put 6: 3 ,54U = , since this 
group was called the non-CF group U  by Ascione [38] [39]. 

The groups in Table 4 are represented by vertices of the tree diagram in 
Figure 4. 

Theorem 7.9. (Smallest possible 3-tower groups 3= GG K∞  of type E.8 or 
E.9 [1]) Let G  be a finite 3-group with IPAD of first order ( ) [ ]1

0 1= ;G G Gτ τ τ , 
where 2

0 1Gτ =  and ( )( )2
1 21,32, 21Gτ =  is given in ordered form. 

If the IPOD of G  is of type E.8, ( )1 2234G = , resp. E.9,  
( ) ( )1 2334 2434G = ∼ , then the IPAD of second order  

( ) ( )2
0 0 1 1 4

= ; ;i i i
G G H Hτ τ τ τ

≤ ≤
   , where the maximal subgroups of index 3 in G  

are denoted by 1 4, ,H H , determines the isomorphism type of G  in the 
following way:  

1) ( ) ( )31 2= 21;2 1, 1iHτ  
 2  for { }1,3,4i∈  

if and only if 73 ,G 304 , resp. 73 ,G 302  or 73 ,G 306 ,  

2) ( ) ( )31 2= 21;2 1, 1iHτ  
 3  for { }1,3,4i∈  

if and only if 83 ,G 622 , resp. 83 ,G 620  or 83 ,G 624 ,  

whereas the component ( ) ( )31 2 2
2 = 32;2 1, 31Hτ  

  
 is fixed and does not admit a 
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distinction.  
Proof. This is essentially [[1], Thm. 6.3, pp. 298-299]. It is also an immediate 

consequence of Table 4, which has been computed with MAGMA [17]. As a 
termination criterion we can now use the more precise [[4], Thm. 5.1] instead of 
[[7], Cor. 3.0.1, p. 771].                                             □ 

Figure 4 visualizes 3-groups which arise as second 3-class groups 2
3G K=M  

of real quadratic fields ( )K d=  , 0d > , with 3-principalization types E.8 
and E.9 in section §7.6 and the corresponding minimal discriminants. 

7.7. Parametrized IPADs of Second Order for the Coclass Tree  
2 53 ,8  

Let 2 53 ,8G∈  be a descendant of coclass ( )cc 2G =  of the root 53 ,8 . 
Denote by ( ): clc G=  the nilpotency class of G , by ( ): dl( 2t G= −  the 
indicator of a three-stage group, and by ( ):k k G= , resp ( ): πk k G= , the defect 
of commutativity of G  itself if 0t = , and of the metabelian parent πG  if 

1t = . 
Theorem 7.10. In dependence on the parameters c, t and k, the IPAD of 

second order of G has the form  

( ) ( ) ( ) ( )( )( )
( ) ( )( )

32 2
3 3

33
3

1 ; A 3, ;A 3, 1 , B 3, 1 ,

          21;A 3, 1 , 21 ,

G c k t c k t C c k t C

c k t C

τ = − − − − − × − − − ×

− − − ×
 (7.5) 

where a variant ( )B 3,n  of the nearly homocyclic abelian 3-group ( )A 3,n  
of order 2n ≥  is defined as in Formula (7.4) of Theorem 7.6.  

7.8. Number Fields with IPOD of Type E.8 or E.9 

Let K  be a number field with 3-class group 3 3 3Cl K C C×  and first layer 
{ }1 1 4Lyr , ,K L L=   of unramified abelian extensions. 

Theorem 7.11. (Criteria for { }3 2,3K ∈ .) Let the IPOD of K  be of type E.8, 
( )1 1231K  , resp. E.9, ( )1 2231K  . If ( )( )1 A 3, , 21, 21, 21K cτ   with 

4c ≥ , then  
• ( ) ( )( )3 1 32 A 3, 1 ,jK L c Cτ= ⇔ − × 

321  for 2 4j≤ ≤ ,  

• ( ) ( )( )3 1 33 A 3, 1 ,jK L c Cτ= ⇔ − × 331   for 2 4j≤ ≤ .  

Proof. Exemplarily, we conduct the proof for 5c = , which is the most 
important situation for our computational applications.  

Searching for the Artin pattern ( )1 1 1AP ,τ=   with ( )1 32,21,21,21τ ∼  and 
( )1 1231 , resp. ( )2231 , in the descendant tree ( )R  with abelian root 

2
3 3: 3 , 2R C C= × , unambiguously leads to the unique metabelian descendant 

with path 3 5 6 73 ,3 3 ,8 3 ,54 3 ,304 :R ← ← ← ← = M  for type E.8, resp. 
two descendants 73 ,302 306  for type E.9. The bifurcation at the vertex 

63 ,54  with nuclear rank two leads to a unique non-metabelian descendant 
with path 3 5 6 83 ,3 3 ,8 3 ,54 3 ,622 :R G← ← ← ← =  for type E.8, resp. 
two descendants 83 ,620 624  for type E.9. The cover of 2

3G K=M  is 
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non-trivial but very simple, since it contains two elements ( ) { }cov ,G=M M  
only. The decision whether 3 2K =  and 3

3G K =M  or 3 3K =  and 
3
3G K G=  requires the iterated IPADs of second order ( )2τ  of M  and G , 

which are listed in Table 4. The general form ( ) 3A 3, 1c C− ×  of the component 
of ( )2τ  which corresponds to the commutator subgroup G G′ ′ ′′

M  is a 
consequence of [[24], Thm. 8.8, p. 461], since in terms of the nilpotency class c  
and coclass 2r =  of M  we have 2 1m c− = −  and 2 1e r− = − .  

The proof of Theorem 7.11, immediately justifies the following conclusions 
for 5c ≤ . 

Corollary 7.3. Under the assumptions of Theorem 7.11, the second and third 
3-class groups of K  are given by their SmallGroups identifier [25] [26], if 

5c ≤ . Independently of 3K ,  
if 4c = , then 2 6

3G 3 ,55K   for type E.8, resp. 63 ,53  for type E.9, and  
if 5c = , then 2 7

3G 3 ,304K   for type E.8, resp. 73 ,302 306  for type 
E.9.  

In the case of a 3-class tower 3F K∞  of length 3 3K = ,  
if 4c = , then 3 7

3G 3 ,309K   for type E.8, resp. 73 ,300  for type E.9, 
and  

if 5c = , then 3 8
3G 3 ,622K   for type E.8, resp. 83 ,620 624  for type 

E.9.  
Proposition 7.3. (Fields ( )d  with IPOD of type E.8 or E.9 for 

70 10d< <  [5] [24]) In the range 70 10d< <  of fundamental discriminants 
d  of real quadratic fields ( )K d=  , there exist precisely 3, resp. 11, cases 
with 3-principalization type E.8, ( )1 1231K  , resp. E.9, ( )1 2231K  .  

Proof. The results of [[24], Tbl. 6.7, p. 453] were computed in 2010 by means 
of PARI/GP [14] using an implementation of our principalization algorithm, as 
described in [[24], 5, pp. 446-450]. The accumulated frequency 14 in the last 
column freq.for the second and third row was recently split into 3 and 11 with 
the aid of MAGMA [17]. See also [[5], Tbl. 4, p. 498].                    □ 

Remark 7.5. The minimal discriminant 6098360d =  of real quadratic fields 

( )K d=   of type E.8, resp. 342664d =  of type E.9, is indicated in boldface 
font adjacent to an oval surrounding the vertex, resp. batch of two vertices, 
which represents the associated second 3-class group 2

3G K , on the branch 
( )6  of the coclass tree 2 243,8  in Figure 4.  
Theorem 7.12. (3-Class towers ( )3F d∞

  with IPOD of type E.8 or E.9 for 
70 10d< < ) Among the 3 real quadratic fields ( )K d=   with IPOD of type 

E.8 in Proposition 7.3,  
• the 2 fields ( %67 ) with discriminants  

{ }6098360, 7100889d ∈  

have the unique 3-class tower group 83 ,G 622  and 3-tower length 

3K = 3 ,  
• the single field ( %33 ) with discriminant  

8632716d =  
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has the unique 3-class tower group 73 ,G 304  and 3-tower length 3K = 2 .  
Among the 11 real quadratic fields ( )K d=   with IPOD of type E.9 in 

Proposition 7.3,  
• the 7 fields ( %64 ) with discriminants  

{ }342664, 1452185, 1787945, 4861720, 5976988, 8079101, 9674841d ∈  

have 3-class tower group 83 ,G 620  or 83 ,G 624  and 3-tower length 

3K = 3 ,  
• the 4 fields ( %36 ) with discriminants  

{ }4760877, 6652929, 7358937, 9129480d ∈  

have 3-class tower group 73 ,G 302  or 73 ,G 306  and 3-tower length 

3K = 2 .  
Proof. Since all these real quadratic fields ( )K d=   have 3-capitulation  

type ( )1 2234K =  or ( )2334  and st1  IPAD ( ) ( )31 2= 1 ; , 21Kτ  
 32 , and the 5  

fields with { }4760877, 6652929, 7358937, 8632716, 9129480d ∈  have 2nd IPAD  

( )( ) ( )( ) ( )( ) ( )( )32 2 2 2 2
1 1 1 2 1 3 1 42 1, 31 , 2 1, , 2 1, , 2 1, ,L L L Lτ τ τ τ= = = =3 3 321 21 21  

whereas the 9 fields with 
{

}
342664, 1452185, 1787945, 4861720, 5976988,

        6098360, 7100889, 8079101, 9674841

d ∈
  

have nd2  IPAD  

( )( ) ( )( ) ( )( ) ( )( )32 2 2 2 2
1 1 1 2 1 3 1 42 1, 31 , 2 1, , 2 1, , 2 1, ,L L L Lτ τ τ τ= = = =3 3 331 31 31  

the claim is a consequence of Theorem 7.9.                             □ 
Remark 7.6. The 3-principalization type E.9 of the field with 9674841d =  

could not be computed with MAGMA versions up to V2.21-7. Finally, we 
succeeded to figure it out by means of V2.21-8 [17].  

Figure 5 visualizes sporadic 3-groups of section §7.9 which arise as second 
3-class groups 2

3G K=M  of real quadratic fields ( )K d=  , 0d > , with 
3-principalization types D.10, D.5, G.19 and H.4 and the corresponding minimal 
discriminants, resp. absolute frequencies, which are given in section §7.10 and 
§7.12. 

7.9. Sporadic 3-Groups G of Coclass ( ) =cc 2G  

Table 5 shows the designation of the transfer kernel type, the IPOD 1G , and 
the iterated multi-layered IPAD of second order,  

( ) [ ]2
0 0 1 2 Lyr1

= ; ; ; ,
H G

G G H H Hτ τ τ τ τ∗ ∈
 
  

 

for sporadic 3-groups G of type H.4 up to order 83G = , characterized by the 
logarithmic order, lo , and the SmallGroup identifier, id  [25] [26]. To enable 
a brief reference for relative identifiers we put 6: 3 , 45N = , since this group 
was called the non-CF group N  by Ascione [38] [39]. 

The groups in Table 5 are represented by vertices of the tree diagram in 
Figure 6. Figure 6 visualizes sporadic 3-groups of section §7.9 which arise as 
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3-class tower groups 3GG K∞=  of real quadratic fields ( )K d=  , 0d > , 
with 3-principalization type H.4 and the corresponding minimal discriminants, 
resp. absolute frequencies, in Theorem 7.13 and 7.14. 

The tree is infinite, according to Bartholdi, Bush [45] and [[1], Cor. 6.2, p. 
301]. 

For 2852733d = +  and 6583d = − , we can only give the conjectural 
location of G. 

7.10. Real Quadratic Fields of Type H.4 

Proposition 7.4 (Fields of type H.4 up to 710d <  [5] [24]) 
In the range 70 10d< <  of fundamental discriminants d  of real quadratic 

fields ( )K d=  , there exist precisely 27 cases with 3-principalization type  

H.4, ( )1 4111K = , and IPAD ( ) ( )31 2 3= 1 ; 1 ,21Kτ  
  

. They share the common  

second 3-class group 2 6
3G 3 ,45K  . 

Proof. The results of [[24], Tbl. 6.3, p. 452] were computed in 2010 by means 
of PARI/GP [14] using an implementation of our principalization algorithm, as 
described in [[24], 5, pp. 446-450]. The frequency 27 in the last column “freq.” 
for the fourth row concerns type H.4.                                 □ 

Remark 7.7. To discourage any misinterpretation, we point out that there are 
four other real quadratic fields ( )K d=   with discriminants  

{ }1162949, 2747001, 3122232, 4074493d ∈  in the range 70 10d< <  which 
possess the same 3-principalization type H.4. However their second 3-class 
group 2

3G K  is isomorphic to either 73 , 286 #1;2−  or 73 , 287 #1;2−  of 
order 38, which is not a sporadic group but is located on the coclass tree 

2 53 ,6 , and has a different IPAD ( ) ( )21 2 3= 1 ;32,1 , 21Kτ  
  . The 3-class 

towers of these fields are determined in [20].  
Theorem 7.13. (3-Class towers of type H.4 up to 710d < ) 
Among the 27 real quadratic fields ( )K d=   with type H.4 in Proposition 

7.4, 
• the 11 fields ( %41 ) with discriminants  

{
}

957013,  1571953,  1734184,  3517689,  4025909,  4785845,

      4945973,  5562969,  5562969,  6318733,  7762296,  8070637

d ∈
 

have the unique 3-class tower group 73 ,G 273  and 3-tower length 

3K = 3 , 
• the 8 fields ( %29 ) with discriminants  

{
}

2023845,  4425229,  6418369,  6469817,

       6775224,  6895612,  7123493,  9419261

d ∈
 

have 3-class tower group 73 ,G 271  or 73 ,G 272  and 3-tower length 

3K = 3 , 
• the 5 fields ( %19 ) with discriminants  

{ }2303112, 3409817, 3856685, 5090485, 6526680d ∈  
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have the unique 3-class tower group 73 ,G 270  and 3-tower length 3K = 3 , 
• the 3 fields ( %11 ) with discriminants  

{ }2852733, 8040029, 8369468d ∈  

have a 3-class tower group of order at least 38 and 3-tower length { }3 , ,K ∈ 3 4 . 
Note that 7 63 , 3 , 45 #1;= −270 1 , 7 63 , 3 , 45 #1;= −271 2 ,  
7 63 , 3 , 45 #1;= −272 3 , and 7 63 , 3 , 45 #1;= −273 4 . 
Proof. Extensions of absolute degrees 6 and 18 were constructed in steps with 

MAGMA [17], using the class field package of C. Fieker [46]. The resulting 
iterated IPADs of second order ( )2 Kτ  were used for the identification, 
according to Table 5, which is also contained in the more extensive theorem [[1], 
Thm. 6.5, pp. 304-306].                                             □ 

7.11. Imaginary Quadratic Fields of Type H.4 

Proposition 7.5. (Fields of type H.4 down to 43 10d > − ×  [5] [47])  
In the range 30000 0d− < <  of fundamental discriminants d  of imaginary 

quadratic fields ( )K d=  , there exist precisely 6 cases with 3-princi- 
palization type H.4, ( )1 4111K = , and IPAD ( ) ( )31 2 3= 1 ; 1 ,21Kτ  

  
. They 

share the common second 3-class group 2 6
3 3 , 45G K  . 

Proof. In the table of suitable base fields [[47], p. 84], the row Nr. 4 contains 7 
discriminants 30000 0d− < <  of imaginary quadratic fields ( )K d=   with 
type H.4. It was computed in 1989 by means of our implementation of the 
principalization algorithm by Scholz and Taussky, described in [[47], pp. 80-83]. 
In 1989 already, we recognized that only for the discriminant 21668d = −  one 
of the four absolute cubic subfields iL , 1 4i≤ ≤ , of the unramified cyclic cubic 
extensions iN  of K  has 3-class number 3 9ih L = , which is not the case for 
the other 6 cases of type H.4 in the table [[47], pp. 78-79]. According to [[5], 
Prop. 4.4, p. 485] or [[5], Thm. 4.2, p. 489] or [48], the exceptional cubic field iL  
is contained in a sextic field iN  with 3-class number ( )2

3 33 243i ih N h L= × = ,  

which discourages an IPAD ( ) ( )31 2 3= 1 ; 1 ,21Kτ  
  

.                      □ 

Remark 7.8. The imaginary quadratic field with discriminant 21668d = −  
possesses the same 3-principalization type H.4, but its second 3-class group 

2
3G K  is isomorphic to either 73 , 286 #1;2−  or 73 , 287 #1;2−  of order 38, 

and has the different IPAD ( ) ( )21 2 3= 1 ;32,1 , 21Kτ  
  . Results for this field will 

be given in [20].  
Theorem 7.14. (3-Class towers of type H.4 down to 43 10d > − × )  
Among the 6 imaginary quadratic fields ( )K d=   with type H.4 in 

Proposition 7.5,  
• the 3 fields ( %50 ) with discriminants  

{ }3896, 25447, 27355d ∈ − − −  

have the unique 3-class tower group 83 ,G  606  and 3-tower length  

3K = 3 ,  
• the 3 fields ( %50 ) with discriminants  
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{ }6583, 23428, 27991d ∈ − − −  

have a 3-class tower group of order at least 311 and 3-tower length  
{ }3 , ,K ∈ 3 4 .  

Proof. Using the technique of Fieker [46], extensions of absolute degrees 6 and 
54 were constructed in two steps, squeezing MAGMA [17] close to its limits. The 
resulting multi-layered iterated IPADs of second order ( )2 Kτ∗  were used for the 
identification, according to Table 5, resp. the more detailed theorem [[1], Thm. 
6.5, pp. 304-306].                                                  □ 

Table 6 shows the designation of the transfer kernel type, the IPOD 1G , 
and the iterated multi-layered IPAD of second order,  

( ) [ ]2
0 0 1 2 Lyr1

= ; ; ; ,
H G

G G H H Hτ τ τ τ τ∗ ∈
 
  

 

for sporadic 3-groups G  of type G.19 up to order 143G = , characterized by 
the logarithmic order, lo , and the SmallGroup identifier, id  [25] [26], resp. 
the relative identifier for lo 9≥ . To enable a brief reference for relative id- 
entifiers we put 

6: 3 ,57W = , since this group was called the non-CF group W  by Ascione 
[39] [38], 

8: 3 ,626Φ = , 8: 3 ,628Ψ = , and further 
8: 3 ,629Y = , 1 : #1;2Y Y= − , and 
8: 3 ,630Z = , 1 : #1;2Z Z= − , 2 : #2;7Z Z= − . 

The groups in Table 6 are represented by vertices of the tree diagram in 
Figure 7. Figure 7 visualizes sporadic 3-groups of Table 6 which arise as 3-class 
tower groups 3GG K∞=  of real quadratic fields )(= dK  , 0>d , with 3- 
principalization type G.19 and the corresponding minimal discriminants, resp. 
absolute frequencies in Theorem 7.16 and 7.17. 

The subtrees ( )#2;W i−  are finite and drawn completely for { }1,3,5i∈ , 
but they are omitted in the complicated cases { }2,4,6i∈ , where they reach 
beyond order 203 . 

For 24126593d = + , 12067−  and 54195− , we can only give the con- 
jectural location of G . 

7.12. Real Quadratic Fields of Type G.19 

Proposition 7.6 (Fields of type G.19 up to 710d <  [5] [24])  
In the range 70 10d< <  of fundamental discriminants d  of real quadratic 

fields ( )K d=  , there exist precisely 11  cases with 3-principalization type 
G.19, ( )1 2143K = , consisting of two disjoint 2-cycles. Their IPAD is 
uniformly given by ( ) ( )41 2= 1 ; 21Kτ  

  , in this range.  
Proof. The results of [[24], Tbl. 6.3, p. 452] were computed in 2010 by means 

of PARI/GP [14] using an implementation of our principalization algorithm, as 
described in [[24], 5, pp. 446-450]. The frequency 11 in the last column freq.of 
the first row concerns type G.19.                                     □ 

Theorem 7.15. (3-Class towers of type G.19 up to 710d < )  
The 11 real quadratic fields ( )K d=   in Proposition 7.6 with dis- 
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criminants  
{

}
214712,  943077,  1618493,  2374077,  3472653,  4026680,

       4628117,  5858753,  6405317,  7176477,  7582988

d ∈
 

have the unique 3-class tower group 7 63 , 3 ,57 #1;1G = − 311  and 3-tower 
length 3K = 3 .  

Proof. Extensions of absolute degrees 6 and 18 were constructed with 
MAGMA [17], using Fieker’s class field package [46]. The resulting uniform  

iterated IPAD of second order ( ) ( )( ) ( )( )33 32 2 4 2 4= 1 ; 21;1 , 1 , 21;1 ,Kτ  
  

2 21  was  

used for the identification of G , according to Table 6.                   □ 
Since real quadratic fields of type G.19 seemed to have a very rigid behaviour 

with respect to their 3-class field tower, admitting no variation at all, we were 
curious about the continuation of these discriminants beyond the range 710d < . 
Fortunately, M. R. Bush granted access to his extended numerical results for 

910d <  [42], and so we are able to state the following unexpected answer to our 
question “Is the 3-class tower group G  of real quadratic fields with type G.19 
and IPAD ( ) ( ) ( )41 2= 1 ; 21Kτ  

   always isomorphic to 73 , 311  in the Small- 
Groups Library?” 

Proposition 7.7. (Fields of type G.19 up to 75 10d < ×  [42]) In the range 
70 5 10d< < ×  of fundamental discriminants d  of real quadratic fields 

( )K d=  , there exist precisely 64 cases with 3-principalization type G.19, 
( )1 2143K = , and with IPAD ( ) ( )41 2= 1 ; 21Kτ  

  .  
Proof. Private communication by M. R. Bush [42].                     □ 
Theorem 7.16. (3-Class towers of type G.19 up to 75 10d < × )  
Among the 64 real quadratic fields ( )K d=   with type G.19 in 

Proposition 7.7,  
• the 11 fields with discriminants d  in Theorem 7.15 and the 44 fields with 

discriminants  

{10169729, 11986573, 14698056, 14836573, 16270305,    16288424,
       18195889, 19159368, 21519660, 21555097, 22296941,    22431068,
      24229337, 25139461, 26977089, 27696973, 29171832,    29523765,
      30019333

d ∈

, 31921420, 32057249, 33551305, 35154857,    35846545,
      36125177, 36409821, 37344053, 37526493, 37796984,    38691433,
      39693865, 40875944, 42182968, 42452445, 42563029,    43165432,
     43934584, 44839889, 44

}
965813, 45049001, 46180124,    46804541,

    46971381,         48628533

 

(that is, together 55 fields or 86%) have ( ) ( )( ) ( )( )33 32 2 4 2 4= 1 ; 21;1 , 1 , 21;1 ,Kτ  
  

2 21 ,  

the unique 3-class tower group 73 ,G  311 , and 3-tower length 3K = 3 ,  
• the 3 fields ( %5 ) with discriminants  

{ }21974161, 22759557, 35327365d ∈  

have IPAD of second order ( ) ( )( ) ( )( )33 32 2 4 2 4= 1 ; 21;1 , 1 , 21;1 ,Kτ  
 
 

23 21 , the  



D. C. Mayer 
 

171 

unique 3-tower group 83 ,G − − 629 #1;2 #1;1  of order 103 , and 3-tower 
length 3K = 3 ,  
• the 6 fields ( %9 ) with discriminants  

{ }24126593, 29739477, 31353229, 35071865, 40234205, 40706677d ∈  

have iterated IPAD of second order ( ) ( )( )432 2 4= 1 ; 21;1 ,Kτ  
 
 

221 , a 3-class tower  

group of order at least 83 , and 3-tower length { }3K ∈ 3,4, .  
Proof. Similar to the proof of Theorem 7.15, using Table 6, but now applied to 

the more extensive range of discriminants and various iterated IPADs of second 
order.                                                           □ 

7.13. Imaginary Quadratic Fields of Type G.19 

Proposition 7.8. (Fields of type G.19 down to 55 10d > − ×  [5] [24])  
In the range 55 10 0d− × < <  of fundamental discriminants d  of imaginary 

quadratic fields ( )K d=  , there exist precisely 46 cases with 3-princi- 
palization type G.19, ( )1 2143K = , consisting of two disjoint 2-cycles, and 
with IPAD ( ) ( )41 2= 1 ; 21Kτ  

  .  
Proof. The results of [[24], Tbl. 6.4, p. 452] were computed in 2010 by means 

of PARI/GP [14] using an implementation of our principalization algorithm, as 
described in [[24], 5, pp. 446-450]. The frequency 94 in the last column freq.of 
the first row concerns type G.19 in the bigger range 610 0d− < < . Reduced to 
the first half of this range, we have 46 occurrences.                       □ 

Theorem 7.17. (3-Class towers of type G.19 down to 55 10d > − × )  
Among the 46 imaginary quadratic fields ( )K d=   with type G.19 in 

Proposition 7.8,  
• the 30 fields (65%) with discriminants  

{ 12067, 49924, 60099, 83395, 86551,    93067,
     152355, 153771, 161751, 168267, 195080,   235491,
     243896, 251723, 283523, 310376, 316259,   337816,
     339459, 344823, 350483, 407983, 42148

d ∈ − − − − − −
− − − − − −
− − − − − −
− − − − −

}
3,    431247,

     433732, 442367, 444543, 453463, 458724,    471423
−

− − − − − −

 

have iterated IPAD of second order ( ) ( )( )432 2 4= 1 ; 21;1 ,Kτ  
 
 

221 . Conjecturally, 

 most of them have 3-class tower group 83 ,G − − 625 #1;2 #2;1 2  of order 
113 , and 3-tower length 3K = 3 , but 143G ≥  and 3 4K ≥  cannot be 

excluded.  
• The 7 fields (15%) with discriminants  

{ }54195, 96551, 104659, 133139, 222392, 313207, 420244d ∈ − − − − − − −  

have iterated IPAD of second order ( ) ( )( )432 2 4= 1 ; 21;1 ,Kτ  
 
 

22 1 , a 3-class  

tower group of order at least 113 , and 3-tower length { }3K ∈ 3,4, ,  
• the 7 fields (15%) with discriminants  
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{ }114936, 118276, 272659, 317327, 328308, 339563, 485411d ∈ − − − − − − −  

have iterated IPAD of second order ( ) ( )( )432 2 4= 1 ; 21;1 ,Kτ  
 
 

231 , a proven  

3-tower group 83 ,G − − 629 #1;2 #2;1 2  of order 113 , and 3-tower length 

3K = 3 ,  
• the unique field with discriminant 91643d = −  has iterated IPAD of second  

order ( ) ( )( ) ( )( )
2 23 32 2 4 4= 1 ; 21;1 , , 21;1 ,Kτ  

 
 

32 321 , unknown 3-tower group  

and 3-tower length 3 3K ≥ ,  
• the unique field with discriminant 221944d = −  has iterated IPAD of  

second order ( ) ( )( )432 2 4= 1 ; 21;1 ,Kτ  
 
 

23 1 , but unknown 3-tower group and  

3-tower length 3 3K ≥ .  
Proof. Similar to the proof of Theorem 7.15, using Table 6, but now applied to 

the different range of discriminants and various iterated IPADs of second order.  
□ 

8. Imaginary Quadratic Fields of Type (3,3,3) and  
Multi-Layered IPADs 

In the final section §7 of [1], we proved that the second 3-class groups 
2
3G K=M  of the 14 imaginary quadratic fields ( )K d=   with fundamental 

discriminants 710 0d− < <  and 3-class group ( )3Cl K  of type (3,3,3) are 
pairwise non-isomorphic [[1], Thm. 7.1, p. 307]. For the proof of this theorem in 
[[1], §7.3, p. 311], the IPADs of the 14 fields were not sufficient, since the three 
fields with discriminants  

{ }4447704, 5067967, 8992363d ∈ − − −  

share the common accumulated (unordered) IPAD  

( ) [ ] ( ) ( )5 71 3 2 4 2 2
0 1= ; = 1 ;32 1; 21 , 2 1 .K K Kτ τ τ  

  
 

To complete the proof we had to use information on the occupation numbers 
of the accumulated (unordered) IPODs, 

( ) ( )6 2
1 = 1,2,6, 8 ,9, 10 ,13K  

   with maximal occupation number 6 for  
4447704d = − , 

( ) ( ) ( ) ( )2 2 2 2
1 = 1,2, 3 , 4 ,6, 7 ,8, 9 ,12K  

   with maximal occupation number 2 
for 5067967d = − , 

( ) ( ) ( ) ( )2 2 3 3
1 = 2 ,5,6,7, 9 , 10 , 12K  

   with maximal occupation number 3 for 
8992363d = − . 

Meanwhile we succeeded in computing the second layer of the transfer target 
type, 2Kτ , for the three critical fields with the aid of the computational algebra 
system MAGMA [17] by determining the structure of the 3-class groups 3Cl L  
of the 13 unramified bicyclic bicubic extensions L K  with relative degree 
[ ] 2: = 3L K  and absolute degree 18. In accumulated (unordered) form the 
second layer of the TTT is given by 
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( ) ( ) ( )2 3 35 2 5 5 3 2 5 4 4 2 5 2 7 3 5
2 = 32 1 ;4321 ;2 1 , 3 21 ;2 1 ,32 1 ; 2 1 , 2 1Kτ  

  
 for  

4447704d = − , 

( ) ( )3 82 2 4 2 5 2 5 3 5
2 = 3 2 1 ; 3 21 ;32 1 ; 2 1Kτ  

  
 for 5067967d = − , and 

( ) ( )3 62 6 2 5 4 4 2 5 2 7 3 5
2 = 32 1 , 3 21 ;2 1 ,32 1 ;2 1 , 2 1Kτ  

  
 for 8992363d = − . 

These results admit incredibly powerful conclusions, which bring us closer to 
the ultimate goal to determine the precise isomorphism type of 2

3G K . Firstly, 
they clearly show that the second 3-class groups of the three critical fields are 
pairwise non-isomorphic without using the IPODs. Secondly, the component 
with the biggest order establishes an impressively sharpened estimate for the 
order of 2

3G K  from below. The background is explained by the following 
lemma. 

Lemma 8.1. Let G  be a finite p-group with abelianization G G′  of type 
( ), ,p p p  and denote by ( ) ( )( )lo : ordlogp pG G=  the logarithmic order of G  
with respect to the prime number p. Then the abelianizations H H ′  of 
subgroups H G<  in various layers of G admit lower bounds for ( )lo p G :  

1) ( ) ( ){ }1lo 1 max lo Lyrp pG H H H G′≥ + ∈ .  
2) ( ) ( ){ }2lo 2 max lo Lyrp pG H H H G′≥ + ∈ .  

3) ( ) ( )lo 3 lop pG G G′ ′′≥ + , and in particular we have an equation 
( ) ( )lo 3 lop pG G′= +  if G  is metabelian.  

Proof. The Lagrange formula for the order of G  in terms of the index of a 
subgroup H G≤  reads  

( ) ( ) ( )ord : ord ,G G H H= ⋅  

and taking the p-logarithm yields  

( ) ( )( ) ( )lo : lo .logp ppG G H H= +  

In particular, we have ( )( ) ( ): = =log log n
p pG H p n  for LyrnH G∈ , 

0 3n≤ ≤ , and again by the Lagrange formula  

( ) ( ) ( ) ( )ord : ord : ,H H H H H H′ ′ ′= ⋅ ≥  

respectively  

( ) ( )( ) ( ) ( )lo : lo lo ,logp p ppH H H H H H′ ′ ′= + ≥  

with equality if and only if 1H ′ = , that is, H  is abelian. 
Finally, G  is metabelian if and only if G′  is abelian.                 □ 
Let us first draw weak conclusions from the first layer of the TTT, i.e. the 

IPAD, with the aid of Lemma 8.1. 
Theorem 8.1. (Coarse estimate [1])  
The order of 2

3G K=M  for the three critical fields K is bounded from below 
by ( ) 9ord 3≥M . If the maximal subgroup H <M  with the biggest order of 
H H ′  is abelian, i.e. 1H ′ = , then the precise logarithmic order of M  is 
given by ( )3lo 9=M .  

Proof. The three critical fields with discriminants  
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{ }4447704, 5067967, 8992363d ∈ − − −  share the common accumulated IPAD  
( ) [ ] ( ) ( )( )5 71 3 2 4 2 2

0 1= ; = 1 ; 32 1; 21 , 2 1K K Kτ τ τ  
  

. 

Consequently, Lemma 8.1 yields a uniform lower bound for each of the three 
fields:  

( ) ( ){ } ( )2
3 3 1 3lo 1 max lo Lyr 1 lo 32 1 1 3 2 2 1 9.H H H′≥ + ∈ = + = + + × + =M M  

The assumption that a maximal subgroup U <M  having not the biggest 
order of U U ′  were abelian (with U U U′

 ) immediately yields the con- 
tradiction that  

( ) ( )( ) ( ) ( )
( ){ } ( )

3 3 33

3 1 3

lo : lo 1 lolog

1 max lo Lyr lo .

U U U U

H H H

′= + = +

′< + ∈ ≤

M M

M M
 

□ 
It is illuminating that much stronger estimates and conclusions are possible by 

applying Lemma 8.1 to the second layer of the TTT. 
Theorem 8.2. (Finer estimates)  
None of the maximal subgroups of 2

3G K=M  for the three critical fields K 
can be abelian. 

The logarithmic order of M  is bounded from below by 
( )3lo 17≥M  for 4447704d = − , 
( )3lo 16≥M  for 5067967d = − , 
( )3lo 15≥M  for 8992363d = − .  

Proof. As mentioned earlier already, computations with MAGMA [17] have 
shown that the accumulated second layer of the TTT is given by 

( ) ( ) ( )2 3 35 2 5 5 3 2 5 4 4 2 5 2 7 3 5
2 = 32 1 ;4321 ;2 1 , 3 21 ;2 1 ,32 1 ; 2 1 , 2 1Kτ  

  
 for  

4447704d = − , 

( ) ( )3 82 2 4 2 5 2 5 3 5
2 = 3 2 1 ; 3 21 ;32 1 ; 2 1Kτ  

  
 for 5067967d = − , and 

( ) ( )3 62 6 2 5 4 4 2 5 2 7 3 5
2 = 32 1 , 3 21 ;2 1 ,32 1 ;2 1 , 2 1Kτ  

  
 for 8992363d = − . 

Consequently the maximal logarithmic order  
( ){ }3 2: max lo LyrM H H H′= ∈ M  is 

( )5 2
3lo 32 1 3 5 2 2 1 15M = = + × + × =  for 4447704d = − , 

( )2 2 4
3= lo 3 2 1 = 2 3 2 2 4 1 = 14M × + × + ×  for 5067967d = − , 
( )2 6

3lo 32 1 3 2 2 6 1 13M = = + × + × =  for 8992363d = − . 
According to Lemma 8.1, we have  
( ) ( ){ }3 3 2lo 2 max lo Lyr 2H H H M′≥ + ∈ = +M M . 

Finally, if one of the maximal subgroups of M  were abelian, then Theorem 
8.1 would give the contradiction that ( )3lo 9=M .                      □ 

Unfortunately, it was impossible for any of the three critical fields K to 
compute the third layer of the TTT, 3Kτ , that is the structure of the 3-class 
group of the Hilbert 3 -class field 1

3F K  of K, which is of absolute degree 54. 
This would have given the precise order of the metabelian group  
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( )2 2
3 3G Gal FK K K= =M , according to Lemma 8.1, since  

( ) ( )2 1 1
3 3 3 3Gal F F Cl FK K K′ = M . 

We also investigated whether the complete iterated IPAD of second order, 
( )2τ M , is able to improve the lower bounds in Theorem 8.2 further. It turned 

out that, firstly none of the additional non-normal components of ( )
11 LyrHHτ

∈ M
 

seems to have bigger order than the normal components of 2τ M , and secondly, 
due to the huge 3-ranks of the involved groups, the number of required class 
group computations enters astronomic regions. 

To give an impression, we show the results for five of the 13 maximal 
subgroups in the case of 4447704d = − : 

( ) ( ) ( ) ( ) ( )3 3 9 241 2 2 5 2 3 5 2 2 4 2 2
1 = 2 1 ; 32 1 ; 2 1 ; 3 21 ; 321 , 32 1Hτ  

  
, with 40 components, 

( ) ( ) ( ) ( )3 33 811 4 5 2 5 3 4 4 2 7 6 4 2
2 = 21 ; 32 1 ;2 1 ;2 1 ;2 1 ; 31 , 321 ; 321Hτ  

  
, with 121  

components, 
( ) ( ) ( ) ( ) ( ) ( )2 3 6 3 241 2 2 5 2 2 5 2 7 5 2 3 2 2 2 2

3 = 2 1 ; 32 1 ;32 1 ; 2 1 ; 321 , 32 1 , 3 21 , 32 1Hτ  
  

, with 
40 comp., 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 6 6 6 9 91 2 5 2 5 2 5 3 4 2 3 2 3 2
4 = 32 1; 32 1 ;4321 ; 3 21 ; 4321 ; 431 , 3 21 , 4321 , 3 1Hτ  

  
,
 

40 comp., 
( ) ( )361 2 2 2 5 2 5 4 4 3 5 3

5 = 2 1 ; 3 21 ;32 1 ,2 1 ;2 1 ; 321Hτ  
  

, with 40 components. 
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Appendix: Corrigenda in [5] [24] [29]  

1) The restriction of the numerical results in Proposition 7.1 to the range 
70 10d< <  is in perfect accordance with our machine calculations by means of 

PARI/GP [14] in 2010, and thus provides the first independent verification of 
data in [5] [24] [29]. 

However, in the manual evaluation of this extensive data material for the 
ground state of the types a.1, a.2, a.3, and a.3*, a few errors crept in, which must 
be corrected at three locations: in the tables [[5], Tbl. 2, p. 496] and [[24], Tbl. 
6.1, p. 451], and in the tree diagram [[29], Fig. 3.2, p. 422]. 

The absolute frequency of the ground state is actually given by  
1382 instead of the incorrect 1386 for the union of types a.2 and a.3,  
698 instead of the incorrect 697 for type a.3*,  
2080 instead of the incorrect 2083 for the union of types a.2, a.3, and a.3*, and  
150 instead of the incorrect 147 for type a.1. 
(The three discriminants { }7643993,7683308,8501541d ∈  were erroneously 

classified as type a.2 or a.3 instead of a.1.) 
In the second table, two relative frequencies (percentages) should be updated: 
1382 60.0%
2303

≈  instead of 
1386 60.2%
2303

≈  and 

698 30.3%
2303

≈  instead of 
697 30.3%
2303

≈ .  

2) Incidentally, although it does not concern the section a of IPODs, the single 
field with discriminant 2747001d =  was erroneously classified as type c.18, 

( )1 0313= , instead of H.4, ( )1 3313= . This has consequences at four 
locations: in the tables [[5], Tbl. 4-5, pp. 498-499] and [[24], Tbl. 6.5, p. 452], 
and in the tree diagram [[29], Fig. 3.6, p. 442]. 

The absolute frequency of these types is actually given by 
28 instead of the incorrect 29 for type c.18 (see also [23], Prop. 7.2]), 
4 instead of the incorrect 3 for type H.4. 
In the first two tables, the total frequencies should be updated, corres- 

pondingly: 
207 instead of the incorrect 206 in [[5], Tbl. 4, p. 498], 
66 instead of the incorrect 67 in [[5], Tbl. 5, p. 499]. 



 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact apm@scirp.org            

http://papersubmission.scirp.org/
mailto:apm@scirp.org

	Criteria for Three-Stage Towers of -Class Fields
	Abstract
	Keywords
	1. Introduction
	2. Index- Abelianization Data
	3. The -Principalization Type
	4. The Artin Transfer Pattern
	5. All Possible IPADs of 3-Groups of Type (3,3) 
	6. Tables and Figures of Possible 3-Groups  and 
	6.1. Tables
	6.2. Figures

	7. 3-Class Towers of Quadratic Fields and Iterated IPADs of Second Order
	7.1. 3-Groups  of Coclass 
	7.2. Real Quadratic Fields of Types a.1, a.2 and a.3
	7.3. 3-Groups G of Coclass  Arising from 
	7.4. Parametrized IPADs of Second Order for the Coclass Tree 
	7.5. Number Fields with IPOD of Type E.6 or E.14
	7.6. 3-Groups G of Coclass  Arising from 
	7.7. Parametrized IPADs of Second Order for the Coclass Tree 
	7.8. Number Fields with IPOD of Type E.8 or E.9
	7.9. Sporadic 3-Groups G of Coclass 
	7.10. Real Quadratic Fields of Type H.4
	7.11. Imaginary Quadratic Fields of Type H.4
	7.12. Real Quadratic Fields of Type G.19
	7.13. Imaginary Quadratic Fields of Type G.19

	8. Imaginary Quadratic Fields of Type (3,3,3) and Multi-Layered IPADs
	Acknowledgements
	Funding
	References
	Appendix: Corrigenda in [5] [24] [29] 

