

Matrices Associated with Moving Least-Squares Approximation and Corresponding Inequalities

Svetoslav Nenov, Tsvetelin Tsvetkov

Department of Mathematics, University of Chemical Technology and Metallurgy, Sofia, Bulgaria Email: nenov@uctm.edu, tstsvetkov@uctm.edu

Received 17 November 2015; accepted 25 December 2015; published 28 December 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this article, some properties of matrices of moving least-squares approximation have been proven. The used technique is based on known inequalities for singular-values of matrices. Some inequalities for the norm of coefficients-vector of the linear approximation have been proven.

Keywords

Moving Least-Squares Approximation, Singular-Values

1. Statement

Let us remind the definition of the moving least-squares approximation and a basic result.

Let:

- 1. \mathcal{D} be a bounded domain in \mathbb{R}^d ;
- 2. $\mathbf{x}_i \in \mathcal{D}$, $i = 1, \dots, m$; $\mathbf{x}_i \neq \mathbf{x}_i$, if $i \neq j$;
- 3. $f: \mathcal{D} \to \mathbb{R}$ be a continuous function;
- 4. $p_i: \mathcal{D} \to \mathbb{R}$ be continuous functions, $i = 1, \dots, l$. The functions $\{p_1, \dots, p_l\}$ are linearly independent in \mathcal{D} and let \mathcal{P}_l be their linear span;
 - 5. $W:(0,\infty)\to(0,\infty)$ be a strong positive function.

Usually, the basis in \mathcal{P}_l is constructed by monomials. For example: $p_l(\mathbf{x}) = x_1^{k_1} \cdots x_d^{k_d}$, where $\mathbf{x} = (x_1, \dots, x_d)$

 $k_1, \cdots, k_d \in \mathbb{N}$, $k_1 + \cdots + k_d \le l - 1$. In the case d = 1, the standard basis is $\{1, x, \cdots, x^{l-1}\}$.

Following [1]-[4], we will use the following definition. The moving least-squares approximation of order l at

a fixed point x is the value of $p^*(x)$, where $p^* \in \mathcal{P}_l$ is minimizing the least-squares error

$$\sum_{i=1}^{m} W(\|\mathbf{x} - \mathbf{x}_i\|) (p(\mathbf{x}) - f(\mathbf{x}_i))^{2}$$

among all $p \in \mathcal{P}_i$.

The approximation is "local" if weight function W is fast decreasing as its argument tends to infinity and interpolation is achieved if $W(0) = \infty$. So, we define additional function $w: [0, \infty) \to [0, \infty)$, such taht:

$$w(r) = \begin{cases} \frac{1}{W(r)}, & \text{if } (r > 0) \text{ or } (r = 0 \text{ and } W(0) < \infty), \\ 0, & \text{if } (r = 0 \text{ and } W(0) = \infty). \end{cases}$$

Some examples of W(r) and w(r), $r \ge 0$:

$$2W(r) = e^{-\alpha^2 r^2}$$
 exp-weight,

$$W(r) = r^{-\alpha^2}$$
 Shepard weights,

$$w(x, x_i) = r^2 e^{-\alpha^2 r^2}$$
 McLain weight,

$$w(x, x_i) = e^{\alpha^2 r^2} - 1$$
 see Levin's works.

Here and below: $\|\cdot\| = \|\cdot\|_2$ is 2-norm, $\|\cdot\|_1$ is 1-norm in \mathbb{R}^d ; the superscript ' denotes transpose of real matrix; *I* is the identity matrix.

We introduce the notations:

$$E = \begin{pmatrix} p_1(\mathbf{x}_1) & p_2(\mathbf{x}_1) & \cdots & p_l(\mathbf{x}_1) \\ p_1(\mathbf{x}_2) & p_2(\mathbf{x}_2) & \cdots & p_l(\mathbf{x}_2) \\ \vdots & \vdots & & \vdots \\ p_1(\mathbf{x}_m) & p_2(\mathbf{x}_m) & \cdots & p_l(\mathbf{x}_m) \end{pmatrix}, \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix},$$

$$D = 2 \begin{pmatrix} w(\boldsymbol{x}, \boldsymbol{x}_1) & 0 & \cdots & 0 \\ 0 & w(\boldsymbol{x}, \boldsymbol{x}_2) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & w(\boldsymbol{x}, \boldsymbol{x}_m) \end{pmatrix}, \boldsymbol{c} = \begin{pmatrix} p_1(\boldsymbol{x}) \\ p_2(\boldsymbol{x}) \\ \vdots \\ p_l(\boldsymbol{x}) \end{pmatrix}.$$

Through the article, we assume the following conditions (H1):

- (H1.1) $1 \in \mathcal{P}_i$;
- (H1.2) $1 \le l \le m$;
- (H1.3) $\operatorname{rank}(E^t) = l$;
- (H1.4) w is smooth function.

Theorem 1.1. (see [2]): Let the conditions (H1) hold true.

Then:

- 1. The matrix $E^t D^{-1} E$ is non-singular;
- 2. The approximation defined by the moving least-squares method is

$$\hat{L}(f) = \sum_{i=1}^{m} a_i f(\mathbf{x}_i), \tag{1}$$

where

$$a = A_0 c$$
 and $A_0 = D^{-1} E (E^t D^{-1} E)^{-1}$. (2)

3. If $w(||x_i - x_i||) = 0$ for all $i = 1, \dots, m$, then the approximation is interpolatory.

For the approximation order of moving least-squares approximation (see [2] and [5]), it is not difficult to

receive (for convenience we suppose d=1 and standard polynomial basis, see [5]):

$$|f(x) - \hat{L}(f)(x)| \le ||f(x) - p^*(x)||_{\infty} \left[1 + \sum_{i=1}^{m} |a_i|\right],$$
 (3)

and moreover (C = const.)

$$||f(x) - p^*(x)||_{C} \le Ch^{l+1} \max \{|f^{(l+1)}(x)| : x \in \overline{D}\}.$$
 (4)

It follows from (3) and (4) that the error of moving least-squares approximation is upper-bounded from the 2-norm of coefficients of approximation ($\|\boldsymbol{a}\|_1 \le \sqrt{m} \|\boldsymbol{a}\|_2$). That is why the goal in this short note is to discuss a method for majorization in the form

$$\|\boldsymbol{a}\|_{2} \leq M \exp(N\|\boldsymbol{x} - \boldsymbol{x}_{i}\|).$$

Here the constants M and N depend on singular values of matrix E^t , and numbers m and l (see Section 3). In Section 2, some properties of matrices associated with approximation (symmetry, positive semi-definiteness, and norm majorization by $\sigma_{\min}\left(E^t\right)$ and $\sigma_{\max}\left(E^t\right)$) are proven.

The main result in Section 3 is formulated in the case of exp-moving least-squares approximation, but it is not hard to receive analogous results in the different cases: Backus-Gilbert wight functions, McLain wight functions, etc.

2. Some Auxiliary Lemmas

Definition 2.1. We will call the matrices

$$A_1 = A_0 E^t = D^{-1} E (E^t D^{-1} E)^{-1} E^t$$
 and $A_2 = A_1 - I$

 A_1 -matrix and A_2 -matrix of the approximation \hat{L} , respectively.

Lemma 2.1. Let the conditions (H1) hold true.

Then, the matrices A_1D^{-1} and A_2D^{-1} are symmetric.

Proof. Direct calculation of the corresponding transpose matrices.

Lemma 2.2. *Let the conditions (H1) hold true.*

Then

1. All eigenvalues of A_1 are 1 and 0 with geometric multiplicity l and m-l, respectively;

2. All eigenvalues of A_2 are 0 and -1 with geometric multiplicity l and m-l, respectively.

Proof. Part 1: We will prove that the dimension of the null-space $\dim(\text{null}(A_2))$ is at least l.

Using the definition of $A_2 = D^{-1}E(E^tD^{-1}E)^{-1}E^t - I$, we receive

$$E^{t}A_{2} = (E^{t}D^{-1}E)(E^{t}D^{-1}E)^{-1}E^{t} - E^{t} = 0.$$

Hence,

$$\operatorname{im}(A_2) \subseteq \operatorname{null}(E^t).$$

Using (H1.3), E' is $(l \times m)$ -matrix with maximal rank l (l < m). Therefore, $\dim(\operatorname{null}(E')) = m - l$. Moreover, $\dim(\operatorname{im}(A_2)) = m - \dim(\operatorname{null}(A_2))$. That is why $m - \dim(\operatorname{null}(A_2)) \le m - l$ or $l \le \dim(\operatorname{null}(A_2))$. Part 2: We will prove that -1 is eigenvalue of A_2 with geometric multiplicity m - l, or the system

$$A_2 \boldsymbol{\eta} = -\boldsymbol{\eta} \Leftrightarrow A_1 \boldsymbol{\eta} = 0$$

has m-l linearly independent solutions.

Obviously the systems

$$A_{\mathbf{I}}\boldsymbol{\eta} = D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}E^{t}\boldsymbol{\eta} = 0$$
(5)

and

$$E^t \boldsymbol{\eta} = 0 \tag{6}$$

are equivalent. Indeed, if η_0 is a solution of (5), then

$$D^{-1}E(E^{t}D^{-1}E)^{-1}E^{t}\boldsymbol{\eta}_{0} = 0 \Rightarrow E^{t}D^{-1}E(E^{t}D^{-1}E)^{-1}E^{t}\boldsymbol{\eta}_{0} = 0$$
$$\Rightarrow E^{t}\boldsymbol{\eta}_{0} = 0,$$

i.e. η_0 is solution of (6).

On the other hand, if η_0 is a solution of (6), then

$$\left(D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}E^{t}\right)\boldsymbol{\eta}_{0} = \left(D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}\right)\left(E^{t}\boldsymbol{\eta}_{0}\right) = 0,$$

i.e. η_0 is solution of (5). Therefore

$$\dim(\operatorname{im}(A_1)) = \dim(\operatorname{im}(E^t)) = m - l.$$

Part 3: It follows from parts 1 and 2 of the proof that 0 is an eigenvalue of A_2 with multiplicity exactly l and -1 is an eigenvalue of A_2 with multiplicity exactly m-l.

It remains to prove that 1 is eigenvalue of A_1 with multiplicity at least l, but this is analogous to the proven part 1 or it follows directly from the definition of $A_1 = A_2 + I$.

The following two results are proven in [6].

Theorem 2.1 (see [6], Theorem 2.2): Suppose U, V are $(m \times m)$ Hermitian matrices and either U or V is positive semi-definite. Let

$$\lambda_1(U) \ge \cdots \ge \lambda_m(U), \quad \lambda_1(V) \ge \cdots \ge \lambda_m(V)$$

denote the eigenvalues of U and V, respectively.

Let:

- 1. $\pi(U)$ is the number of positive eigenvalues of U;
- 2. v(U) is the nubver of negative eigenvalues of U;
- 3. $\xi(U)$ is the number of zero eigenvalues of U.

Then:

1. If $1 \le k \le \pi(U)$, then

$$\min_{1 \leq i \leq k} \left\{ \lambda_{i}\left(U\right) \lambda_{k+1-i}\left(V\right) \right\} \geq \lambda_{k}\left(VU\right) \geq \min_{k \leq i \leq m} \left\{ \lambda_{i}\left(U\right) \lambda_{m+k-i}\left(V\right) \right\}.$$

2. If $\pi(U) < k \le m - \nu(U)$, then

$$\lambda_{\nu}(VU) = 0.$$

3. If $m - v(U) < k \le m$, then

$$\min_{1 \le i \le k} \left\{ \lambda_{i}\left(U\right) \lambda_{m+i-k}\left(V\right) \right\} \ge \lambda_{k}\left(VU\right) \ge \min_{k \le i \le m} \left\{ \lambda_{i}\left(U\right) \lambda_{i+1-k}\left(V\right) \right\}.$$

Corollary 2.1. (see [6], Corollary 2.4): *Suppose U, V are* $(m \times m)$ *Hermitian positive definite matrices.* Then for any $1 \le k \le m$

$$\lambda_1(U)\lambda_1(V) \ge \lambda_k(VU) \ge \lambda_m(U)\lambda_m(V)$$
.

As a result of Lemma 2.1, Lemma 2.2 and Theorem 2.1, we may prove the following lemma.

Lemma 2.3. Let the conditions (H1) hold true.

- 1. Then A_1D^{-1} and $-A_2D^{-1}$ are symmetric positive semi-definite matrices.
- 2. The following inequality hods true

$$\lambda_{\max}\left(A_1D^{-1}\right) \leq \frac{1}{\lambda_{\min}\left(D\right)}.$$

Proof. (1) We apply Theorem 2.1, where

$$U = D$$
, $V = A_1 D^{-1}$.

Obviously, U is a symmetric positive definite matrix (in fact it is a diagonal matrix). Moreover $\pi(U) = m$,

 $\mu(U) = \xi(U) = 0$, if $\mathbf{x} \neq \mathbf{x}_i$, $i = 1, \dots, m$.

The matrix V is symmetric (see Lemma 2.1).

From the cited theorem, for any index k $(k = 1, \dots, m = \pi(U))$ we have

$$\lambda_{k}\left(A_{1}\right) = \lambda_{k}\left(A_{1}D^{-1}D\right) = \lambda_{k}\left(VU\right) \leq \min_{1 \leq i \leq k} \left\{\lambda_{i}\left(U\right)\lambda_{m+i-k}\left(V\right)\right\}.$$

In particular, if k = m:

$$\lambda_{m}(A_{1}) \leq \min_{i \in \mathcal{I}_{m}} \{\lambda_{i}(U)\lambda_{i}(V)\}. \tag{7}$$

Let us suppose that there exists index i_0 $(i_0 = 1, \dots, m-1)$ such that

$$\lambda_{1}(V) \ge \dots \ge \lambda_{i_{0}}(V) \ge 0 > \lambda_{i_{0}+1}(V) \ge \dots \ge \lambda_{m}(V). \tag{8}$$

It fowollws from (8) and positive definiteness of U, that

$$\min_{1 \leq i \leq m} \left\{ \lambda_i \left(U \right) \lambda_i \left(V \right) \right\} \leq \lambda_{i_0+1} \left(U \right) \lambda_{i_0+1} \left(V \right) < 0.$$

Therefore (see (7)), $\lambda_m(A_1) < 0$. This contradiction (see Lemma 2.2) proves that the matrix A_1D^{-1} is positive semi-definite.

If we set U = D, $V = -A_2D^{-1}$ then by analogical arguments, we see that the matrix $-A_2D^{-1}$ is positive semi-definite.

(2) From the first statement of Lemma 2.3, $V = A_1 D^{-1}$ is positive semi-definite. Therefore (see Corollary 2.1 and Lemma 2.2):

$$1 \ge \lambda_k(A_1) = \lambda_k(VU) \ge \max \{\lambda_m(U)\lambda_k(V), \lambda_m(V)\lambda_k(U)\}$$

for all $k = 1, \dots, m$. Moreover, all numbers $\lambda_k(U)$, $\lambda_k(V)$ are non-negative and

$$\lambda_{\max}(D) = \lambda_1(U) \ge \cdots \ge \lambda_m(U) = \lambda_{\min}(D), \quad \lambda_1(V) \ge \cdots \ge \lambda_m(V).$$

Therefore

$$1 \ge \max \left\{ \lambda_m(U) \lambda_1(V), \lambda_m(V) \lambda_1(U) \right\},\,$$

or

$$\lambda_{\max}\left(A_{1}D^{-1}\right) = \lambda_{1}\left(V\right) \leq \frac{1}{\lambda_{m}\left(U\right)} = \frac{1}{\lambda_{\min}\left(D\right)}.$$

In the following, we will need some results related to inequalities for singular values. So, we will list some necessary inequalities in the next lemma.

Lemma 2.4. (see [7] [8]): Let U be an $(d_1 \times d_2)$ -matrix, V be an $(d_3 \times d_4)$ -matrix. Then:

$$2\sigma_{\max}(UV) \le \sigma_{\max}(U)\sigma_{\max}(V), \tag{9}$$

$$\sigma_{\max}\left(U^{-1}\right) = \frac{1}{\sigma_{\min}\left(U\right)}, \quad \text{if } d_1 = d_2, \det U \neq 0, \tag{10}$$

$$\sigma_{\max}(V)\sigma_{\min}(U) \le \sigma_{\max}(UV), \quad \text{if } d_1 \ge d_2 = d_3, \tag{11}$$

$$\sigma_{\max}(U)\sigma_{\min}(V) \le \sigma_{\max}(UV), \quad \text{if } d_4 \ge d_3 = d_2.$$
 (12)

If $d_1 = d_2$ and U is Hermitian matrix, then $||U|| = \sigma_{\max}(U)$, $\sigma_i(U) = |\lambda_i(U)|$, $i = 1, \dots, d_1$. **Lemma 2.5.** Let the conditions (H1) hold true and let $\mathbf{x} \neq \mathbf{x}_i$, $i = 1, \dots, m$.

Then:

$$\left\|A_{\mathbf{l}}D^{-1}\right\| \leq \frac{1}{\lambda_{\min}(D)},\tag{13}$$

$$\sigma_{\max}\left(A_{\mathrm{l}}\right)\sigma_{\min}\left(D^{-1}\right) \leq \sigma_{\max}\left(A_{\mathrm{l}}D^{-1}\right),\tag{14}$$

$$1 \le \|A_{\mathbf{i}}\| \le \sqrt{\frac{\sigma_{\max}(D)}{\sigma_{\min}(D)}}.$$
(15)

Proof. The matrix A_1D^{-1} is simmetric and positive semi-definite (see Lemma 2.3 (1)). Using the second statement of Lemma 2.3 and Lemma 2.4, we receive

$$\left\|A_{l}D^{-1}\right\| = \sigma_{\max}\left(A_{l}D^{-1}\right) = \lambda_{\max}\left(A_{l}D^{-1}\right) \leq \frac{1}{\lambda_{\min}\left(D\right)}.$$

The inequality (14) follows from (12) ($d_4 = d_3 = m$).

From (14) and (10), we receive

$$\sigma_{\max}\left(A_{1}\right) \leq \frac{\sigma_{\max}\left(A_{1}D^{-1}\right)}{\sigma_{\min}\left(D^{-1}\right)} = \frac{\sigma_{\max}\left(D\right)}{\sigma_{\min}\left(D\right)}.$$

Therefore, the equality $||A_1|| = \sqrt{\sigma_{\text{max}}(A_1)}$ implies the right inequality in (15).

Using $E^t = E^t A_t$ and inequality (9), we receive

$$\sigma_{\max}\left(E^{t}\right) \leq \sigma_{\max}\left(E^{t}\right) \sigma_{\max}\left(A_{1}\right),$$

or $1 \le \sigma_{\text{max}}(A_1) = ||A_1||^2$, *i.e.* the left inequality in (15). The lemma has been proved.

3. An Inequality for the Norm of Approximation Coefficients

We will use the following hypotheses (H2):

(H2.1) The hypotheses (H1) hold true;

(H2.2) d = 1, $x_1 < \dots < x_m$; (H2.3) The map c is C^1 -smooth in $[x_1, x_m]$;

(H2.4)
$$w(|x-x_i|) = \exp(\alpha(x-x_i)^2), \quad i=1,\dots,m$$
.

Theorem 3.1. Let the following conditions hold true:

- 1. Hypotheses (H2);
- 2. Let $x \in [x_1, x_m]$ be a fixed point;
- 3. The index $k_0 \in \{1, \dots, m\}$ is choosen such that

$$\left|x-x_{k_0}\right|=\min\left\{\left|x-x_i\right|:i=1,\cdots,m\right\}.$$

Then, there exist constants $M_1, M_2 > 0$ such that

$$\|a(x)\| \le (\|a(x_{k_0})\| + M_1 |x - x_{k_0}|) \exp(M_2 |x - x_{k_0}|).$$

Proof. Part 1: Let

$$H = \begin{pmatrix} 2\alpha(x-x_1) & 0 & \cdots & 0 \\ 0 & 2\alpha(x-x_2) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 2\alpha(x-x_m) \end{pmatrix},$$

then

$$\frac{\mathrm{d}D}{\mathrm{d}x} = HD, \quad \frac{\mathrm{d}D^{-1}}{\mathrm{d}x} = -HD^{-1}.$$

We have (obviously D = D(x), H = H(x), and c = c(x))

$$\frac{d\mathbf{a}(x)}{dx} = \frac{d}{dx} \left(D^{-1}E \left(E^{t}D^{-1}E \right)^{-1} \mathbf{c} \right)
= \left(\frac{d}{dx}D^{-1} \right) E \left(E^{t}D^{-1}E \right)^{-1} \mathbf{c} + D^{-1}E \left(\frac{d}{dx} \left(E^{t}D^{-1}E \right)^{-1} \right) \mathbf{c} + D^{-1}E \left(E^{t}D^{-1}E \right)^{-1} \frac{d}{dx} \mathbf{c}
= -HD^{-1}E \left(E^{t}D^{-1}E \right)^{-1} \mathbf{c} + D^{-1}E \left(-\left(E^{t}D^{-1}E \right)^{-1} \left(\frac{d}{d\alpha}E^{t}D^{-1}E \right) \left(E^{t}D^{-1}E \right)^{-1} \right) \mathbf{c} + D^{-1}E \left(E^{t}D^{-1}E \right)^{-1} \frac{d}{dx} \mathbf{c}
= -H\mathbf{a} + D^{-1}E \left(E^{t}D^{-1}E \right)^{-1} \left(E^{t}HD^{-1}E \right) \left(E^{t}D^{-1}E \right)^{-1} \mathbf{c} + D^{-1}E \left(E^{t}D^{-1}E \right)^{-1} \frac{d}{dx} \mathbf{c}
= \left(D^{-1}E \left(E^{t}D^{-1}E \right)^{-1}E^{t} - I \right) H\mathbf{a} + D^{-1}E \left(E^{t}D^{-1}E \right)^{-1} \frac{d}{dx} \mathbf{c}
= A_{2}H\mathbf{a} + A_{0} \frac{d}{dx} \mathbf{c}.$$

Therefore, the function a(x) satisfies the differential equation

$$\frac{\mathrm{d}\boldsymbol{a}\left(x\right)}{\mathrm{d}x} = A_2 H \boldsymbol{a} + A_0 \frac{\mathrm{d}}{\mathrm{d}x} \boldsymbol{c}.\tag{16}$$

Part 2: Obviously

$$||A_2H|| = ||(A_1 - I)H|| \le (||A_1|| + 1)||H||.$$

It follows from (15) that

$$||A_1|| \le \sqrt{\frac{\sigma_{\max}(D)}{\sigma_{\min}(D)}}.$$

Here $\sigma_{\max}\left(D\right) \le 2\exp\left(\alpha r^2\right)$, $r = x_m - x_1$, and $\sigma_{\min}\left(D\right) \ge 2$. Hence $||A_1|| \leq \sqrt{\exp(\alpha r^2)}$.

For the norm of diagonal matrix H, we receive

$$||H|| \leq 2\alpha r$$

Therefore $||A_2H|| \le M_2$, where

$$M_2 = 2\alpha r \left(1 + \sqrt{\exp(\alpha r^2)} \right).$$

We will use Lemma 2.4 to obtain the norm of A_0 . Obviously, $A_0E^t=A_1$. Therefore by (12) ($m=d_4\geq d_3=l$), we have

$$\sigma_{\max}(A_0)\sigma_{\min}(E^t) \leq \sigma_{\max}(A_1),$$

i.e.

$$\left\|A_0\right\| \leq \frac{1}{\sigma_{\min}\left(E^t\right)} \sqrt{\frac{\sigma_{\max}\left(D\right)}{\sigma_{\min}\left(D\right)}}.$$

Therefore, if we set $M_{11} = \frac{M_2}{\sigma_{\min}(E^t)}$, then $||A_0|| \le M_1$.

Let the constant M_{12} be choosen such that

$$\left\| \frac{\mathrm{d}}{\mathrm{d}x} \boldsymbol{c}(x) \right\| \le M_{12}, \quad x \in [x_1, x_m]$$

and let $M_1 = M_{11}M_{12}$.

Part 3: On the end, we have only to apply Lemma 4.1 form [9] to the Equation (16):

$$\|\boldsymbol{a}(x)\| \le \left(\|\boldsymbol{a}(x_{k_0})\| + \left| \int_{x_{k_0}}^{x} \|A_0 \frac{\mathrm{d}}{\mathrm{d}x} \boldsymbol{c}\| \, \mathrm{d}x \right| \right) \exp \left| \int_{x_{k_0}}^{x} \|A_2 H\| \, \mathrm{d}x \right|$$

$$\le \left(\|\boldsymbol{a}(x_{k_0})\| + M_1 \|x - x_{k_0}\| \right) \exp \left(M_2 \|x - x_{k_0}\| \right).$$

Remark 3.1. Let the hypotheses (H2) hold true and let moreover

$$p_1(x) = 1, p_2(x) = x, \dots, p_l(x) = x^{l-1}, l \ge 1.$$

In such a case, we may replace the differentiation of vector-fuction

$$\boldsymbol{c}(x) = \begin{pmatrix} p_1(x) \\ p_2(x) \\ \vdots \\ p_l(x) \end{pmatrix} = \begin{pmatrix} 1 \\ x \\ \vdots \\ x^{l-1} \end{pmatrix}$$

by left-multiplication:

$$\frac{\mathrm{d}\boldsymbol{c}(x)}{\mathrm{d}x} = \begin{pmatrix} 0 \\ 1 \\ 2x \\ 3x^{2} \\ \vdots \\ (l-2)x^{l-3} \\ (l-1)x^{l-2} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 2 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 3 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & l-2 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & l-1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ x^{2} \\ \vdots \\ x^{l-2} \\ x^{l-1} \end{pmatrix} = \overline{\partial}\boldsymbol{c}(x).$$

The singular values of the matrix $\overline{\partial}$ are: $0,1,\dots,l-1$. Therefore $\|\overline{\partial}\| = \sqrt{l-1}$. That is why, we may chose

$$M_{22} = \sqrt{(l-1)} \max_{1 \le i \le l} \left\{ \max_{x_i \le x \le x_{mi}} \left| p_i(x) \right| \right\}.$$

Additionally, if we supose $|x_1| \le |x_m|$, then

$$\max_{x_1 < x < x_m} |p_i(x)| = |p_i(x_m)|, \quad i = 1, \dots, l.$$

Therefore, in such a case:

$$M_{22} = \sqrt{(l-1)} \max_{1 \le i \le l} \left\{ \left| p_i(x_m) \right| \right\}.$$

If we suppose $-1 \le x_1 \le x \le x_m \le 1$, then obviously, we may set

$$M_{22} = \sqrt{l-1}.$$

References

- [1] Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D. and Silva, C.T. Point-Set Surfaces. http://www.math.tau.ac.il/~levin/
- [2] Levin, D. The Approximation Power of Moving Least-Squares. http://www.math.tau.ac.il/~levin/
- [3] Levin, D. Mesh-Independent Surface Interpolation. http://www.math.tau.ac.il/~levin/
- [4] Levin, D. (1999) Stable Integration Rules with Scattered Integration Points. *Journal of Computational and Applied Mathematics*, **112**, 181-187. http://dx.doi.org/10.1016/S0377-0427(99)00218-6

- [5] Fasshauer, G. (2003) Multivariate Meshfree Approximation. http://www.math.iit.edu/~fass/603_ch7.pdf
- [6] Lu, L.-Z. and Pearce, C.E.M. (2000) Some New Bounds for Singular Values and Eigenvalues of Matrix Products. Annals of Operations Research, 98, 141-148. http://dx.doi.org/10.1023/A:1019200322441
- [7] Merikoski, J.K. (2004) Ravinder Kumar, Inequalities for Spreads of Matrix Sums and Products. *Applied Mathematics E-Notes*, **4**, 150-159.
- [8] Jabbari, F. (2015) Linear System Theory II. Chapter 3: Eigenvalue, Singular Values, Pseudo-Inverse. The Henry Samueli School of Engineering, University of California, Irvine. http://gram.eng.uci.edu/~fjabbari/me270b/me270b.html
- [9] Hartman, P. (2002) Ordinary Differential Equations. Second Edition, SIAM, Philadelphia, Pennsylvania, United States. http://dx.doi.org/10.1137/1.9780898719222.fm