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Abstract

In this article, some properties of matrices of moving least-squares approximation have been pro-
ven. The used technique is based on known inequalities for singular-values of matrices. Some in-
equalities for the norm of coefficients-vector of the linear approximation have been proven.
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1. Statement

Let us remind the definition of the moving least-squares approximation and a basic result.

Let:

1. D be abounded domainin RY;

2. x,€D, i=L--m; x#x;,if i#j;

3. f:D—>R beacontinuous function;

4. p,:D—R be continuous functions, i=1,--,1. The functions {pl,---, p,} are linearly independent in
D andlet B be their linear span;

5. W:(0,00)—(0,0) be a strong positive function.

Usually, the basis in R is constructed by monomials. For example: p,(X)=x---x{, where
x=(x, %) ,
k-, k; €N, k+---+k, <I-1.Inthe case d =1, the standard basis is {1,x,---,x"1}.

Following [1]-[4], we will use the following definition. The moving least-squares approximation of order | at
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a fixed point x is the value of p*(x) ,where p" e is minimizing the least-squares error
I 2
SW ([x=xl)(p()- £ (x)

amongall pe?R.

The approximation is “local” if weight function W is fast decreasing as its argument tends to infinity and
interpolation is achieved if W (0)=oo. So, we define additional function w:[0,00) —[0,0), such taht:

1
w(r)=qW(r)’
0

if (r>0)or(r=0andW (0)<o),
, if (r=0andW (0)=c).
Some examples of W (r) and w(r), r=0:
2W (r)= e " exp-weight,
W (r)= re Shepard weights,

2, -a%r?

w(x,x)=r’ McLain weight,

2.2 .
w(x,x)=e"" -1  seeLevin's works.

Here and below: [-|=|[, is 2-norm, |-|, is 1-norm in R?; the superscript * denotes transpose of real
matrix; | is the identity matrix.

We introduce the notations:

P(%) P(x) o p(%) 8
c B0 m(%) < ax)| e
P (Xn)  P2(Xn) P (%) a,
w(x,x) 0 0 P (%)
D> 0 w(x.,xz) 0 e P, (x)
0 0 WX Xy) p (%)
Through the article, we assume the following conditions (H1):
(H1.1) 1eR;
(H1.2) 1<I<m;

(H1.3) rank(E')=1;
(H1.4) w is smooth function.

Theorem 1.1. (see [2]): Let the conditions (H1) hold true.
Then:

1. The matrix E'DE is non-singular;
2. The approximation defined by the moving least-squares method is

E(f):i:aif(xi), 1)
where
a=Ac and A=DE(E'DE) . )
3.1F w(||x,—x][)=0 forall i=1.---,m,then the approximation is interpolatory.

For the approximation order of moving least-squares approximation (see [2] and [5]), it is not difficult to
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receive (for convenience we suppose d =1 and standard polynomial basis, see [5]):

\ f(x)-L(f )(x)‘ <t (x)-p" (), {1+§|ai|}, ®3)
and moreover (C =const.)

[ (x)=p"(x)], <ch*max{[ 1 (x)|: x< D}. @)

It follows from (3) and (4) that the error of moving least-squares approximation is upper-bounded from the 2-
norm of coefficients of approximation (|a], S\/ﬁ"anz). That is why the goal in this short note is to discuss a
method for majorization in the form

el <M exp(Nx =)

Here the constants M and N depend on singular values of matrix E', and numbers m and | (see Section 3). In
Section 2, some properties of matrices associated with approximation (symmetry, positive semi-definiteness,
and norm majorization by o, (Et) and o, (Et)) are proven,

The main result in Section 3 is formulated in the case of exp-moving least-squares approximation, but it is not
hard to receive analogous results in the different cases: Backus-Gilbert wight functions, McLain wight functions,
etc.

2. Some Auxiliary Lemmas

Definition 2.1. We will call the matrices
A=AE'=D'E(EDE) E' and A =A-I

A -matrix and A, -matrix of the approximation L, respectively.
Lemma 2.1. Let the conditions (H1) hold true.
Then, the matrices AD™ and A,D™ are symmetric.
Proof. Direct calculation of the corresponding transpose matrices.
Lemma 2.2. Let the conditions (H1) hold true.
Then:
1. All eigenvalues of A are 1 and 0 with geometric multiplicity | and m—1, respectively;
2. All eigenvalues of A, are 0 and —1 with geometric multiplicity I and m—1I, respectively.
Proof. Part 1: We will prove that the dimensign of the null-space dim(nuII(Az)) is at least I.
Using the definition of A, =D™E(E'DE) E'-1,we receive

E'A, =(E'DE)(E'DE) E'-E' =0.
Hence,
im(A,) < null(E").
Using (H1.3), E' is (I xm)—matrix with maximal rank | (I <m). Therefore, dim(nuII(Et)): m—1. More-

over, dim(im(A,))=m—dim(null(A,)). Thatiswhy m-—dim(null(A,))<m-I or I<dim(null(A,)).
Part 2: We will prove that —1 is eigenvalue of A, with geometric multiplicity m—1, or the system

Agp=-1< A =0

has m—1 linearly independent solutions.
Obviously the systems
An=D"E(E'DE) E'n=0 )
and
E'n=0 (6)
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are equivalent. Indeed, if 7, is a solution of (5), then

D E(E'DE) E'n,=0=E'DE(E'D'E) E'n, =0

= E'n, =0,
i.e. 7, issolution of (6).
On the other hand, if 7, is a solution of (6), then

(D-lE(EtD-lE)’1 E‘)q0 :(D-lE(E‘D-lE)’l)(Et%) -0,

i.e. 1, issolution of (5). Therefore
dim (im(A)) =dim(im(E)}=m-1.

Part 3: It follows from parts 1 and 2 of the proof that O is an eigenvalue of A, with multiplicity exactly I and
—1 isan eigenvalue of A, with multiplicity exactly m—1.

It remains to prove that 1 is eigenvalue of A with multiplicity at least I, but this is analogous to the proven
part 1 or it follows dirctly from the definitionof A=A, +1.

The following two results are proven in [6].

Theorem 2.1 (see [6], Theorem 2.2): Suppose U, V are (mxm) Hermitian matrices and either U or V is
positive semi-definite. Let

AU)224,(U), A(V)224,(V)

denote the eigenvalues of U and V, respectively.
Let:
1. 7z(U ) is the number of positive eigenvalues of U;

) is the nubver of negative eigenvalues of U;

2. v(U

3. £(U) isthe number of zero eigenvalues of U.
Then:

1.1f 1<k<z(U), then

min {4 (U) 4.1 (V)} 2 4 (VU)=min {2 (U) 2., (V)}.

I<i<k k<i<m

2.1f z(U)<k<m-v(U), then
2 (VU)=0.
3.1f m-v(U)<k<m,then

min {4 (U) A (V)} 2 A (VU) 2 min {4 (U) 4., (V)}.

I<i<k k<i<m

Corollary 2.1. (see [6], Corollary 2.4): Suppose U, V are (m X m) Hermitian positive definite matrices.
Then forany 1<k <m

AU)A V)24 (W) 2 2, (U) Ay (V).
As aresult of Lemma 2.1, Lemma 2.2 and Theorem 2.1, we may prove the following lemma.
Lemma 2.3. Let the conditions (H1) hold true.

1. Then AD™ and —A,D™' are symmetric positive semi-definite matrices.
2. The following inequality hods true

1

ﬂmax(A&D’l)sm.

Proof. (1) We apply Theorem 2.1, where
U=D, V=AD"

Obviously, U is a symmetric positive definite matrix (in fact it is a diagonal matrix). Moreover z(U)=m,
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uU)=£(U)=0,if x=x, i=L-m.
The matrix V is symmetric (see Lemma 2.1).
From the cited theorem, for any index k (k=1---,m=7(U)) we have

A (A) =4 (AD™D) =24 (VU) < min{4 (U) Ay, (V)}-

I<i<k

In particular, if k=m:

7o (A) < min{Z, (V)4 (V)}. 0
Let us suppose that there exists index i, (i =1---,m—1) such that
AV)z-24 (V)20>2 (V)22 4, (V). ©))

It fowollws from (8) and positive definiteness of U, that
mln {ﬂfl (U )ﬂ'fl (V )} < /110+1 (U )ﬂi(ﬁl (V ) < 0

I<i<m

Therefore (see (7)), 4, (A1)<0. This contradiction (see Lemma 2.2) proves that the matrix AD™ is posi-
tive semi-definite.

If we set U=D, V=-AD™" then by analogical arguments, we see that the matrix —A,D™" is positive
semi-definite.

(2) From the first statement of Lemma 2.3, V = AD™ is positive semi-definite. Therefore (see Corollary 2.1
and Lemma 2.2):

127, (A)= A4 (VU) 2 max {2, (U) 4 (V). 4 (V) 4 (U)}
forall k=1---,m. Moreover, all numbers 4 (U), 4 (V) arenon-negative and
A (D)= 4{U)2 2 4y (U) = Ay (D), A (V) 227, (V).
Therefore
12 max |, (U) 4 (V). 4y (V) 4, (U),
ou(A0) =40 15 oy -

In the following, we will need some results related to inequalities for singular values. So, we will list some
necessary inequalities in the next lemma.
Lemma 2.4. (see [7] [8]): Let U be an (d, xd,)-matrix, V be an (d,xd,)-matrix.

Then:
20,4 (UV ) <O (U )O'max (V ), 9)
_ 1 .
O ax (U 1): — ) if d,=d,, detU =0, (10)
O ax (V)O'min (U)SamaX (UV), if d, >d, =d,, (11)
Onax (U) i (V) S0 (UV), i d, >d; =d,. (12)
If d,=d, and U is Hermitian matrix, then [U=0,, (U), o, (U)=|4(U), i=L-.d,.
Lemma 2.5. Let the conditions (H1) hold true and let x = x,, i=1---,m
Then:
AD s =, 13)
ﬂ’min (D)
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Omax (Ai)o-min (Dil) < Omax (AiDil)' (14)
O-max D
1<ja)z (20 a9

Proof. The matrix AD™ is simmetric and positive semi-definite (see Lemma 2.3 (1)). Using the second
statement of Lemma 2.3 and Lemma 2.4, we receive

1
Ain (D)

[AD™] = o (AD™) = A (AD) <

The inequality (14) follows from (12) (d, =d; =m).
From (14) and (10), we receive

O max (AiDil) _ O max ( D)

O min (D_l) in (D) .
Therefore, the equality |A [ =1/c,. (A ) implies the right inequality in (15).
Using E'=E'A and inequality (9), we receive

O max (Et)S O max (Et)gmax (Ai)’

or 1< o, (A)=|A|, ie. the left inequality in (15).
The lemma has been proved. g

O (A) <

3. An Inequality for the Norm of Approximation Coefficients

We will use the following hypotheses (H2):
(H2.1) The hypotheses (H1) hold true;
(H22) d=1, x <--<X,;
(H2.3) Themap ¢ is C'-smoothin [x,X,];

(H2.4) W(|x—xi|):exp(a(x—xi)2), i=1--,m.

Theorem 3.1. Let the following conditions hold true:
1. Hypotheses (H2);

2.Let xe[x,X,] beafixed point;

3. Theindex kye{1,---,m} is choosen such that

|x—xko|=min{|x—xi|:i=1,---,m}.

Then, there exist constants M, M, >0 such that

||a(x)||s(”a(xk0) +M1|x—xk0|)exp(M2|x—xko|).
Proof. Part 1: Let
20 (x—x,) 0 0
R
6 0 2a(x.—xm)
then
® _yp, P _pe
dx 0 dx '
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We have (obviously D=D(x), H=H(x),and c=c(x))

93£Q:-‘]'—(DlE(E‘DlE)lc)
dx dx
=[51D1JE(ED1Eydo+D1E(9(ED1Eyjc+D1E(ED1Ey31c
dx dx dx
- _HD-lE(EtD-lE)’lc + D‘lE(—(E‘D‘lE)l (i E‘D‘lEj(E‘D‘lE)lj(H D-lE(EtD-lE)’lic
da dx
— _Ha+DE(E'DE)*(E'HDE)(E'DE) c+ DE(EDE)' L
a+DE( ) It ) c+DE( ) 5°
=(D*E(EW)*E)JE‘—|)Ha+—D4E(E‘D4E)411c
dx
d
—AH L
A, a+A0ch
Therefore, the function a(x) satisfies the differential equation
da(x) d
—AH g 16
ax o eHarA g c (16)

Part 2: Obviously

[AHI=[(A-1)H]<(IAl+2)IH]
It follows from (15) that

< O-maX(D)
S WG}

Here o, (D)<2exp(ar®), r=x,-x,and o, (D)>2.Hence

(LYES lexp(arz).

For the norm of diagonal matrix H, we receive
IH|<2ar.

M, =2ar(1+4lexp(ar2)).

We will use Lemma 2.4 to obtain the norm of A, .
Obviously, AE'=A . Therefore by (12) (m=d, >d, =1), we have

G () Tin (E') < O (A,

Therefore |A,H| <M, , where

Therefore, if we set M, :L, then |Af<M,.

O min (Et)
Let the constant M,, be choosen such that
d
&c(x) <My, Xe[X,Xy]
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and let M, =M M,,.
Part 3: On the end, we have only to apply Lemma 4.1 form [9] to the Equation (16):

ol o | o g

< (Ha(xko )”+ M1|x— xko|)exp(M2 |x— xk0|).
Remark 3.1. Let the hypotheses (H2) hold true and let moreover
P (X)=1 p,(X) =%, p(x)=x", 1=L.
In such a case, we may replace the differentiation of vector-fuction
P (x) 1

e(x)=| 20| X

dx| |exp

[ IAH] dx
X

p|(X) lel
by left-multiplication:
000 0 0 O 1
1 100 0 0 O <
2X 020 .. 0 0 O 5
de(x) ) X -
e 3x =0 0 3 ... O 0 0f . [=ac(x).
X . . . . :
: . : . . . . XI_Z
(1-2)x*{ o0 o0 .. 1-2 0 0|,
(I-9)x?) o o0 .. 0 I-10
The singular values of the matrix ¢ are: 0,1,---,1—1. Therefore ||5||:\/I—1.

That is why, we may chose

M,, =4/(1-1) max{ max

i<l xg<x<xp

P, (x)|}
Additionally, if we supose |x,|<|x,|, then

max | p, (X)|=|pi (%), i=L--,1.

X <X<Xp

Therefore, in such a case:

M,, = /(1 -1) max{| P (X, )|}

I<i<|

If we suppose —1<x <x<X, <1, then obviously, we may set

M,, =/1-1.
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