
Advances in Pure Mathematics, 2016, 6, 455-480
Published Online May 2016 in SciRes. http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2016.66033

A Back Propagation-Type Neural Network
Architecture for Solving the Complete n × n
Nonlinear Algebraic System of Equations
Konstantinos Goulianas1, Athanasios Margaris2, Ioannis Refanidis3,
Konstantinos Diamantaras1, Theofilos Papadimitriou4
1TEI of Thessaloniki, Department of Informatics, Thessaloniki, Greece
2TEI of Larissa, Department of Computer Science and Engineering, Larissa, Greece
3Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
4Department of Economics, Democritus University of Thrace, Komotini, Greece

Received 6 April 2016; accepted 28 May 2016; published 31 May 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
The objective of this research is the presentation of a neural network capable of solving complete
nonlinear algebraic systems of n equations with n unknowns. The proposed neural solver uses the
classical back propagation algorithm with the identity function as the output function, and sup-
ports the feature of the adaptive learning rate for the neurons of the second hidden layer. The pa-
per presents the fundamental theory associated with this approach as well as a set of experimen-
tal results that evaluate the performance and accuracy of the proposed method against other me-
thods found in the literature.

Keywords
Nonlinear Algebraic Systems, Neural Networks, Back Propagation, Numerical Analysis,
Computational Methods

1. Introduction
The estimation of the roots associated with nonlinear algebraic systems has been a major area of research in ap-
plied mathematics [1] as well as in other disciplines and fields of human knowledge such as physics [2], chemi-
stry [3], economics [4], engineering [5], mechanics, medicine and robotics. This research focuses on solving
complete nonlinear algebraic systems of n equations with n unknowns using feed forward neural networks

How to cite this paper: Goulianas, K., Margaris, A., Refanidis, I., Diamantaras, K. and Papadimitriou, T. (2016) A Back Prop-
agation-Type Neural Network Architecture for Solving the Complete n × n Nonlinear Algebraic System of Equations. Ad-
vances in Pure Mathematics, 6, 455-480. http://dx.doi.org/10.4236/apm.2016.66033

http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2016.66033
http://dx.doi.org/10.4236/apm.2016.66033
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

K. Goulianas et al.

trained with the back propagation algorithm. The novel feature of the proposed method is the adaptive learning
rate that allows the neural processing elements of a layer to work under different conditions. Another interesting
feature of the presented neural solver is the fact that the components of the identified roots are not associated
with the outputs of the neural network, as in other methods but with the weights of the synapses joining the first
and the second layer.

The paper is organized as follows. Section 2 presents the formulation of the problem to be solved, namely, the
structure of the complete n × n nonlinear algebraic system and the classical solution methods with their advan-
tages and disadvantages. Section 3 presents a review of the related work that tries to deal with the problems as-
sociated with the classical methods. The methods presented here are based on a lot of different approaches such
as simulated annealing, genetic algorithms and neural networks, and a short description is given for each one of
them. Sections 4 and 5 present the proposed neural system, the rationale behind its structure and its mathemati-
cal description together with its convergence analysis. Section 6 presents the experimental results emerged from
its application on solving sample nonlinear example systems borrowed from the literature. These results are
compared against those emerged by applying other methods and then, the accuracy and the performance of the
proposed neural solver are evaluated. Finally, Section 7 presents the conclusions of this research and discusses
topics associated with a potential future work on this subject.

2. Problem Formulation
As it is well known from the basic principles of nonlinear algebra, a nonlinear system of n equations with n un-
knowns is defined as

()
()
()

()

1 1 2 3

2 1 2 3

3 1 2 3

1 2 3

, , , , 0

, , , , 0

, , , , 0

, , , , 0

n

n

n

n n

f x x x x

f x x x x

f x x x x

f x x x x

=

=

=

=











 (1)

or in vector form

() = 0F x (2)

where ()T
1 2 3, , , , nf f f f=F  is the vector of the nonlinear functions () ()1 2 3, , , ,i i nf f x x x x= x each one of

them being defined in the space of all real valued continuous functions { }1 ,n n
i ii Rα β

=
Ω = ⊂∏ and

()T
1 2 3, , , , nx x x x=x  (3)

is the vector of the system solutions (or roots). For the case of constant (namely non functional) coefficients, the
above equations can also expressed as [6]

() 1 2

1 2
1 2, , ,

0si
si

si

n j j j
i i j j j

j j j
f A x x x…

…

= … =∑x (4)

()1,2, ,i n=  , where ()1 2, , , ns s s are the degrees of the above equations. It can be proven that this system
has one non-vanishing solution (that is, at least one 0jx ≠) if and only if the equation

{ }1 2

1 2, , , 0si
n

j j j
s s s iAℜ =



 (5)

holds, with the function ℜ to express the system resultant, a straightforward generalization of the determinant
of a linear system. This function is a polynomial of the coefficients of A of degree

()1 2 1 2, , , , , ,
1

n n

n

s s s A s s s j
i j i

d deg s
= ≠

 
= ℜ =  

 
∑ ∏

 

 (6)

When all degrees coincide, that is, 1 2 ns s s s= = = = , the resultant |n sℜ is reduced to a simple polynomial of
degree () 1

| |
n

n s A n sd deg ns −= ℜ = and it is described completely by the values of the parameters n and s. It can

456

K. Goulianas et al.

be proven that the coefficients of the matrix A, which is actually a tensor for n > 2, are not all independent to
each other. More specifically, for the simple case 1 2 ns s s s= = = = , the matrix A is symmetric in the last s
contra variant indices and it contains only |n snM independent coefficients, where

()
()|

1
1 ! !n s

n s
M

n s
+ −

=
−

 (7)

Even though the notion of the resultant has been defined for homogenous nonlinear equations, it can also de-
scribe non-homogenous algebraic equations as well. In the general case, the resultant ℜ satisfies the nonlinear
Cramer rule

() (){ }1 2, , , 0
n

k
s s s kA Zℜ =



 (8)

where kZ is the thk component of the solution of the no homogenous system, and ()kA is the thk column of
the coefficient matrix A.

The classical method for solving the nonlinear system defined above is the well known Newton’s method [7]
that allows the approximation of the function ()F x by its first order Taylor expansion in the neighborhood of
a point ()T

1 2 3, , , , n
nx x x x R= ∈x  . This is an iterative method that uses as input an initial guess

() () () () T
0 1 2 30 , 0 , 0 , , 0nx x x x=   x  (9)

and generates a vector sequence { }1 2, , , ,kx x x  , with the vector kx associated with the thk iteration of
the algorithm, to be estimated as

() ()1
1 1 1k k k k

−
− − −= −x x J x F x (10)

where () n n
k R ×∈J x is the Jacobian matrix of the function ()T

1 2, , , nf f f= F estimated at the vector xk.
Even though the method converges fast to the solution provided that the initial guess (namely the starting point
x0) is a good one, it is not considered as an efficient algorithm, since it requires in each step the evaluation (or
approximation) of n2 partial derivatives and the solution of an n × n linear system. A performance evaluation of
the Newton’s method as well as other similar direct methods, shows that these methods are impractical for large
scale problems, due to the large computational cost and memory requirements. In this work, besides the classical
Newton’s method, the fixed Newton’s method was also used. As it is well known, the difference between these
variations is the fact that in the fixed method the matrix of derivatives is not updated during iterations, and
therefore the algorithm uses always the derivative matrix associated with the initial condition x0.

An improvement to the classical Newton’s method can be found in the work of Broyden [8] (see also [9] as
well as [10] for the description of the secant method, another well known method of solution), in which the
computation at each step is reduced significantly, without a major decrease of the convergence speed; however,
a good initial guess is still required. This prerequisite is not necessary in the well known steepest descent method,
which unfortunately does not give a rapidly convergence sequence of vectors towards the system solution. The
Broyden’s methods used in this work are the following:
• Broyden method 1. This method allows the update of the Jacobian approximation Bi during the step i in a

stable and efficient way and is related to the equation

() T
1

1 T
i i i i

i i
i i

B
B B

δ δ
δ

−
−

∆ −
= +

∆
 (11)

where i and 1i − are the current and the previous steps of iterative algorithm, and furthermore we define,
() ()1i i if x f x −∆ = − and 1i i ix xδ −= − .

• Broyden method 2. This method allows the elimination of the requirement of a linear solver to compute the
step direction and is related to the equation

() T
1 1

1 T
1

i i i i i
i i

i i i

B B
B B

B
δ δ

δ
− −

−
−

− ∆
= +

∆
 (12)

with the parameters of this equation to be defined as previously.

457

K. Goulianas et al.

3. Review of Previous Work
According to the literature [11], the solution approaches for the nonlinear algebraic systems can be classified in
two categories, namely the interval methods that are robust but too slow regarding their execution time, and the
continuation methods that are suitable for problems where the total degree is not too high. The last years, a lot of
different methods have been developed, in an attempt to overcome the limitations imposed by the classical algo-
rithms and the related methods described above. An interesting and well known class of such methods, is the
family of the ABS methods [12] that use a generalization of the projection matrices known as Abaffians ([13]
[14], as well as [15] where the ABS methods are used in conjunction with the quasi-Newton method). There are
also many other methods that are based on a lot of different approaches and tools, that among others include ge-
netic algorithms [16] [17], invasive weed optimization and stochastic techniques [18] [19], fuzzy adaptive simu-
lated annealing [20], measure theory [21], as well as neural networks [22] [23] and chaos optimization tech-
niques [24]. The most important and recent of those methods are presented below.

Ren et al. [16] use a genetic algorithm approach to solve nonlinear systems of equations, in which a popula-
tion of candidate solutions (known as individuals or phenotypes) to an optimization problem is evolved towards
better solutions. Each candidate solution is associated with a set of properties (known as chromosomes or geno-
types) that can be mutated and altered. In applying this algorithm, a population of individuals is randomly se-
lected and evolved in time forming generations, whereas a fitness value is estimated for each one of them. In the
next step, the more fit individuals are selected via a stochastic process and their genomes are modified to form a
new population that is used in the next generation of the algorithm. The procedure is terminated when either a
maximum number of generations has been produced, or a satisfactory fitness level has been reached.

In the work of Ren et al., the objective function ()F x to be minimized is the average of the absolute values
of the functions ()if x ()1,2, ,i n=  , while the fitness function is defined as () () 1

1g
−

= +  x F x and in
such a way, that the fitness value to be bigger if the point ()1 2 3, , , , nx x x x is closer to the solution *x of the
problem. To improve the efficiency of this algorithm, it is mixed with the Newton’s method. On the other hand,
El-Emary & El-Kareen [17] use a similar approach but their objective function is the maximum absolute value
of the functions ()if x ()1,2, ,i n=  . For other approaches of solving nonlinear systems using genetic algo-
rithms (see [25] and [26]).

Pourjafari & Mojallali [18] attempt to solve a nonlinear system of equations via invasive weed optimization, a
method that allows the identification of all real and complex roots as well as the detection of multiplicity. This
optimization comprise four stages, namely 1) an initialization stage where a finite number of seeds are being
dispread randomly on the n-dimensional search area as the initial solutions, 2) a reproduction stage where each
plant is allowed to reproduce seeds based on its fitness with the number of seeds to increase linearly from the
minimum possible seed production for the worst fitness, to the maximum number of seeds corresponding to the
maximum fitness in the colony, 3) a spatial dispersal stage where the produced seeds are randomly distributed in
the search space, such that they abide near to the parent plant by normal distribution with zero mean and varying
variance and 4) a competitive exclusion, where undesirable plants with poor fitness are eliminated, whereas fit-
ter plants are allowed to reproduce more seeds. This method is applied to the global optimization problem

() ()1 2 3
1

min , , , ,
i

n

i nx i
y f x x x x

=

= ∑x  (13)

with the root finding process to be composed of two phases, namely a global search where plants abandon non-
minimum points vacant and settle down around minima, and an exact search where the exact locations of roots
are determined via a clustering procedure that cluster plants around each root; in this way, the search is restricted
only to that clusters.

Oliveira and Petraglia [20] attempt to solve nonlinear algebraic systems of equations via stochastic global op-
timization. The original problem is transformed into a global optimization one, by synthesizing objective func-
tions whose global minima (if they exist) are also solutions to the original system. The global minimization is
performed via the application of a fuzzy adaptive simulated annealing stochastic process, triggered from differ-
ent starting points in order to find as many solutions as possible. In the method of Oliveira and Petraglia, the ob-
jective function ()C x is defined as the sum of the absolute values of the component functions ()if x and
then it is submitted to the fuzzy adapted simulated annealing algorithm in an attempt to identify solutions for the
above optimization problem. The algorithm is an iterative one and stops when an appropriately defined global

458

K. Goulianas et al.

error falls under a predefined tolerance value.
Effati and Nazemi [21] solved nonlinear algebraic systems of equations using the so-called measure theory, a

tool capable of dealing with optimal control problems. In applying this theory, an error function is defined, the
problem under consideration is transformed to an optimal control problem associated with the minimization of a
linear functional over a set of Radon measures. In the next step, the optimal measure is approximated by a finite
combination of atomic measures, the problem is converted approximately to a finite dimensional nonlinear pro-
gramming and finally an approximated solution of the original problem is reached, together with a path leading
from the initial problem to the approximate solution. On the other hand, Grosan and Abraham [27] deal the sys-
tem of nonlinear equations as a multi-objective optimization problem. This problem tries to optimize the func-
tion ()F x subjected to a restriction in the form ()1 2 3, , , , nx x x x= ∈Ωx where mRΩ⊂ is the solution
search space. The algorithm proposed by Grosan and Abraham is an evolutionary computational technique con-
sisting of an initialization and an optimization phase, with each one of the system equations to represent an ob-
jective function whose goal is to minimize the difference between the right and the left terms of the correspond-
ing equation.

Liu et al. [28] used for solving nonlinear algebraic systems a variant of the population migration algorithm
[29] that uses the well-known quasi-Newton method [9]. In applying the PAM algorithm to this problem, the
optimization vector x corresponds to the population habitual residence, the objective function () ()if= ∑F x x

corresponds to the attractive place of residuals, whereas the global (local) optimal solution of the problems, cor-
responds to the most attractive (the beneficial) areas. Furthermore, the population flow corresponds to the local
random search of the algorithm, while the population migration corresponds to the way of choosing solutions.
The quasi-Newton variation of this approach, starts with a set of N uniformly and randomly generated points,
and through an iterative procedure moves the most attract point to the center of the search region and shrinks
that region until a criterion has been satisfied. At this point, the solution has been found.

The last family of methods used for the identification of nonlinear algebraic system roots is based to the use
of neural network techniques. Typical examples of these methods include the use of recurrent neural networks
[22] for the neural based implementation of the Newton’s method with the estimation of the Jacobian system
matrix to be based on the properties of the sigmoidal activation functions of the output neurons, the use of the
back propagation neural networks [30] for the approximation of the inverse function ()1−F x , as well as the
neural computation method of Meng and Zeng [23] that uses an iterative algorithm and tries to minimize the ob-
jective function

()2

1

1
2

n

i
J e k

=

= ∑ (14)

where ()e k is an error function associated with the thk iteration of the algorithm, defined by the equation
() ()1 2, , ,k ne k f x x x= −  . Interesting methods for solving nonlinear algebraic systems using Hopfield neural

networks and related structures can also be found in [31] and [32].
Margaris, Goulianas and Adamopoulos [33] constructed four-layered feed forward neural nonlinear system

solvers trained by the back propagation algorithm that uses fixed learning rate. The networks have been de-
signed in such a way that the total input to a summation unit of the output layer to be equal to the left-hand side
of the corresponding equation of the nonlinear system. In this way, the network is trained to generate the roots of
the system, one root per training, with the components of the estimated root to be the variable weights of the
synapses joining the unique input of the network with the n neurons of the first hidden layer, where n is the di-
mension of the non linear system. This network has been tested successfully in solving 2 × 2 [34] as well as 3 ×
3 nonlinear systems [35]. Continuing this line of research, this paper generalizes earlier solvers for the general
case of n × n nonlinear systems. This generalization is not restricted only to the dimension of the neural solver
but it is extended to the form of the system (since it is capable of solving nonlinear systems of arbitrary equa-
tions and not only polynomial equations as its predecessors) whereas also supports the feature of an adaptive
learning rate for the network neurons. The analytic description, simulation and performance evaluation of this
neural architecture, is presented in the subsequent sections.

4. A Generalized Neural Nonlinear System Solver
In order to understand the logic behind the proposed method let us consider the complete 2 × 2 nonlinear alge-

459

K. Goulianas et al.

braic system of equations

() 2 2
1 11 13 12 14 15 16, 0F x y x xy y x yα α α α α α= + + + + − =

() 2 2
2 21 23 22 24 25 26, 0F x y x xy y x yα α α α α α= + + + + − =

and the neural network of Figure 1. It is not difficult to note, that the outputs of the two output layer neurons are
the functions ()1 ,F x y and ()2 ,F x y . These outputs are equal to zero if the values of the synaptic weights x
and y are the roots of the nonlinear algebraic system, otherwise they are associated with a non zero value.
Therefore, to estimate the system roots the two constant terms 16α and 26α are attached to the output neurons
in the form of bias units and the hyperbolic tangent function is selected as their output function. Keeping in
mind that the hyperbolic tangent of a zero value is the zero value, it is obvious that if we train the network using
the vector []T0,0 as the desired output vector and the vector () () T

1 2, , ,F x y F x y   as the real output vector
associated with each training cycle, then, after successful training, the variable synaptic weights x and y will
contain by construction the components of one of the system roots. The same idea is used for the solution of the
complete 3 × 3 nonlinear algebraic system studied in [35].

The neural solver for the complete n × n nonlinear algebraic system is based exactly on the same logic, but
there are also some new features that are not used in [34] and [35]. The most important feature is that the activa-
tion functions of the third layer neurons can be any function (such as trigonometric or exponential function) and
not just a polynomial one, as in [34] and [35], a feature that adds another degree of nonlinearity and allows the
network to work correctly and with success, even though the activation function of the output neurons is a sim-
ple linear function. In this work, for the sake of simplicity this function is the identity function, while the case of
the hyperbolic tangent function is a subject of future research. To allow a better formulation of the problem, the
nonlinear function ()iF x associated with the thi equation of the system ()1,2, ,i n=  is considered as a
vector function in the form

() () () () ()1 2 3, , , ,
ii i i i ikf f f f =  F x x x x x (15)

()1,2,3, ,i n=  where ik is the number of the function components ijf ()1,2,3, , ij k=  associated with
the vector function ()i xF ()1,2, ,i n=  . Using this formalism the complete nonlinear algebraic system of n
equations with n unknowns is defined as

Figure 1. The structure of neural network that solves the complete nonlinear alge-
braic system of two equations with two unknowns.

460

K. Goulianas et al.

() () () ()
() () () () ()

() () () () ()

1 1

2 2

1 1 1 2 11 11 12 12 1, 1, 1

2 2 1 2 21 21 22 22 2, 2, 2

1 2 1 1 2 2 , ,

() , , , = 0

, , , 0

, , , 0
n n

n k k

n k k

n n n n n n n n k n k n

x x x f f f

x x x f f f

x x x f f f

α α α β

α α α β

α α α β

= = + + + −

= = + + + − =

= = + + + − =

F x F x x x

F x F x x x

F x F x x x

 

 



 

and its solution is the vector ()T
1 2, , , n

nx x x R= ∈x  . Even though in this case the problem is defined in the
field R of real numbers, its generalization in the field C of complex numbers is straightforward.

The neural network architecture that is capable of solving the general case of a n × n nonlinear system of
algebraic equations, is shown in Figure 2 and is characterized by four layers with the following structure:
• Layer 1 is the single input layer.
• Layer 2 contains n neurons each one of them is connected to the input of the first layer. The weights of the n

synapses defined in this way, are the only variable weights of the network. During network training their
values are updated according to the equations of the back propagation and after a successful training these
weights contain the n components of a system root

()1 2 3, , , , nx x x x

• Layer 3 is composed of n blocks of neurons with the th block containing k


 neurons, namely, one neu-
ron for each one of the k



 functions associated with the th equation of the nonlinear system. The neurons
of this layer, as well as the activation functions associated with them, are therefore described using the
double index notation (), j for values ()1,2, , n=  and ()1,2, ,j k=



 . This is a convenient way of
description since a single numbering of all neurons requires the use of the MOD operator and adds further
and unnecessary complexity to the mathematical description of the problem.

• Layer 4 contains an output neuron for each equation, namely, a total number of n neurons that use the iden-
tity function ()y f x x= = as the activation function.

Figure 2. The proposed neural network architecture.

461

K. Goulianas et al.

One the other hand, the matrices of the synaptic weights follow the logic used in [34] and [35] and they are
defined as follows: The matrix

() () () []1 2
12 12 12 12 1 2, , , , , ,n

nx x x = = W W W W 

is the only variable weight matrix, whose elements (after the successful training of the network) are the compo-
nents of one of the system roots, or in a mathematical notation ()

12
i

ix=W ()1,2, ,i n=  .
The matrix W23 is composed of n rows with the ith row to be associated with the variable ix ()1,2, ,i n=  .

The values of this row are the weights of the synapses joining the ith neuron of the second layer with the com-
plete set of neurons of the third layer. There is a total number of

1 2 nk k k k= + + +

neurons in this layer and therefore the dimensions of the matrix W23 are ()1 2 nn k n k k k× = × + + + . Regarding
the values of these weights they have a value of unity if the function , jf



 is a function of xi, otherwise they
have a zero value. Therefore, we have

() (),,
23

1, if

0, otherwise.
j ii j f g x == 


W 


1, 2, ,
1, 2, ,
1, 2, ,

i n
n

j k

=
=
=





 



 (16)

Finally, the matrix W34 has dimensions

()1 2 nk n k k k n× = + + + ×

with elements

(),
34

j
jα=W  



1, 2, ,
1, 2, ,

n
j k
=
=



 



 (17)

The figure shows only the synapses with a nonzero weight value.
Since the unique neuron of the first layer does not participate in the calculations, it is not included in the index

notation and therefore if we use the symbol u to describe the neuron input and the symbol v to describe the neu-
ron output, the symbols u1 and v1 are associated with the n neurons of the second layer, the symbols u2 and v2 are
associated with the k neurons of the third layer and the symbols u3 and v3 are associated with the n neurons of
the third (output) layer. These symbols are accompanied by additional indices that identify a specific neuron in-
side a layer and this notation is used throughout the remaining part of the paper.

4.1. Building the Back Propagation Equations
In this section we build the equations of the back propagation algorithm. As it is well known form the literature,
this algorithm is composed of three stages, namely a forward pass, a backward pass associated with the estima-
tion of the delta parameter, and a second forward pass related to the weight adaptation process. In a more de-
tailed description, these stages regarding the problem under consideration are performed as follows:

4.1.1. Forward Pass
The inputs and the outputs of the network neurons during the forward pass stage, are computed as follows:

LAYER 2 1 12u x= =W 



 and 1 1v u x= = 



 ()1,2, , n=  .
LAYER 3 As it has been mentioned in the description of the neural system, since the neurons in the third

layer are organized in n groups with the th group to contain k


 neurons, a double index notation (), j is
used with the  index ()1,2, , n=  to identify the neuron group and the j index ()1,2, ,j k=



 to identify
a neuron inside the th group. Using this convention and keeping in mind that when some variable ix
()1,2, ,i n=  appears in the defining equation of the associated activation function jf



 the corresponding in-
put synaptic weight is equal to unity, the output of the neuron (), j is simply equal to

() () (), ,
2 2 ,

j j
jv u f= = x 



 (18)

LAYER 4 The input and the output of the fourth layer neurons are

462

K. Goulianas et al.

() () ()

() ()

, , ,
3 2 34 2 ,

1 1

1 2, , ,

k k
j j j

j
j j

n

u v v

x x x

β α β
= =

= − = −

= =

∑ ∑W

F x F

 

   



  

 



 (19)

and 3 3v u=  ()1,2, , n=  , where the activation function of the output neurons is the identity function.

4.1.2. Backward Pass—Estimation of δ Parameters
In this backward phase of the back propagation algorithm the values of the δ parameters are estimated. The delta
parameter of the neurons associated with the second, the third and the fourth layer is denoted as δ1, δ2 and δ3,
with additional indices to identify the position of the neuron inside the layer. Starting from the output layer and
using the well known back propagation equations we have

() ()3 3 30 1,2, ,v v nδ = − = − = − =F x  



 
 (20)

On the other hand, the delta parameter of the third layer neurons are

()
() () () ()

,

,
, ,2

3 32

, 1, 2, ,
1, 2, ,

k
j

j
j jx

k k k

f f k nv F
j kx x x

δ δ δ
∂ ∂ = ∂

= = = −  =∂ ∂ ∂  

x x
x





 

 





 



Note that, in this case, for each third layer neuron and for each one of the xk parameters (where 1,2, ,k n= ),
the values of n derivatives are estimated.

Finally, the δ parameter of the second layer neurons have the form

() () () () () () ()
,

, ,
1 2

1 1 1 1 1 1 1

k
j

k k kn n n n
x j jk

j j jk k k

f f
F F

x x x
δ δ

= = = = = = =

∂ ∂ ∂
= = − = − = −

∂ ∂ ∂∑∑ ∑∑ ∑ ∑ ∑
x x F x

x x F x
  



 



  

   

where we use the notation

() (),

1

k
j

jk k

f
x x=

∂∂
=

∂ ∂∑
xF x 



 (21)

In the last two equations the j variable gets the values 1, 2, ,j n=  .

5. Convergence Analysis and Update of the Synaptic Weights
By the mean square error defining equation

() () () () ()
2 2 2 2

3 3 3
1 1 1 1

1 1 1 10
2 2 2 2

n n n n
E d v v v

= = = =

= − = − = =   ∑ ∑ ∑ ∑x F x  

 

   

where 0d =


()1,2, , n=  is the desired output of the th neuron of the output layer and 3v ()1,2, , n= 
is the corresponding real output, we have

() () ()
1

1

n
k

k k

E
x x

δ
=

∂ ∂
= = −

∂ ∂∑
x F x

F x 





 (22)

()1,2, ,k n=  . By applying the update weight equation of the back propagation, we get

() ()1
1 1

m m k m k m
k k k k

k

E
x x x x

x
βδ β δ β+ ∂

= + = − − = −
∂

x
 (23)

()1,2, ,k n=  where β is the learning rate of the back propagation algorithm and m
kx and 1m

kx + are the
values of the synaptic weight ()

12
k

kx=W during the thm and ()1 thm + iteration.

The Case of Adaptive Learning Rate
The adaptive learning rate is a novel feature of the proposed simulator that allows each neuron of the second
layer to have its own learning rate ()kβ ()1,2, ,k n=  . However, these learning rate values must ensure the
convergence of the algorithm, and the allowed range for those values has to be identified. This task can be

463

K. Goulianas et al.

performed based on energy considerations.
The energy function associated with the thm iteration is defined as

() () () ()
2 2 2, ,

3 3
1 1 1

1 1 10
2 2 2

n n n
m i m i m m

i
i i i

E v v
= = =

 = − = =  ∑ ∑ ∑x F x

If the energy function for the ()1 thm + iteration is denoted as ()1mE + x , the energy difference is

() () () () ()

() (){ }
() () () (){ }

() () () () (){ }

() () (){ }

2 21 1

1 1

2 21

1

1 1

1

1 1

1

1

1 1
2 2

1
2
1
2
1 2
2
1 2
2

n n
m m m m m

i i
i i

n
m m

i i
i
n

m m m m
i i i i

i
n

m m m m m
i i i i i

i
n

m m m
i i i

i

E E E+ +

= =

+

=

+ +

=

+ +

=

=

   ∆ = − = −   

   = −   

   = − × +   

   = − × − +   

 = ∆ ∆ + 

∑ ∑

∑

∑

∑

∑

x x x F x F x

F x F x

F x F x F x F x

F x F x F x F x F x

F x F x F x

From the weight update equation of the back propagation algorithm we have

() () () () ()
1

m mn
m

k
k k

E
x k k

x x
β β

=

∂ ∂
∆ = − = −

∂ ∂∑
x F x

F x 





 (24)

and therefore,

() () () () () ()
1

m m mn
i im m

i k
k k k

x k
x x x

β
=

∂ ∂ ∂
∆ = ∆ = −

∂ ∂ ∂∑
F x F x F x

F x F x 





()1,2, ,k n=  . Using this expression in the equation of ()mE∆ x , it gets the form

() () () () () () () () () ()

() () () () () () () () ()

1 1 1

2
2

=1 =1 =1

1

1 2
2

1 2
2

1
2

m m m mn n n
i im m m m

i
i k k k k

m m m mn n n
i im m m

i
ik k k k

n

E k k
x x x x

F
k k

x x x x

β β

β β

= = =

=

    ∂ ∂ ∂ ∂ ∆ = − × − +       ∂ ∂ ∂ ∂     
  ∂ ∂ ∂ ∂ = × −   ∂ ∂ ∂ ∂   

=

∑ ∑ ∑

∑ ∑ ∑

∑

F x F x F x F x
x F x F x F x

x F x F x F x
F x F x F x

F

 

 

 

 

 

 





() () () () () () () () ()

() () () ()

() () () () ()

2
2

=1 1 1

22
2

1 1

2

1 1

2

1 2
2

1
2

m m mn n n
i im m m

i
i ik k k k

mmn n
im

ik k

m mn n
im

ik k

k k
x x x x

k k
x x

k k
x x

β β

β β

β β

= =

= =

= =

  ∂ ∂ ∂ ∂ × −  ∂ ∂ ∂ ∂   
  ∂ ∂  = × −    ∂ ∂     

   ∂ ∂
= ×      ∂ ∂   

∑ ∑ ∑

∑ ∑

∑ ∑

F x F x F x F x
x F x F x

F xFF x

F x F x
F x

 

















2

2
 
 −
  

The convergence condition of the back propagation algorithm is expressed as () 0mE∆ <x . Since we have
() 0kβ > (the learning value is obviously a positive number) and of course it holds that

() ()
2

1
0

mn
m

kx=

 ∂
>  ∂ 

∑
F x

F x 





 (25)

it has to be

464

K. Goulianas et al.

() ()
2

1
2 0

mn
i

i k

k
x

β
=

 ∂
− <  ∂ 

∑
F x

 (26)

or equivalently

()
()

2

1

2
mn

i

i k

k

x

β

=

<
 ∂
  ∂ 

∑
F x

 (27)

Defining the adaptive learning rate parameter (ALRP) μ, the above equation can be expressed as

()
()

2m
k

k µβ =
C J

 (28)

where ()m
kC J is the kth column of the Jacobian matrix

1 1 1 2 1

2 1 2 2 2

1 2

n

n

n n n n

F x F x F x
F x F x F x

F x F x F x

∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ =
 
 
∂ ∂ ∂ ∂ ∂ ∂ 

J





   



 (29)

for the mth iteration. Using this notation, the back propagation algorithm converges for adaptive learning rate
parameter (LALR) values μ < 2.

6. Experimental Results
To examine and test the validity and the accuracy of the proposed method, sample nonlinear algebraic systems
were selected and solved using the neural network approach and the results were compared against those ob-
tained from other methods. More specifically, the network solved five nonlinear example systems of n equations
with n unknowns, three systems for n = 2, one system for n = 3 and one system for n = 6. In these simulations,
the adaptive learning rate approach (ALR) is considered as the primary algorithm, but the network is also tested
with a fixed learning rate (FLR) value. Even though in the theoretical analysis and the construction of the asso-
ciated equations the classical back propagation algorithm was used, the simulations showed that the execution
time can be further decreased (leading to the speedup of the simulation process) if in each cycle the synaptic
weights were updated one after the other and the new output values were used as input parameters in the correc-
tions associated with the next weight adaptation, an approach that is also used by Meng & Zeng [23]. The results
of the simulation for the ALR approach are presented using graphs and tables, while the results for the FLR case
are presented in a descriptive way. Since the accuracy of the results found in the literature varies significantly,
and since the comparison of the root values requires the same number of decimal digits, different tolerance val-
ues in the form 10−tol were used, with a value of tol = 12 to give an accuracy of 6 decimal digits (as in the work
of Effati & Nazemi [21] and Grosan & Abraham [27]), a value of tol = 31 to give an accuracy of 15 decimal di-
gits (as in the work of Oliveira & Petraglia [20]) and a value of tol = 20 to give an accuracy of 10 decimal digits
(as in the work of Meng & Zeng [23] and Liu et al. [28]).

According to the proposed method, the condition that ensures the convergence of the back propagation algo-
rithm is given by the inequality μ < 2, where μ is the adaptive learning rate parameter (ALRP). Therefore, to test
the validity of this statement, a lot of simulations were performed, with the value of ALRP varying between μ =
0.1 and μ = 1.9 with a variation step equal to 0.1 (note, however, that the value μ = 1.95 was also used). The
maximum allowed number of iterations was set to N = 10000 and a training procedure that reaches this limit is
considered to be unsuccessful. In all cases, the initial conditions is a set in the form () () ()1 20 , 0 , , 0nx x x  

and the search region is an n-dimensional region defined as

()1,2, ,ix i nα α− ≤ ≤ = 

In almost all cases, the variation step of the system variables is equal to 0.1 or 0.2 even though the values of
0.5 and 1.0 were also used for large α values to reduce the simulation time. The graphical representation of

465

K. Goulianas et al.

the results shows the variation of the minimum iteration number with respect to the value of the adaptive learn-
ing rate parameter μ; an exception to this rule is the last system, where the variable plotted against the μ parame-
ter is the value of the algorithm success rate.

After the description of the experimental conditions let us now present the five example systems as well as the
experimental results emerged for each one of them. In the following presentation the roots of the example
systems are identified and compared with the roots estimated by the other methods.

Example 1: Consider the following nonlinear algebraic system of two equations with two unknowns:

() 1
1 1 2 1 2, e 1 0xF x x x x= + − =

() ()2 1 2 1 2 1 2, sin 1 0F x x x x x x= + + − =

This system has a unique root with a value of

() ()1 2, 0,1x x =

Note, that this example can also be found in the papers of Effati & Nazemi [21], Grosan & Abraham [27] and
Oliveira & Petraglia [20].

The experimental results for this system and for 2α = are presented in Table 1 and Table 2. The results in
Table 1 have been computed with a tolerance value tol = 12, while the results in Table 2 are associated with a
tolerance value tol = 31. In the first case, the best result is associated with the ALRP value μ = 1.1, initial
conditions () () ()1 20 , 0 0.6,1x x =   and it was reached after N = 7 iterations of the back propagation algorithm.
In the second case the best result is associated again with the ALRP value μ = 1.1 and initial conditions

() () ()1 20 , 0 0.6,1x x =   , but it was reached after N = 32 iterations.
Example 2: This system includes also two equations with two unknowns and it is defined as

() () ()1 1 2 1 2, cos 2 cos 2 0.4 0F x x x x= − − =

() () () ()2 1 2 2 1 2 1, 2 sin 2 sin 2 1.2 0F x x x x x x= − + − − =

and it has infinite roots. Therefore, in this case the neural solver tries to identify those roots that belong to the
search interval used in any case. This system is also examined in the papers of Effati & Nazemi [21], Grosan &
Abraham [27] and Oliveira & Petraglia [20].

The experimental results in this case are the identified roots in the intervals [],α α− for values α = 2, 10, 100,
1000. The system solving procedure found a lot of roots, and this is an advantage over the other methods, since
they found only one root (note, that this is not the case with the system of the Example 1, since by construction,
it has a unique root). More specifically, the system has 1 root in the interval [−2, +2], 13 roots in the interval
[−10, +10], 127 roots in the interval [−100, +100] (these numbers of roots are also reported by Tsoulos & Sta-
vrakoudis [36], who also examined the same example system without reporting their identified root values to
make a comparison) and 1273 roots in the interval [−1000, 1000]. It is interesting to note that, besides these
roots, the neural network was able to identify additional roots, located outside the search interval used in any

Table 1. The experimental results for the first example system (ALR, Effati & Nazemi and Grosan & Abraham methods).

Method x1 x2 F1 F2

Effati & Nazemi 0.09600 0.99760 0.019223 0.0167760

Grosan & Abraham −0.00138 1.00270 −0.002760 −0.0000637

Neural ALR Method 0.00000 1.00000 0.000000 0.0000000

Table 2. The experimental results for the first example system (ALR and Oliveira & Petraglia methods).

Method x1 x2 Global absolute error

Oliveira & Petraglia 2.392236421590953 × 10−2 1.00000000000000 0.000000000000

Neural ALR Method 0.00000000000000 1.00000000000000 0.000000000000

466

K. Goulianas et al.

case; these roots are not reported in the results, since they are identified again in the next simulation, where the
value of the α parameter increases. For example, for μ = 0.5 and α = 2, the network found 23 roots but we keep
only the root () ()1 2, 0.15652,0.49338x x = , since only this root belongs to the search region −2 ≤ x1, x2 ≤ 2. In
the same way, for α = 10 and for the same μ value, the network found 149 roots, but only 13 of them belong to
the search interval −10 ≤ x1, x2 ≤ 10. It is not difficult to guess, that the 23 roots found for α = 2 is a subset of the
149 roots found for α = 10, and so on. The simulation results for α = 2 associated with a tolerance value of tol =
12 and tol = 31 are shown in Table 3 and Table 4, and the associated plot is shown in Figure 3. The number of
identified roots that belong to the search region for α = 2, 10, 100 as well as the percentage of those roots with
respect to the total number of identified roots for that region, are shown in Table 5. The values of the 13 identi-
fied roots that belong to the search region −10 ≤ x1, x2 ≤ 10 with 15 digits accuracy, namely for a tolerance of tol
= 31, are shown in Table 6. The variation of the minimum iteration number with the parameter μ for each one of
the 13 identified roots for the case α = 10 is shown in Figure 4, while Figure 5 shows the percentage of initial
condition combinations associated with identified roots that belong to the search region for the parameter values
α = 2, 10, 100. The total number of the examined systems was 441 for α = 2 (namely −2 ≤ x1, x2 ≤ 2 with varia-
tion step Δx1 = Δx2 = 0.2), 10,201 for α = 10 (namely −10 ≤ x1, x2 ≤ 10 with variation step Δx1 = Δx2 = 0.2) and
10,201 for α = 100 (namely −100 ≤ x1, x2 ≤ 100 with variation step Δx1 = Δx2 = 0.2).

The results for α = 1000 are too lengthy to be presented here and, due to the enormous computation time, it
was not possible to perform the exhaustive search as with the previous cases. Therefore, the algorithm run with
variation steps of Δx1 = Δx2 = 0.2, 0.5 and 1.0, and only for the ALRP value μ = 1.5. The number of identified
roots in each case varies according to the variation step, but in all cases the network identified a number of 1273
roots in the interval [−1000, +1000]. This is a new result that does not appear in the other works used for com-
parison.

Before proceeding to the next example system, let us present some results regarding the FLR (fixed learning
rate) method, in which all the neurons share the same learning rate value. In this experiment the learning rate

Figure 3. Simulation results for the example 2 for tolerance tol = 12 and tol = 31.

Table 3. The experimental results for the second example system and for α = 2 (ALR, Effati & Nazemi and Grosan & Ab-
raham methods).

Method x1 x2 F1 F2

Effati & Nazemi 0.15750 0.49700 0.005455 0.007390

Grosan & Abraham 0.15772 0.49458 0.001640 0.000969

Neural ALR Method 0.15652 0.49338 −0.000001 0.000001

Table 4. The experimental results for the second example system and for α = 2 (ALR and Oliveira & Petraglia methods).

Method x1 x2 Global absolute error

Oliveira & Petraglia 0.1565200696831246 0.493376374223309 1.656070029373846175E−14

Neural ALR Method 0.1565200696831300 0.493376374223239 0.0000000000000092

467

K. Goulianas et al.

Table 5. The number of the identified roots and the associated percentage of roots that belong to the search region
() () ()1 2, , ,x xα α α α− − ≤ ≤ for the values α = 2, 10, 100 and for a tolerance value of 10−12.

μ
α = 2 α = 10 α = 100

Roots found Perc % Roots found Perc % Roots found Perc %

0.10 11 9.09% 110 11.82% 204 62.25%

0.20 11 9.09% 095 13.68% 195 65.13%

0.30 13 7.69% 136 09.56% 250 50.80%

0.40 16 6.25% 147 08.84% 215 59.07%

0.50 23 4.35% 136 09.56% 216 58.80%

0.60 18 5.56% 125 10.40% 218 58.26%

0.70 21 4.76% 127 10.24% 220 57.73%

0.80 22 4.55% 149 08.72% 236 53.81%

0.90 21 4.76% 120 10.83% 219 57.99%

1.00 28 3.57% 142 09.15% 240 52.92%

1.10 26 3.85% 147 08.84% 225 56.44%

1.20 30 3.33% 150 08.67% 234 54.27%

1.30 41 2.44% 179 07.26% 261 48.66%

1.40 54 1.85% 267 04.87% 311 40.84%

1.50 47 2.13% 238 05.46% 296 42.91%

1.60 50 2.00% 251 05.18% 329 38.60%

1.70 49 2.04% 229 05.68% 296 42.91%

1.80 54 1.85% 260 05.00% 295 43.05%

1.90 56 1.79% 220 05.91% 289 43.94%

1.95 61 1.64% 231 05.63% 301 42.19%

Table 6. The values of the 13 roots found in the search region −10 ≤ x1 ≤ 10 and −10 ≤ x2 ≤
10 with an accuracy of 15 decimal digits, namely for a tolerance value of 10−31.

Root No. x1 x2

ROOT 01 −9.268257891086250 −8.931401586546140

ROOT 02 −8.744542160840460 −7.164787219352630

ROOT 03 −5.602949507250660 −4.023194565762840

ROOT 04 −2.461356853660870 −0.881601912173048

ROOT 05 −2.985072583906650 −2.648216279366540

ROOT 06 9.581298030452510 9.918154334992620

ROOT 07 3.298112723272930 3.634969027813040

ROOT 08 0.156520069683130 0.493376374223237

ROOT 09 0.680235799928919 2.259990741416740

ROOT 10 −6.126665237496440 −5.789808932956330

ROOT 11 3.821828453518710 5.401583395006530

ROOT 12 6.963421107108500 8.543176048596330

ROOT 13 6.439705376862720 6.776561681402830

468

K. Goulianas et al.

Figure 4. Variation of the minimum iteration number with respect to the value of the parameter for each one of the 13 roots
found in the interval [−10, +10] for the second example system. Due to the large variation of the minimum iteration number,
the vertical axis follows the logarithmic scale. The numbering of roots is the same as in Table 6.

Figure 5. Variation of the percentage of initial conditions leading to system roots that belong
to the search region with respect to the value of the ALRP parameter for α = 2, 10, 100.

was much smaller than ALR, with the μ parameter to get the values from μ = 0.01 to μ = 0.2, with a variation
step of Δμ = 0.1. The tolerance value was equal to tol = 12 and the systems studied for the parameters α = 2, 10,
100. As a typical example, let us present the results associated with the value μ = 0.11. In this case, the network
identified the unique root for α = 2 (as well as 4 additional roots outside the search region) after 17 iterations and
127 roots for α = 100 (as well as 24 additional roots outside the search interval), and for the same iteration
number. The simulation showed that the performance of the network decreases as the FLR value varies from
0.15 to 0.2 (with a variation step of 0.01). More specifically, in this case, the neural network is not able to iden-

469

K. Goulianas et al.

tify the unique root in the interval [−2, 2] and, furthermore, it finds only the half of the roots found previously
(namely, 6 of 13 roots in the interval [−10, 10] and 64 of 127 roots in the interval [−100, 100]). A construction
of a diagram similar to the one shown in Figure 3 and Figure 4, would reveal that for the second example sys-
tem the best FLR value is the value μ = 0.14, associated with 31 iterations. The basin of attraction for the 13
identified roots associated with the value α = 10 and for a fixed learning rate with a value of FLR = 0.02 is
shown in Figure 6.

Example 3: This nonlinear algebraic system can be found in [23] and is composed again of two equations with
two unknowns. More specifically, the system is defined as

() 3
1 1 2 1 1 2, 3 1 0f x x x x x= + + + =

() 2
2 1 2 1 2, 2 e 2 0xf x x x x= + + − =

and it has a unique root with a value of

() ()1 1, 0.451123,0.445178x y = −

It is interesting to note that the solution method proposed for this system in the literature, is also a neural based
approach and, therefore, it is more suitable for comparison with the proposed method. The simulation results
emerged from the proposed neural method, as well as from the method of Meng & Zeng are shown in Table 7.
In this table the results are associated with four distinct sets of initial conditions, namely

() () () () () (){ }1 20 , 0 1, 1 , 1,1 , 1, 1 , 1,1x x = − − − −   . In order to estimate the roots with an accuracy of 9 digits, a to-
lerance value of tol = 20 was used. The table also includes the values of the vector norm ()1 2max ,F F

∞
=F .

The variation of the minimum iteration number for the example system 3 with the ALRP parameter is shown in
Figure 7 and, as it can be easily verified, the ALRP value that gives the best results is μ = 1.1 (the same value is
also reported in [23]). Regarding the ALRP value of 1.1 that gave the best results, the minimum, the maximum
and the average iteration numbers are equal to 9, 13 and 11.675 iterations respectively.

Example 4: Consider the system of three equations with three unknowns ()1 2 3, ,x x x defined as

() 13
1 1 2 3 1 2 3, , e 2 1 0xf x x x x x x= + + + + =

() 23
2 1 2 3 1 2 2, , 2e 3 0xf x x x x x x= − + + + − =

() 3
3 1 2 3 2 3, , 2 e 1 0xf x x x x x= − + + + =

This system has only one root. The solution of this system using the Population Migration Algorithm (PAM) [29]
as well as its variant known as Quasi-Newton PAM (QPAM) is given by Liu et al. [28]. To test this result and

Figure 6. Basin of attraction for the 13 identified roots for the
system of the Example 2, for α = 10 and for a fixed learning
rate with value FLR = 0.02.

470

K. Goulianas et al.

Table 7. Simulation results for the example system 3.

Nonlinear System Neural Solver

()1 0x ()2 0x μ Iter
∞

F x1 x2

−1 −1 1.1 12 0.000000001239 −0.4511229388 0.4451777054

−1 +1 1.1 11 0.000000001663 −0.4511229388 0.4451777054

+1 −1 1.1 12 0.000000001277 −0.4511229388 0.4451777054

+1 +1 1.1 11 0.000000001356 −0.4511229388 0.4451777054

Method of Meng and Zeng

()1 0x ()2 0x μ Iter
∞

F x1 x2

−1 −1 1.1 17 0 −0.4511229388 0.4451777054

−1 +1 1.1 17 4.44 × 10−16 −0.4511229388 0.4451777054

+1 −1 1.1 18 2.22 × 10−16 −0.4511229388 0.4451777054

+1 +1 1.1 17 2.22 × 10−16 −0.4511229388 0.4451777054

Figure 7. Variation of the minimum iteration number with respect to the value of the para-
meter for the example system 3 in the interval [−2, +2].

evaluate the performance of the proposed neural solver, the system is solved for the search region −2 ≤ x1, x2, x3
≤ 2 with a variation step of Δx1 = Δx2 = Δx3 = 0.2, leading thus to the examination of 9261 initial condition com-
binations. For each one of those combinations the root identification was performed using the same ALRP val-
ues (namely from μ = 0.1 to μ = 1.95). The results for the best simulation runs can be found in Table 8, together
with the results of Liu et al. for comparison purposes. From this table it is clear that the best result with respect
to the success rate is associated with the value μ = 0.7, while the best value with respect to the minimum itera-
tion number is associated with the value μ = 1.1.

A typical graph that shows the variation of the average iteration number with respect the value of the ALRP
parameter is shown in Figure 8. Similar graphs can be constructed for each example presented in this section
and the above mentioned variation in all cases follows a similar pattern.

Example 5: The last example is associated with a large enough nonlinear algebraic system of six equations
with six unknowns defined as

() 2
1 1 2 3 4 5 6 1 2 4 6

1, , , , , 0.75 0
4

f x x x x x x x x x x= + + =

() ()1 21
2 1 2 3 4 5 6 2, , , , , 0.405e 1.405x xf x x x x x x x += + =

471

K. Goulianas et al.

Table 8. Simulation results for the example system 4 (Example 8 of Liu et al.).

Method μ Iteration Number x1 x2 x3 Success Rate

PMA N/A 44 −0.7677605533 0.0753306710 −1.1621588410 88%

QPMA N/A 50 −0.7677605635 0.0753306762 −1.1621511842 100%

ALR 0.7 34 −0.7677605624 0.0753306764 −1.1621511859 100%

ALR 1.1 12 −0.7677605624 0.0753306764 −1.1621511859 98%

Figure 8. Variation of the average iteration number with respect to the value of the parameter
for the example system 4 in the interval [−2, +2].

()3 1 2 3 4 5 6 3 4 6
1, , , , , 1.25 0
4

f x x x x x x x x x= − + =

() ()2
31

4 1 2 3 4 5 6 4, , , , , 0.605e 0.395
x

f x x x x x x x
−

= − =

()5 1 2 3 4 5 6 5 2 6
1, , , , , 1.5 0
2

f x x x x x x x x x= − + =

()6 1 2 3 4 5 6 6 1 5, , , , , 0f x x x x x x x x x= − =

This system also appears in the work of Liu et al. [28] and it has an optimum solution with a value of x1 = x3 = x5
= −1 and x2 = x4 = x6 = 1. The experimental results for this system are given in Table 9, together with the results
of the algorithms PMA and QPMA. From this table it is clear that the best result with respect to the iteration
number is associated with the ALRP value μ = 1.5 (63 iterations with a success rate of 71%). Note, that it is
possible to improve significantly the success rate using a smaller ALRP value, but with a significant increase of
the computational cost (for example the value μ = 0.1 gives a success rate of 92% but after 6037 iterations). The
corresponding results for fixed learning rate are (μ = 1.0, 81 iterations with 6% success rate) and (μ = 0.005,
7468 iterations with 78% success rate). Note that for all values of the adaptive learning rate and a fixed learning
rate value less than 0.5 the network identifies and a second solution that does not belong to the search interval

2 2ix− ≤ ≤ ()1,2,3,4,5,6i = with a value of

()
()
1 2 3 4 5 6, , , , ,

1.0640178982, 0.5300841548, 0.1324556751,2.0109591369, 2.0891641735,2.22290807294

x x x x x x

= − − −

The variation of the success rate with respect to the ALRP parameter μ for the last two example systems is
plotted in Figure 9.

472

K. Goulianas et al.

Table 9. Simulation results for the example system 4 (Example 9 of Liu et al.).

Method μ Iteration Number Solution vector Success Rate

 x1 x2 x3

PMA N/A 43 −1.0000012311 0.9999695481 −1.0000000121 86%

 x4 x5 x6

 0.9999998799 −1.0000003622 0.9999985874

 x1 x2 x3

QPMA N/A 50 −1.0000000000 1.0000000000 −1.0000000000 100%

 x4 x5 x6

 1.0000000000 −1.0000000000 1.0000000000

 x1 x2 x3

ALR 1.5 63 −1.0000000000 1.0000000000 −1.0000000000 71%

 x4 x5 x6

 1.0000000000 −1.0000000000 1.0000000000

Figure 9. The variation of the success rate with the value of parameter for the Example Sys-
tems 4 and 5.

Test Results with Iteration Number and Execution CPU Time for Large Sparse Nonlinear
Systems of Equations
A very crucial task in evaluating this type of arithmetic methods is to examine their scaling capabilities and
more specifically to measure the iteration number and the execution time as the dimension of the system in-
creases. In order to compare the results of the proposed method with the ones emerged by other well known
methods, the following example systems were implemented and solved using the proposed algorithm:
• Example 6: This system is Problem 1 in [37] and it is defined as

() ()cos 1 1, 2,3, ,i if x x i n= − = 

with initial conditions ()0 0.87,0.87,0.87, , 0.87x =  .
• Example 7: This system is Problem 3 in [37] and it is defined as

() () 2
1 1 1cos 9 3 8exf x x x= − + +

473

K. Goulianas et al.

() () 1cos 9 3 8e ix
i i if x x x −= − + +

()2,3, 4, ,i n=  with initial conditions

()0 5,5,5, ,5x = 

• Example 8: This system is Problem 4 in [37] and it is defined as

() () () ()
1
cos 1 cos sin

n

i j i i
j

f x n x i x x
=

 = − + − − ∑

()1, 2,3, ,i n=  with initial conditions

0
1 1 1 1, , , ,x
n n n n

 =  
 



• Example 9: This system is Problem 2 in [38] and it is defined as

() ()()2
1 1 1 23 2 1f x hx x x= − − +

() ()() ()2
1 13 2 1 2,3,4, , 1i i i i if x hx x x x i n− += − − − + = −

() ()()2
13 1n n n nf x hx x x −= − − +

with initial conditions ()0 1, 1, 1, , 1x = − − − − and parameter value h = 2.
• Example 10: This system is Problem 1 in [38] and it is defined as

() () ()2
1 1 2 1 2 1 23 2 5 sin sinf x x x x x x x= + − + − +

() () ()
()1

2
1 1 1

1

3 2 5 sin sin

4 e 3 2,3, 4, , 1i i

i i i i i i i

x x
i i

f x x x x x x x

x x i n−

+ + +

−
−

= + − + − +

+ − − = −

() 1
14 e 3i ix x

n n nf x x x − −
−= − −

with initial conditions ()0 0,0,0, ,0x =  .
• Example 11: This system is Problem 2 in [39] and it is defined as

() ()sin 1,2, ,i i if x x x i n= − = 

with initial conditions ()0 1,1,1, ,1x =  .
• Example 12: This system is Problem 3 in [40] and it is defined as

() ()2 2 1, 2, ,i i if x x x i n= + − = 

with initial conditions ()0 0.5,0.5,0.5, ,0.5x =  .
• Example 13: This system is Problem 5 in [40] and it is defined as

() ()2 4 1,2, ,i if x x i n= − = 

with initial conditions ()0 0.5,0.5,0.5, ,0.5x =  .
The stopping criterion in these simulations is defined as

() 2 tol

1

1 10
2

n

i
i

f x −

=

≤  ∑ (30)

where tol is the tolerance value. To achieve the best results and an accuracy of 6 decimal points in the final solu-
tion, different values for tol and ALRP were used in each example, and more specifically,
• the values tol = 12 and ALRP = 19 for Example 6
• the values tol = 12 and ALRP = 0.8 for Example 7
• the values tol = 12 and ALRP = 1.0 for Example 8
• the values tol = 12 and ALRP = 0.6 for Example 9

474

K. Goulianas et al.

• the values tol = 18 and ALRP = 1.1 for Example 10
• the values tol = 36 and ALRP = 1.9 for Example 11
• the values tol = 10 and ALRP = 0.8 for Example 12
• the values tol = 12 and ALRP = 1.0 for Example 13

The simulation results for the above examples are summarized in Table 10. For each example the system di-
mension n was set to the values 5, 10, 20, 50, 100, 200, 500 and 1000. In this table, a cell with the “-” symbol
means that either the algorithm could not lead to a result (i.e. it was divergent), or the maximum number of ite-
rations (with a value equal to 500) was reached. This is especially true for the Examples 9 and 10, where the
only method capable of reaching a result, was the proposed method (GBARL i.e. Generalized Back-propagation
with Adaptive Learning Rate). It also has to be mentioned that the Examples 8 are 13 were run twice. In Exam-
ple 8, the first run (Example 8a) was based on the initial condition ()0 1x i n= ()1, 2,3, ,i n=  , while the
second run (Example 8b) used the initial condition vector () ()0 1 5x i n= ()1, 2,3, ,i n=  (see [41]) with pa-
rameter values ALR = 1.0 and tol = 10. In the same way, in Example 13 the two runs are based on the initial
condition vectors ()0 5x i = ()1, 2,3, ,i n=  (Example 13a with ALR = 1.0 and tol = 12) and ()0 0.5x i =
()1,2,3, ,i n=  (Example 13b with ALR = 0.8 and tol = 12).

The simulation runs were implemented on an Intel Core i5 cpu machine with 2.66Ghz and 4GB Memory, the
applications were written in Matlab and the main conclusions drawn from them are the following:
• In most of the examples (except examples 8a and 9), the iteration number is almost the same, no matter the

dimension of the systems used.
• In most of the examples, the proposed method needs less iterations than Newton and Broyden methods even

for the large systems, and is better in CPU time for the convergence to a good solution with 6 decimal points
accuracy, except the case of n ≥ 200, where Broyden-2 method has better CPU time.

• In Example 8a the Newton method converges only for small dimensions, and for values n ≥ 5 the only me-
thod that converges is the proposed one.

Table 10. Tables for Examples 6-13 with Iteration number and CPU time (in seconds) for systems with n = 50,10, 20, 50,
100, 200, 500, 1000, using Newton, Fixed Newton, Broyden-1, Broyden-2 and GBALR methods.

 n
Newton Fixed Newton Broyden-1 Broyden-2 GBALR

ALRP
ITER CPU ITER CPU ITER CPU ITER CPU ITER CPU

E
X
6

5 17 0.0051 − − 25 0.0012 25 0.0009 4 0.0003 1.9

10 17 0.0060 − − 25 0.0022 25 0.0015 4 0.0005 1.9

20 17 0.0052 − − 25 0.0029 25 0.0017 4 0.0007 1.9

50 17 0.0208 − − 26 0.0066 26 0.0032 4 0.0018 1.9

100 18 0.0385 − − 26 0.0246 26 0.0174 4 0.0062 1.9

200 18 0.1960 − − 27 0.0897 27 0.0399 4 0.0343 1.9

500 18 39.703 − − 27 0.9723 27 0.2133 4 0.8369 1.9

1000 19 389.304 − − 27 92.776 25 11.240 4 87.197 1.9

E
X
7

5 − − − − − − 16 0.0040 − − −

10 − − − − − − − − − − −

20 − − − − − − − − 49 0.0062 0.8

50 − − − − − − − − 49 0.0210 0.8

100 − − − − − − − − 49 0.0749 0.8

200 − − − − − − − − 49 0.4114 0.8

500 − − − − − − − − 49 89.818 0.8

1000 − − − − − − − − 49 849.829 0.8

475

K. Goulianas et al.

Continued

E
X
8a

2 21 0.074 354 0.0078 − − − − 8 0.0004 1.0

3 50 0.0059 − − − − − − 40 0.0013 1.0

4 361 0.0243 − − − − − − 23 0.0009 1.0

5 21 0.0081 − − − − − − 7 0.0004 1.0

10 − − − − − − − − 20 0.0014 1.0

20 − − − − − − − − 64 0.0096 1.0

50 − − − − − − − − − − −

100 − − − − − − − − 142 0.3298 −

200 − − − − − − − − 248 26.998 1.0

500 − − − − − − − − − − −

1000 − − − − − − − − − − −

E
X
8b

5 3 0.0022 12 0.0005 16 0.0009 − − 3 0.0003 1.0

10 3 0.0024 11 0.0006 15 0.0012 − − 3 0.0004 1.0

20 3 0.0069 10 0.0023 15 0.0021 18 0.0019 3 0.0007 1.0

50 3 0.0104 10 0.0078 15 0.0090 − − 3 0.0021 1.0

100 3 0.0271 9 0.0112 15 0.0268 − − 3 0.0080 1.0

200 3 0.0389 9 0.0588 15 0.0989 − − 3 0.0369 1.0

500 3 0.6665 8 0.5913 14 0.7548 − − 3 0.6161 1.0

1000 3 63.795 8 49.367 14 65.362 − − 3 64.434 1.0

E
X
9

5 − − − − − − − − 94 0.0031 0.6

10 − − − − − − − − 104 0.0062 0.6

20 − − − − − − − − 110 0.0124 0.6

50 − − − − − − − − 114 0.0453 0.6

100 − − − − − − − − 118 0.1734 0.6

200 − − − − − − − − 120 0.9706 0.6

500 − − − − − − − − 124 227.027 0.6

1000 − − − − − − − − 127 2622.660 0.6

E
X
10

5 − − − − − − − − 23 0.0013 1.1

10 − − − − − − − − 24 0.0017 1.1

20 − − − − − − − − 28 0.0040 1.1

50 − − − − − − − − 28 0.0124 1.1

100 − − − − − − − − 28 0.0463 1.1

200 − − − − − − − − 28 0.2315 1.1

500 − − − − − − − − 28 49.068 1.1

1000 − − − − − − − − 28 463.956 1.1

476

K. Goulianas et al.

Continued

E
X
11

5 33 0.0037 − − 48 0.0021 48 0.0015 14 0.0006 1.9

10 34 0.0102 − − 49 0.0036 49 0.0019 14 0.0009 1.9

20 34 0.0160 − − 49 0.0052 49 0.0026 14 0.0017 1.9

50 34 0.0223 − − 50 0.0125 50 0.0061 14 0.0059 1.9

100 35 0.0780 − − 50 0.0512 50 0.0312 14 0.0204 1.9

200 35 0.3631 − − 50 0.1601 50 0.0594 14 0.1083 1.9

500 35 73.897 − − 51 12.917 51 0.2826 15 26.230 1.9

1000 36 705.095 − − 51 85.712 51 29.776 15 249.442 1.9

E
X
12

5 4 0.0020 17 0.0006 6 0.0005 6 0.0004 1 0.0002 0.8

10 4 0.0020 18 0.0007 6 0.0005 6 0.0004 1 0.0001 0.8

20 4 0.0037 18 0.0011 6 0.0007 6 0.0004 1 0.0002 0.8

50 4 0.0101 19 0.0076 6 0.0018 6 0.0009 1 0.0005 0.8

100 4 0.0185 20 0.0126 6 0.0064 6 0.0023 1 0.0019 0.8

200 4 0.0622 02 0.0720 6 0.0258 6 0.0175 1 0.0089 0.8

500 4 0.8655 21 0.9181 6 0.3926 6 0.0379 1 0.1891 0.8

1000 4 76.968 20 64.971 6 26.772 6 0.1683 1 17.110 0.8

E
X

13a

5 6 0.0037 − − 7 0.0011 7 0.0010 6 0.0006 1.0

10 6 0.0039 − − 8 0.0015 8 0.0011 6 0.0006 1.0

20 6 0.0045 − − 8 0.0022 8 0.0014 6 0.0010 1.0

50 6 0.0091 − − 8 0.0034 8 0.0016 6 0.0027 1.0

100 6 0.0270 − − 8 0.0086 8 0.0057 6 0.0102 1.0

200 6 0.0668 − − 8 0.0319 8 0.0084 6 0.0486 1.0

500 6 13.930 − − 8 0.3883 8 0.0519 6 11.701 1.0

1000 6 113.84 − − 8 28.732 8 19.110 6 89.599 1.0

E
X

13b

5 5 0.0060 31 0.0010 11 0.0008 11 0.0006 5 0.0004 0.8

10 5 0.0061 32 0.0029 11 0.0010 13 0.0008 5 0.0005 0.8

20 5 0.0028 33 0.0021 13 0.0014 13 0.0009 5 0.0008 0.8

50 5 0.0086 34 0.0063 14 0.0041 13 0.0018 5 0.0022 0.8

100 5 0.0270 34 0.0206 13 0.0127 13 0.0106 5 0.0075 0.8

200 5 0.0632 35 0.1224 16 0.0537 13 0.0438 5 0.0431 0.8

500 5 10.899 36 14.769 16 0.5260 13 0.0828 5 0.8842 0.8

1000 5 93.228 36 99.048 19 41.113 13 0.3420 5 82.958 0.8

477

K. Goulianas et al.

• In Examples 7, 9 and 10 the proposed method (GBARL) is the only that converges.
• The fixed Newton method converges only in Examples 8b, 12 and 13b.
• In Example 12 the proposed method needs only one iteration to converge.
• Even though the Broyden-2 method leads generally to better CPU times for large system dimensions (e.g. n

= 200), in a lot of cases it is unable to converge (e.g. in Examples 7, 8, 9, 10).
• In Example 8a the proposed method exhibits an irregular behavior regarding the variation of the iteration

number, while in Example 9 this variation is more regular. In all the other cases, the number of iterations is
almost constant with a very small variations.

• Besides the Examples 8b and 13, the required number of iterations for convergence is smaller than the one
associated with the other methods.

7. Conclusion
The objective of this research was the design and performance evaluation of a neural network architecture, ca-
pable of solving a complete nonlinear algebraic system of n equations with n unknowns. The developed theory
shows that the network must be used with an adaptive learning rate parameter μ < 2. According to the experi-
ments, for small values of the system dimension n, good values of μ can be found in the region [0.7, 1.7] with a
best value at μ < 1.1, whereas for large n, good values of μ can be found in the region [1.0, 1.9], with a best value
at μ < 1.5. The network was able to identify all the available roots in the search region with an exceptional accu-
racy. The proposed method was tested with large sparse systems with dimension from n = 5 to n = 1000 and in
the most cases the number of iterations did not depend on the system dimension. The results showed that the
GBARL method was better than the classical methods with respect to the iteration number required for conver-
gence to a solution, as well as the CPU execution time, for system dimensions n ≤ 100. Regarding larger system
dimensions, the GBARL method is better than the Broyden-2 method with respect to the number of iterations
but requires more CPU execution time. However the Broyden-2 could not able to converge for a lot of examples
and for the initial conditions found in the literature. Challenges for future research include the use of the network
with other activation functions in the output layer, such as the hyperbolic tangent function, as well as the ability
of the network to handle situations such that the case of multiple roots (real and complex) for the case of over-
determined and underdetermined systems.

Acknowledgements
The research of K. Goulianas, A. Margaris, I. Refanidis, K. Diamantaras and T. Papadimitriou, has been
co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Opera-
tional Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—
Research Funding Program: THALES, Investing in knowledge society through the European Social Fund.

References
[1] Zhang, G. and Bai, L. (2009) Existence of Solutions for a Nonlinear Algebraic System. Discrete Dynamics in Nature

and Society, 2009, Article ID: 785068.
[2] Kowalski, K. and Tankowski, K. (1998) Towards Complete Solutions to Systems of Nonlinear Equations of Many-

Electron Theories. Physical Review Letters, 81, 1195-1998. http://dx.doi.org/10.1103/PhysRevLett.81.1195
[3] Holstad, A. (1999) Numerical Solution of Nonlinear Equations in Chemical Speciation Calculations. Computational

Geosciences, 3, 229-257. http://dx.doi.org/10.1023/A:1011595429513
[4] Argyros, K. (1993) On the Solution of Underdetermined Systems of Nonlinear Equations in Euclidean Spaces. Pure

Mathematics and Applications, 4, 199-209.
[5] Morgan, A.P. (1987) Solving Polynomial Systems Using Continuation for Scientific and Engineering Problems. Pren-

tice-Hall, Eaglewood Cliffs.
[6] Dolotin, V. and Morozov, A. (2007) Introduction to Non-Linear Algebra. World Scientific Publishing Company, Sin-

gapore. http://dx.doi.org/10.1142/6508
[7] Burden, R.L. and Faires, J.D. (2010) Numerical Analysis. Brooks Cole, Pacific Grove.
[8] Broyden, C.G. (1965) A Class of Methods for Solving Nonlinear Simultaneous Equations. Mathematical Computations,

19, 577-593. http://dx.doi.org/10.1090/S0025-5718-1965-0198670-6

478

http://dx.doi.org/10.1103/PhysRevLett.81.1195
http://dx.doi.org/10.1023/A:1011595429513
http://dx.doi.org/10.1142/6508
http://dx.doi.org/10.1090/S0025-5718-1965-0198670-6

K. Goulianas et al.

[9] Broyden, C.G., Dennis, J.E. and More, J.J. (1973) On the Local and Superlinear Convergence of Quasi-Newton Me-
thods. IMA Journal of Applied Mathematics, 12, 223-245. http://dx.doi.org/10.1093/imamat/12.3.223

[10] Dennis, J.E. and Wolkowicz, H. (1993) Least Change Secant Methods, Sizing, and Shifting. SIAM Journal on Numer-
ical Analysis, 30, 1291-1314.

[11] Hentenryck, P., McAllester, D. and Kapur, D. (1997) Solving Polynomial Systems Using a Branch and Prune Ap-
proach. SIAM Journal on Numerical Analysis, 34, 797-827. http://dx.doi.org/10.1137/S0036142995281504

[12] Abaffy, J. and Spedicato, E. (1989) ABS Projection Algorithms: Mathematical Techniques for Linear and Nonlinear
Equations. Ellis Horwood, Hemel Hemstead.

[13] Abaffy, J. and Galantai, A. (1987) Conjugate Direction Methods for Linear and Nonlinear Systems of Algebraic Equa-
tions. Numerical Methods, 50, 481-502.

[14] Abaffy, J., Galantai, A. and Spedicato, E. (1987) The Local Convergence of ABS Methods for Nonlinear Algebraic
Equations. Numerische Mathematik, 51, 429-439. http://dx.doi.org/10.1007/BF01397545

[15] Galantai, A. and Jeney, A. (1996) Quasi-Newton ABS Methods for Solving Nonlinear Algebraic Systems of Equations.
Journal of Optimization Theory and Applications, 89, 561-573. http://dx.doi.org/10.1007/BF02275349

[16] Ren, H., Wu, L., Bi, W.H. and Argyros, I.K. (2013) Solving Nonlinear Equations System via an Efficient Genetic Al-
gorithm, with Symmetric and Harmonious Individuals. Applied Mathematics and Computation, 219, 10967-10973.

[17] El-Emary, I.M.M. and El-Kareem, M.M.A. (2008) Towards Using Genetic Algorithms for Solving Nonlinear Equation
Systems. World Applied Sciences Journal, 5, 282-289.

[18] Pourjafari, E. and Mojallali, H. (2012) Solving Nonlinear Equation Systems with a New Approach Based on Invasive
Weed Optimization Algorithm and Clustering. Swarm and Evolutionary Computation, 4, 33-43.
http://dx.doi.org/10.1016/j.swevo.2011.12.001

[19] Mehrabian, A.R. and Lucas, C. (2006) A Novel Numerical Optimization Algorithm Inspired from Weed Colonization.
Ecological Informatics, 1, 355-366. http://dx.doi.org/10.1016/j.ecoinf.2006.07.003

[20] Oliveira, H.A. and Petraglia, A. (2013) Solving Nonlinear Systems of Functional Equations with Fuzzy Adaptive Si-
mulated Annealing. Applied Soft Computing, 13, 4349-4357. http://dx.doi.org/10.1016/j.asoc.2013.06.018

[21] Effati, S. and Nazemi, A.R. (2005) A New Method for Solving a System of the Nonlinear Equations. Applied Mathe-
matics and Computations, 168, 877-894. http://dx.doi.org/10.1016/j.amc.2004.09.029

[22] Mathia, K. and Saeks, R. (1995) Solving Nonlinear Equations Using Recurrent Neural Networks. Proceedings of
World Congress on Neural Networks (WCNN’95), Washington DC, 17-21 July 1995, 76-80.

[23] Meng, A. and Zeng, Z. (2011) A Neural Computational Method to Solve Nonlinear Equation Systems. Journal of
Computational Information Systems, 7, 3462-3469.

[24] Luo, Y.Z., Tang, G.T. and Zhou, L.N. (2008) Hybrid Approach for Solving Systems of Nonlinear Equations Using
Chaos Optimization and Quasi-Newton Method. Applied Soft Computing, 8, 1068-1073.
http://dx.doi.org/10.1016/j.asoc.2007.05.013

[25] Kuri-Morales, A.F. (2003) Solution of Simultaneous Nonlinear Equations Using Genetic Algorithms. WSEAS Transac-
tions on Systems, 2, 44-51.

[26] Nasira, G.N. and Devi, D.S. (2012) Solving Nonlinear Equations through Jacobian Sparsity Patterns Using Genetic
Algorithms. International Journal of Communications and Engineering, 5, 78-82.

[27] Grosan, C. and Abraham, A. (2008) A New Approach for Solving Nonlinear Equation Systems. IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans, 38, 698-714.
http://dx.doi.org/10.1109/TSMCA.2008.918599

[28] Liu, H., Zhou, Y. and Li, Y. (2011) A Quasi-Newton Population Migration Algorithm for Solving Systems of Nonli-
near Equations. Journal of Computers, 6, 36-42. http://dx.doi.org/10.4304/jcp.6.1.36-42

[29] Zhou, Y.H. and Mao, Z.Y. (2003) A New Search Algorithm for Global Optimization—Population Migration Algo-
rithm. Journal of South China University of Technology, 21, 1-5.

[30] Zhao, Q. and Li, W. (2012) An Improved Iterative Algorithm of Neural Network for Nonlinear Equation Groups. Pro-
ceedings of IEEE 2nd International Conference on Business Computing and Global Informatization, Shanghai, 12-14
October 2012, 522-525. http://dx.doi.org/10.1109/bcgin.2012.142

[31] Mishra, D. and Kalra, P.K. (2007) Modified Hopfield Neural Network Approach for Solving Nonlinear Algebraic Eq-
uations. Engineering Letters, 14, 135-142.

[32] Li, G. and Zeng, Z. (2008) A Neural-Network Algorithm for Solving Nonlinear Equation Systems. 9th International
Conference on Computational Intelligence and Security, 1, 20-23. http://dx.doi.org/10.1109/cis.2008.65

[33] Margaris, A. and Adamopoulos, M. (2007) Solving Nonlinear Algebraic Systems Using Artificial Neural Networks.

479

http://dx.doi.org/10.1093/imamat/12.3.223
http://dx.doi.org/10.1137/S0036142995281504
http://dx.doi.org/10.1007/BF01397545
http://dx.doi.org/10.1007/BF02275349
http://dx.doi.org/10.1016/j.swevo.2011.12.001
http://dx.doi.org/10.1016/j.ecoinf.2006.07.003
http://dx.doi.org/10.1016/j.asoc.2013.06.018
http://dx.doi.org/10.1016/j.amc.2004.09.029
http://dx.doi.org/10.1016/j.asoc.2007.05.013
http://dx.doi.org/10.1109/TSMCA.2008.918599
http://dx.doi.org/10.4304/jcp.6.1.36-42
http://dx.doi.org/10.1109/bcgin.2012.142
http://dx.doi.org/10.1109/cis.2008.65

K. Goulianas et al.

Proceedings of the 10th International Conference on Engineering Applications of Artificial Neural Networks, Thessa-
loniki, 29-31 August 2007, 107-120.

[34] Margaris, A. and Goulianas, K. (2012) Finding All Roots of 2 × 2 Nonlinear Algebraic Systems Using Back-Propagation
Neural Networks. Neural Computing and Applications, 21, 891-904. http://dx.doi.org/10.1007/s00521-010-0488-z

[35] Goulianas, K., Margaris, A. and Adamopoulos, M. (2013) Finding All Real Roots of 3 × 3 Nonlinear Algebraic Sys-
tems Using Neural Networks. Applied Mathematics and Computation, 219, 4444-4464.
http://dx.doi.org/10.1016/j.amc.2012.10.049

[36] Tsoulos, I.G. and Stavrakoudis, A. (2010) On Locating All Roots of Systems of Nonlinear Equations inside Bounded
Domain Using Global Optimization Methods. Nonlinear Analysis: Real World Applications, 11, 2465-2471.
http://dx.doi.org/10.1016/j.nonrwa.2009.08.003

[37] Waziri, M.Y., Leong, W.J. and Mamat, M. (2012) A Two-Step Matrix-Free Secant Method for Solving Large-Scale
Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, Article ID: 348654.

[38] Leong, W.J., Hassan, M.A. and Yusuf, M.W. (2011) A Matrix-Free Quasi-Newton Method for Solving Large-Scale
Nonlinear Systems. Computers and Mathematics with Applications, 62, 2354-2363.
http://dx.doi.org/10.1016/j.camwa.2011.07.023

[39] Yu, G., Niu, S., Ma, J. and Song, Y. (2013) An Adaptive Prediction-Correction Method for Solving Large-Scale Non-
linear Systems of Monotone Equations with Applications. Abstract and Applied Analysis, 2013, Article ID: 619123.

[40] Mamat, M., Muhammad, K. and Waziri, M.Y. (2014) Trapezoidal Broyden’s Method for Solving Systems of Nonli-
near Equations. Applied Mathematical Sciences, 8, 251-260.

[41] Sun, W. and Yuan, Y-X. (2006) Optimization Theory and Methods, Nonlinear Programming. Springer, New York.

480

http://dx.doi.org/10.1007/s00521-010-0488-z
http://dx.doi.org/10.1016/j.amc.2012.10.049
http://dx.doi.org/10.1016/j.nonrwa.2009.08.003
http://dx.doi.org/10.1016/j.camwa.2011.07.023

	A Back Propagation-Type Neural Network Architecture for Solving the Complete n (n Nonlinear Algebraic System of Equations
	Abstract
	Keywords
	1. Introduction
	2. Problem Formulation
	3. Review of Previous Work
	4. A Generalized Neural Nonlinear System Solver
	4.1. Building the Back Propagation Equations
	4.1.1. Forward Pass
	4.1.2. Backward Pass—Estimation of (Parameters

	5. Convergence Analysis and Update of the Synaptic Weights
	The Case of Adaptive Learning Rate

	6. Experimental Results
	Test Results with Iteration Number and Execution CPU Time for Large Sparse Nonlinear Systems of Equations

	7. Conclusion
	Acknowledgements
	References

