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Abstract 
Many curves have been proposed and debated to model individual growth of marine invertebrates. 
Broadly, they fall into two classes, first order (e.g. von Bertalanffy) and sigmoidal (e.g. Gompertz). 
We provide an innovative approach which demonstrates that the growth curves are not mutually 
exclusive but that either may arise from a simple three-stage growth model → →k k1 2A B C
with two steps (k1 and k2) depending on the ratio of the growth parameters k k1 2 . The new ap-
proach predicts sigmoidal growth when k k1 2  is close to 1, but if either growth from stage A to 
stage B or B to C is fast relative to the other, the slower of the two steps becomes the growth limit-
ing step and the model reduces to first order growth. The resulting curves indicate that there is a 
substantial difference in the estimated size at time t during the period of active growth. This novel 
two-step rate model generates a growth surface that allows for changes in the rate parameters 
over time as reflected in the new parameter n(t) = k1(t) − k2(t). The added degree of freedom 
brings about individual growth trajectories across the growth surface that is not easily mapped 
using conventional growth modeling techniques. This two (or more) stage growth model yields a 
growth surface that allows for a wide range of growth trajectories, accommodating staged growth, 
growth lags, as well as indeterminate growth and can help resolve debates as to which growth 
curves should be used to model animal growth. This flexibility can improve estimates of growth 
parameters used in population models influencing model outcomes and ultimately management 
decisions. 
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1. Introduction 
Selecting a curve to model individual growth for marine invertebrates can be difficult because invertebrates ex-
hibit a suite of complicated growth features [1]. Many invertebrates exhibit staged growth, for example crabs 
and lobsters molt their hard exoskeleton to permit growth [2]. Some invertebrates are thought to have continuous 
or indeterminate growth throughout their lives [3]. Growth during the juvenile stage may include a lag until 
some intermediate size is reached after which growth is maximized [4]. Somatic growth may slow when inver-
tebrates mature and shift energy allocation to reproduction [5] [6]. Invertebrates can also shrink in size, restruc-
turing calcium hard-parts such as sea urchin tests, and rough wave action can wear down mollusk shells out 
pacing slow growth in large adults. Invertebrates and some fishes do not appear to follow first order growth as 
suggested by traditional von Bertalanffy growth curves, so that new models have been proposed [7]-[9]. Fur-
thermore, decisions regarding which growth models to use can have major impacts on predicted growth rates. 
For example, if 75% of adult size is a minimum legal size, the time to fishery estimated by the sigmoidal curve 
may be double that of the first order curve.  

Due to these complications and the importance for modeling invertebrate growth, there has been disagreement 
in the modeling community as to the appropriateness of selecting a first order growth equation (e.g. von Berta-
lanffy) or a sigmoidal curve (e.g. Gompertz). Even with the von Bertalanffy model there have been calls for use 
of the three-parameter von Bertalanffy compared with the two-parameter model due to bias in estimates gener-
ated from the two parameter form [10]. It has been suggested that since some invertebrates continue to grow 
very slowly, models which approach a gradual linear increase may be best, a feature the von Bertalanffy model 
lacks. The von Bertalanffy function [11], which is commonly used to model growth in fishes, has been shown to 
overestimate juvenile growth for invertebrates [4] [7]. Therefore, other models have been used such as the 
Gompertz model [12]-[15] and the Ricker family of curves [16]. Models such as the Tanaka function [17] and 
the Gaussian model [18] have also been used as they can accommodate some of the complications observed for 
invertebrate growth. The inverse logistic has been shown to perform best for some invertebrates [7] [8] and this 
type of model has the advantage of having low biological prediction error [19]. Growth can also be seasonal and 
there have been efforts to incorporate seasonality into growth models [15] [20] which require an increase in the 
number of parameters in the model [21]. Therefore, selecting an appropriate growth model is not a trivial task 
and selection has been shown to have an impact on fisheries model results impacting management decisions. 

Fishery modeling efforts are sensitive to both growth model selection and growth parameters. Optimal fishing 
mortality rates (F) are heavily influenced by growth parameters. Calculating growth rates directly based on tag 
recapture or indirectly using size frequency methods can also lead to disparate results [22]. Selecting models or 
methods which overestimate growth can lead to fishing policies that are too liberal while underestimating 
growth can lead to conservative fishing policies. Excessive fishing compared to growth capacity can lead to 
overfishing and population collapse. Overly conservative fishing policies can hurt the economic viability of fi-
sheries. Egg per recruit models, for example, have been shown to be sensitive to growth parameter estimates 
significantly changing EPR model projections [23]. Therefore, given the critical importance of growth parameter 
estimation a method that allows for flexibility in mapping a wide range of growth possibilities is needed.  

To examine how different types of growth can be accommodated, we explored a novel method of visualizing 
and modeling growth using a simple two-step, three-stage growth model 1 2A B Ck k→ →  which may ame-
liorate some of the apparent contradictions reported for both increment data and growth modeling. We examine 
the rate equations which progress through three (or more) growth stages A, B, and C. These equations yield ei-
ther a sigmoidal approach to the fully grown state if the growth rates k1 and k2 are similar, or to a first order von 
Bertalanffy curve if they are not. Finally, we show by allowing the growth rate ratio to vary with time that the 
result produces a growth surface over which the actual growth of an individual organism can be mapped. We 
emphasize that we are not proposing a new model to add to the vast collection of growth models being used al-
ready, but that we are showing how apparent contradictions in previous studies can be reconciled for organisms 
that grow by two or more stages since growth can be envisioned across a growth surface that encompasses a 
suite of growth trajectories (models).  

2. Theory 
Growth studies often follow a conventional one-step model  

A Ck→  
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which leads to the first order equation 

( ) 0e ktA t A −=                                      (1) 

which yields 

( ) ( )0 1 e ktC t A −= −                                    (2) 

A change of notation gives, 

( ) ( )1 e ktS t S −
∞= −                                   (2a) 

where ( )S t  denotes size and S∞  denotes the final size attained at a time substantially greater than the period 
of active growth (“infinite” time). This equation is commonly called the von Bertalanffy equation or Brody-von 
Bertalanffy equation [10]. 

We seek to examine results from a sequential growth model which focuses on transitions between distinct 
stages. These stages may encompass radical metamorphosis (changes in body plan) or more subtle transitions 
from juvenile to reproductive adult which do not change outward appearance. 

A sequential growth mechanism involving first order steps  
1 2A B Ck k→ →  

follows the equations 

( ) ( )1

d
d
A t

k A t
t

= −                                      (3a) 

( ) ( ) ( )1 2

d
d
B t

k A t k B t
t

= −                                (3b) 

and 
( ) ( )2

d
d

C t
k B t

t
=                                    (3c) 

At time zero,  

( ) 00A A=   ( )0 0B t =  and ( )0 0C t =  

From Equation 3(a),  

( ) 1
0e

k tA t A −=  
where 

( )0 0A A t= =  

as in Equation (1). The result for B → C requires substituting for A(t) into the rate law of B(t) 

( ) ( )1
1 0 2

d
e

d
k tB t

k A k B t
t

−= −  

A (no italic) identifies a stage A and italic ( )A t  represents the size of a potential growth function which is 
diminished when an individual progresses from stage A to growth stage B. In stage B the growing animal has a 
potential growth function of size ( )B t  which is transformed into the size of the animal represented by ( )C t  
at growth stage C. Using Laplace integral transforms [24]-[26]: see mathematical Appendix, one obtains 

( ) ( )1 21
0

1 2

e ek t k tkB t A
k k

− −= −
−

 

At any time, 

( ) ( ) ( )0A A t B t C t= + +  

( ) ( ) ( )0C t A B t A t= − −  
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where n = k1 − k2. 

3. Methods and Results 
We shall maintain the distinction between growth of an animal and growth of a population. Here we consider 
animal growth and not population growth. We have expressions for transitions from stages A, to B, and B to C as 
a function of time t, A(t), B(t),  and C(t) (Notice that 0A  is a parameter, not a variable). We can look at the ef-
fect of the two stage model on the growth curve in Figure 1. 

One can look at the model from two sides, the two extreme cases, one in which 1 2k k  and the other case 
where 2 1k k . In the first extreme case, the transfer rate from stage 1 to stage 2 (from A to B) is large and the 
entire system rushes from A to B only to be detained by slow passage from B to C. In this case, the second 
transfer controls the total transfer and the second step is the rate controlling step. The rate of increase of C(t) 
(growth) is controlled entirely by the second step rate constant 2k  and the rate equation is a first order von 
Bertalanffy type equation.  

In the second extreme case, the rate controlling step is the first transfer, which is slow from A to B followed 
by a fast transfer from B to C. The growing animal moves through the transition from A to B slowly but the 
magnitude of the potential growth function B(t) is quickly drawn off to growth stage C. B(t) never becomes very 
large (see Mathematical Supplement Figure S1). The rate equation is again first order but it has a different rate 
constant 1k . Only when the two rate constants k1 and k2 are fairly close to one another does one see the sig-
moidal nature of the two stage process in Table 1. 

An interesting point arises when we take the growth surface through the minimum at ( ) ( ), 0C t f n t= = . The 
surface is not defined because k1/k2 − k1 has zero in the denominator. Also ( )1 2e ek t k t− −−  is zero. This should 
not cause concern because the surface is reinstated on the negative side of the t = 0 axis. The denominator in 
k1/k2 − k1 changes sign when k1 becomes dominant but the sign of ( )1 2e ek t k t− −−  also changes so the surface is  

 

 
Figure 1. Two views of the growth model surface. The views differ in the range of the n = k1 − k2 or n = k2 − k1 axis which 
varies from 0 to 1000 on the left and 0 to 1.4 on the right. For two-stage growth over a range of n = large, (a) there is only 
first order growth but when n = small, (b) the same two-stage mechanism predicts sigmoidal growth of size C(t).  



L. Rogers-Bennett, D. W. Rogers 
 

 
325 

Table 1. Parameters in the growth model. 

Parameters 
Two Step Growth Model 

n=ratio model k dominates 

k1 ≈ k2 
k1 > k2 
k2 > k1 

1 
>1 
<1 

Sigmoidal 
First Order 
First Order 

Neither dominates 
k2 dominates 
k1 dominates 

 
reinstated on the negative side of k1/k2 − k1.  

B(t) has a maximum at the inflection point of the function C(t) = f(t). It can be related to the distance between 
the actual curve at the inflection point and the curve that would be found if von Bertalanffy kinetics had been 
followed. The ratio of k1/k2 can be estimated from the distance between the actual curve and the experimental 
curve had the first order function been followed. As the distance between the actual curve and the hypothetical 
first order curve approaches zero, the ratio approaches 1. Practical use of this relationship would require very 
accurate experimental data. 

4. Discussion 
In this paper, we present a multistage growth model which shows the relationship between a suite of linear and 
non-linear growth curves across a growth surface used to model individual growth. We show that the rates of 
growth between stages determine the growth trajectory that can be described as a family of curves with the first 
order curve or the sigmoidal curve as limits. Depending on the difference in the values of the growth rate con-
stants (n = k2 − k1), the growth trajectory follows a first order or sigmoidal portion of the growth surface in Fig-
ure 1 with the slower growth rate as the rate limiting step.  

When both growth rates k1 and k2 are similar, the final growth trajectory follows a sigmoidal curve and when 
they differ it follows a first order trajectory (1 − e−kt). Because growth from stage A to growth stage C can be 
represented as a surface, we envision growth curves that vary across the entire surface such that size is a func-
tion of two variables C(t) = f (n, t). With this model, we see that individual growth can be described as a first 
order curve or as sigmoidal curve depending on the difference in the values of k. This allows for an infinite 
number of combinations and variations in individual growth across the growth surface as may occur with marine 
invertebrates.  

The three stage model can be expanded to stages beyond C as a simple extension of the present model to 
stages D, E, and so on. Within a two (or more) stage growth model, it is possible for different research groups to 
report (correctly) different growth curves for similar populations. Different portions of the growth surface do-
minate during different life history stages. Likewise, different portions of the curve describe growth under dif-
ferent environmental conditions. For example, growth in red abalone slows during warm water periods such as 
El Niño events when kelp resources are scarce [27]. In addition, growth is often seasonal such that animals grow 
more during some parts of the year than others [21] [28]. 

There are many factors which may influence growth in addition to environmental factors. Selection, either 
natural or artificial, may act as a force favoring fast or slow growth. Variation in abalone size plays a role in ab-
alone culture facilities for aquaculture (R. Fields pers. comm.) and conservation. Small size adults may dominate 
especially in heavily fished populations [29]. Queen conch, for example, is fished in the Caribbean and at some 
sites there are only small adults with thick shells called “sambas” [30]. Similarly, in the abalone fishery in Aus-
tralia differences in growth are found in abalone leading to protected reefs with small adults known as “short 
beds” just under the minimum legal size [31]. Regional growth rates may also differ such as with Geoduck, Pa-
nopea globose, in Mexico with important implications for management [32]. Adults that reach a small final size 
may have different growth rates compared to those which reach larger final sizes [33]. 

Invertebrates tend to have high levels of individual variation in both growth rate and final size. Final size, C∞ 
in the von Bertalanffy or Gompertz model can be thought of as a distribution of maximum lengths since popula-
tions are filled with adults of varying sizes [33]. Model final size can also be thought of as the “most probable” 
value in a distribution of actual final sizes [7]. Differences in the shape of the growth model have been accom-
modated in the earlier Richards family of curves [34] by the addition of a poorly defined “shape parameter” 
which when it = 1 gives the logistic curve (sigmoidal) and when it = −1 gives the von Bertalanffy (first order).  
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Figure 2. Two-stage growth curve for n large (a) and n small 1 (b) (see Mathematical Supplement below). Units of k are re-
ciprocal time, typically years. Numerical labeling of the axes, in Figure 2, is arbitrary because we can choose any unit for 
size or time but note the change in scale for the time axis. We have chosen the size at “infinite time” to be 1.0 which makes 
the potential for growth also 1.0 arbitrary units at t0 = 0. 

 
In this work, we show that in a two stage model, shape is controlled by the well defined ratio k1/k2 − k1. This ra-
tio is an improvement over previous methods as it explicitly shows what stage is controlling the growth trajec-
tory. 

The trajectory across the surface defines a path of the probability maximum over points on the growth surface. 
Fast, slow and negative growth can be accommodated by the growth surface in Figure 2.  

In a two stage model, the growth rate C(t) = f(n, t), on the surface represents all possible curves. By selecting 
one growth curve it is possible to specify the curve which represents the most probable growth curve. There are 
many ways growth may vary because individual trajectories can move along the k1/k2 − k1 surface in any direc-
tion. This flexible growth surface allows for visualization of all possible growth trajectories and will be useful in 
modeling growth in animals with complex life histories, staged growth and even negative growth. The well de-
fined parameters will allow for better estimates of growth for use in fishery and population models. 
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S.1. The Laplace Integral Transform 
The Laplace Transform L  is defined 

( ) ( ) ( )
0

e dstf s F t F t t
∞ −= =   ∫L  

Its usefulness is in stepping down from a more difficult problem to an easier one, for example stepping down 

from 
( )d

d
F t

t
 to ( )f s . In our particular application, 

( ) ( )
0

d d
e d

d d
stF t F t

t
t t

∞ − 
= 

 
∫L

 
Integration by parts gives 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

0 00

0

d
e d e d e

d

0 e d

0

st st st

st

F t
t F t F t

t

F t s F t t

F t sf s

∞∞ ∞− − −

∞ −

= −

= − = +

= − = +

∫ ∫

∫
 

which is the simplification we sought. 

S.2. Application 
We wish to solve 

( ) ( )1
1 0 2

d
e

d
k tB t

k A k B t
t

−= −
 

Find L  of both sides 

( ) ( ) ( )1 0 2
1

10sb s B t k A k b s
s k

− = = −
−

 

An initial condition was that ( )0 0B t = =  

( ) ( )2 1 0
1

1s k b s k A
s k

+ =
−

 

( ) ( ) ( )1 0
1 2

1 1b s k A
s k s k

=
− +

 

 

 
Figure S1. Replicates Figure 2(b) text but it shows A(t), B(t), and C(t). 
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Figure S2. B(t) is just visible (bottom right). 

 

 
Figure S3. B(t) goes negative but A(t) and C(t) are normal [see text]. 

 
Now taking the inverse transforms 

( ) ( )1 21 0

1 2

e ek t k tk A
B t

k k
− −= −

−
 

There is no reason to believe that the rate parameter governing any stage transition will be constant (determi-
nistic). For this reason we propose a growth surface over which an animal or population growth mean may 
wander during the growth process (Figure S1-S3).  
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