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Abstract 
In this study, the iterative harmonic balance method was used to develop analytical solutions of 
period-one rotations of a pendulum driven horizontally by harmonic excitations. The performance 
of the method was evaluated by two criteria, one based on the system energy error and the other 
based on the global residual error. As a comparison, analytical solutions based on the multi-scale 
method were also considered. Numerical solutions obtained from the Dormand-Prince method 
(ODE45 in MATLAB©) were used as the baseline for evaluation. It was found that under lower-level 
excitations, the multi-scale method performed better than the iterative method. At higher-level 
excitations, however, the performance of the iterative method was noticeably more accurate. 
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1. Introduction 
Under external excitations, a pendulum can exhibit rich dynamical behavior. The dynamical behavior is related 
to the potential well of pendulum. Captured in the potential well, the motion of a pendulum corresponds to os-
cillation [1]-[5]. When outside its potential well, pure rotations are normally seen [4]-[10]. The simplest pure 
rotation is the so-called period-one rotation which makes one complete revolution in each period of excitation. 

In recent studies, period-one rotating solutions of a vertically excited pendulum have been approximately 
solved by the multi-scale method [11], the perturbation method [12], and the iterative harmonic balance method 
[13], respectively. In a later investigation, the multi-scale method was also used to develop approximate period- 
one rotating solutions of a pendulum under combined vertical and horizontal excitation [14]. It has been shown 
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that under higher-level excitations, the iterative harmonic balance performs better than the multi-scale method 
[13]. 

In this study, the analytical solution for period-one rotating orbits of a horizontally excited pendulum was de-
veloped using iterative harmonic balance. The performance of the analytical solutions was evaluated by two cri-
teria, i.e. the system energy error and the global residual error, and was compared with that of the multi-scale 
method. The numerical calculation obtained from the Dormand-Prince (ODE45 in MATLAB©) was used as the 
baseline for the performance comparison. It was found that the analytical solutions developed were in excellent 
agreement with the numerical methods. Moreover, the iterative method performed better than the multi-scale 
method at higher-level excitations, while the multi-scale method excelled at lower-level excitations. 

2. Governing Equation 
For a planar pendulum with a point mass of m and massless arm of length of l under a horizontal harmonic base 
excitation (i.e. the displacement ( )0x t  of the base is ( )0 cosx t A t= Ω ), its dynamical behavior is governed by 
the following equation. 

sin cos cospθ γθ θ ωτ θ+ + =�� � .                               (1) 

where θ is the angular displacement of the pendulum, (˙) denotes differentiation of the argument with respect to 
a non-dimensional time variable τ , defined as ntτ ω= , where n g lω = . The amplitude and frequency of 
the excitation are normalized such that, 2Ωp A g= , Ω nω ω= , and the damping coefficient is normalized as 

( )nc mγ ω=  in which c is the viscous damping coefficient of the system. 

3. Approximate Solution 
3.1. Iterative Method 
For a period-one rotating orbit, the magnitude of the angular velocity of the pendulum is equal to the excitation 
frequency with a small periodic perturbation with zero mean over one period [13]. Using Fourier series, there-
fore, the angular speed of period-one rotations can be represented as.  

( ) ( )θ τ ω τ= +�  .                                    (2) 

where ( ) ( )1 cosk kk kτ ωτ ϕ∞

=
= +∑   which satisfies ( )τ ω� , and coefficients k  and kϕ  are the am-

plitude and phase of the kth harmonics of frequency kω  respectively. 
Based on Equation (2), the exact solution of period-one rotations can be readily obtained as 

( ) 0 θθ τ ωτ ϕ= + + .                                  (3) 

where 0ϕ  is the initial phase of ( )θ τ , and 

( )1 sink kk C kθ ωτ ϕ∞

=
= +∑ .                               (4) 

in which k kC kω=  , and 1θ � . However, due to the infinite number of coefficients to be determined, i.e.
kC , kϕ , 0ϕ , and the parametrical term in the governing equation that generates beat frequencies, it is impossi-

ble to determine exactly the parameters by direct substitution and harmonic balance. Therefore, an iterative me-
thod is used to approximately determine these parameters. 

Substituting Equation (3) into the right-hand side of Equation (1) and expanding sinθ  and cosθ  at 0θ =  
yield 

( ) ( ) ( )
( ) ( ) ( )

2
0 0

2
0 0

cos cos sin

sin cos .

p O

O

θ θ

θ θ

θ γθ ωτ ωτ ϕ ωτ ϕ

ωτ ϕ ωτ ϕ

 + = + − + ⋅ + 
 − + + + ⋅ + 

�� �  

 
                  (5) 

The following iterative process is proposed for the estimation of the parameters in Equations (3) and (4): 
Step 1: The iteration starts with the zero-order approximation of θ  such that ( )0sin sinθ ωτ ϕ≈ +  and 

( )0cos cosθ ωτ ϕ= + . Equation (5) can be rewritten as 

( ) ( )0 0cos cos sinpθ γθ ωτ ωτ ϕ ωτ ϕ+ = + − +�� � .                        (6) 
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An approximate solution 1θ  can be obtained by substitution of Equations (3) and (4) into Equation (6).  
Step 2: Using the approximate parameters in Equation (5) and truncating the series at a desired order, an ap-

proximate equation of motion can be obtained (Equation (12)) and solved using Equations (3) and (4). 
… 
Step n: Using the solution from the (n-1)th step and follow the same iterative process, the solution for the nth 

iteration can be obtained. 

3.2. First Iteration 
The solution of Equation (6) is 

( )2
1 01 1 11 sink kk C kθ ωτ ϕ ωτ ϕ

=
= + + +∑ .                          (7) 

where 

01
2arccos

p
γωϕ

 
=  

 
.                                  (8) 

and 

2 2 1
1 1 1 1

1

, arctan , 1,2.k
k k k k

k

B
C A B k

A
ϕ= + = =                          (9) 

in which 

( ) ( )
1 2 1 2

1 12 22 2

11 01 12 01

21 01 22 01

,

cos sin

sin c

,

s
2 2

, .o

k k k k

k k

R R R R
k kA B

k k
R R

p pR R

γ γ
ω ω

ω γ ω γ
ϕ ϕ

ϕ ϕ

− + +
= = −

+ +

= − = −

= − =

                        (10) 

Note that 01cosϕ  is bounded in [−1, 1]. Consequently, the necessary condition for solution (7) to exist is 

2p γω≥ .                                     (11) 

which gives a lower bound on the normalized excitation amplitude, p. 

3.3. Second Iteration 
In the second iteration, using the result of the first iteration and considering the first-order approximation, the 
following modified governing equation is obtained. 

( ) ( )
( ) ( )

1

1

02 02

02 02

cos cos sin

sin cos .

p θ

θ

θ γθ ωτ ωτ ϕ ωτ ϕ

ωτ ϕ ωτ ϕ

 + = + − + ⋅ 
 − + + + ⋅ 

�� � 


                   (12) 

where ( )
1

2
1 11 sink kk C kθ ωτ ϕ

=
= +∑  is obtained from the first iteration. 

Equation (12) is solved as 

( )4
2 02 2 21 sink kk C kθ ωτ ϕ ωτ ϕ

=
= + + +∑ .                     (13) 

where 

02 2 2
1 2

2arccos
K K

γωϕ ψ
 
 = −
 + 

.                             (14) 

and 
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12 12 1
1 11 2 11

2

2 2 2
2 2 2 2

2

, , arctan
2 2

, arctan , 1, 2,3, 4.k
k k k k

k

pB pA KK A K p B
K

B
C A B k

A

ψ

ϕ

= = − − =

= + = =

− +

                    (15) 

in which 

( ) ( )
1 2 1 2

2 22 22 2
,

k k k k

k k

R R R R
k kA B

k k

γ γ
ω ω

ω γ ω γ

− + +
= = −

+ +
                        (16) 

and 

( ) ( )

( ) ( ) ( )

( )

( )

11 12
11 02 11 02 12 02

11 12 11
12 02 11 02 12 02 11 02

11 12
21 02 11 02 12 02

11 12
22 02 11 02 12 02

11
31

cos sin cos
4 2

sin cos sin cos
4 2 2

sin cos cos sin
2 2 2

cos sin sin sin
2 2 2

pC CR

pC C pCR

C pCpR

C pCpR

pCR

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

= − − + − −

= − + + − − − −

= − − + −

= − + −

= − ( ) ( )

( ) ( )

( )

( )

12
11 02 12 02

11 12
32 11 02 12 02

12
41 12 02

12
42 12 02

sin cos
4 2

cos sin
4 2

sin
4

cos .
4

C

pC CR

pCR

pCR

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

+ − +

= + − +

= − +

= +

           (17) 

As ( )02cos ϕ ψ+  is bounded in [−1, 1], the necessary condition for solution to exist is 

2 2
1 2

2 1
K K

γω
≤

+
.                                    (18) 

Following a similar procedure, higher-order iterations can be derived. The general form of higher-order itera-
tions is reported in Appendix. 

3.4. Error Analysis 
In this study, the performance of analytical solutions based on the method considered was evaluated using two 
different criteria, i.e. the system energy from a physical perspective and the global residual of the governing eq-
uation from a mathematical perspective. Error in system energy was defined as the root-mean-square value of 
the relative error in one period η, i.e. 

0

0

2π 21 Δ d
2π

E
θ

θ
η θ

+
= ∫ .                                (19) 

in which 

Δ 100%a num

num

E E
E

E
−

= × .                               (20) 

where 21 cos 2num num numE θ θ= − + �  denotes the value of system energy calculated based on the numerical solu-
tion numθ  obtained from the Dormand-Prince method (ODE45 in MATLAB©), and 21 cos 2a a aE θ θ= − + �  is 
the value of system energy calculated from the analytical solution aθ . 
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The global residual error was defined as the root-mean-square value of the error in one period Re, i.e. 

( )0

0

21 cos 1 sin d
T

e a a aR p
T

τ

τ
θ γθ ωτ θ τ

+
 = + − − ∫ �� � .                    (21) 

4. Results 
Error analysis for the analytical solutions was first evaluated. Excitations were fixed at ω = 3. Three levels of 
excitation, i.e. p = 0.1, p = 1, and p = 10, were considered. Under each level of excitation, the normalized 
damping ratio, γ was swept from nearly zero to near the threshold value defined in Equation (11). For compari-
son, the solutions based on the multi-scale method [14] were also considered. The numerical solution solved by 
the Dormand-Prince method (ODE45 in MATLAB©) was used as the baseline of the evaluation. Note that other 
methods were used to numerically solve the governing equation, i.e. the Bogacki-Shampine method (ODE23 in 
MATLAB©), the Gear’s method (ODE45 in MATLAB©), etc. It was found that for the cases considered, all the 
methods produced the same results. Therefore, only the results obtained by the Dormand-Prince method 
(ODE45 in MATLAB©) are presented. In all the results presented, those obtained from the first and second ite-
rations of the iterative harmonic balance method are labeled with 1st It. and 2nd It., respectively, and those from 
the first and second order multi-scale method are labeled with 1st Mul. and 2nd Mul., respectively. 

The relationship between the performance index from the system energy error, η, and the normalized damping 
ratio, γ is shown in Figure 1. For lower-level excitation, i.e. p = 0.1 (Figure 1(a)), the first-order solutions from 
both the multi-scale and the iterative harmonic balance methods had a similar level of performance, η = 0.37% 
which was almost independent of the damping ratio. The error of the second-order multi-scale solution was the 
lowest. For the cases of γ < 0.0045, the second-order iterative solution had the same level of error as the 
second-order Multi-scale solution. For higher-level damping, however, the error of the second-order iterative 
solution increased as the damping level became higher. For higher-level excitations, i.e. p = 1, 10 (Figure 1(b) 
and Figure 1(c)), the performance of the iterative harmonic balance method became better than that of the mul-
ti-scale method. In the case of p = 1 (Figure 1(b)), the error of the second-order iteration was at the level of η = 
0.05%, which was noticeably lower than that of the others. However, the error of the second-order multi-scale 
solution was the highest, at the level of around η = 1.24%. With the increase of damping ratio, the error of the 
first-order multi-scale remained at almost the same level, η = 1.1%, while the error of the first-order iteration 
decreased from 1.1% to 0.6%. In the case of p = 10 as shown in Figure 1(c), the error performance of all four 
solutions was gradually improved with the increase of damping ratio. As γ increased from 0.1 to 1.6, the error of 
the second-order iteration was the lowest, decreasing from 25.6% to 1.3%; The error of the second-order mul-
ti-scale solution was the highest, decreasing from 38% to 11.9%; the error of two first-order solutions decreased 
from 36% to 6.4% for the iterative harmonic balance method, and from 36% to 13.9% for the multi-scale me-
thod, respectively. 

The relationship between the performance index based on the global residual error, Re, and the normalized 
damping ratio, γ is summarized in Figure 2. At low-level excitation, e.g. p = 0.1 (Figure 2(a)), the second-or- 
deriteration generated the largest error, while the second-order multi-scale surpassed the others. As the level of 
excitation increased (Figure 2(b) and Figure 2(c)), the performance of the iterative harmonic balance became 
better than that of the multi-scale method. In addition, the error of the second-order iteration was significantly 
lower than those of the other methods. 

The phase portraits over one period are described in Figures 3-5. Three levels of excitations, i.e. p = 0.1, 1, 10, 
were considered. It can be seen from Figure 1 and Figure 2 that the performances of the methods considered 
were significantly different at higher damping level. Therefore, the phase portraits of damping levels close to the 
critical value for the excitations (as described in Equation (11)) were reported to demonstrate the effectiveness 
of the methods considered. For completeness, results of damping levels away from such critical value were also 
presented. The results were consistent with the observation from two evaluation criteria used in this study. 

The convergence of the coefficients Ck obtained from the iterative method was then investigated. The maxi-
mum number of iterations considered was 16. The normalized frequency was fixed at ω = 3 and the damping ra-
tio was fixed at γ = 0.01. Three levels of excitation, i.e. p = 0.1, p = 1, and p = 10, were considered. The effect of 
the number of iterations on the convergence of the coefficients Ck is summarized in Figure 6. Due to the fact 
that the coefficients Ck for higher order harmonics were orders of magnitude small than those for the lower order  
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Figure 1. Error in system energy (a) p = 0.1, (b) p = 1, and (c) p = 10 at ω = 3. 
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Figure 2. Global residual error (a) p = 0.1, (b) p = 1, and (c) p = 10 at ω = 3. 
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Figure 3. Phase portrait over one period (a) γ = 0.001, (b) γ = 0.016 at p = 0.1 and ω = 3. 
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Figure 4. Phase portrait over one period (a) γ = 0.01, (b) γ = 0.16 at p = 1 and ω = 3. 

 
ones, only the results for C1 to C8 are presented. As can be seen from Figure 6, when more iterations were per-
formed, most of the coefficients converged quickly—within two or three iterations after being introduced. Espe-
cially for low-level excitation, i.e. p = 0.1, part of the coefficients had only small fluctuation around a certain 
value. In addition, for all the cases considered, the coefficients generated from three or more iterations, i.e. C5 
and higher, were insignificant. Therefore, only one or two iterations are needed practically to predict the solution 
of period-one rotation. 
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Figure 5. Phase portrait over one period (a) γ = 0.1, (b) γ = 1.6 at p = 10 and ω = 3. 

 
The lower bound of the excitation amplitude is shown in Figure 7. Three damping ratios, i.e. γ = 0.1, γ = 0.2, 

and γ = 0.3, were considered. The results from numerical simulation using the Dormand-Prince method (ODE45 
in MATLAB©) and theoretical approximations obtained from the first and second iterations are both shown for 
comparison. At low frequencies, the prediction of the first iteration underestimated the lower bound, while the 
prediction of the second iteration slightly overestimated. However, the discrepancy diminished with the increase 
of the excitation frequency. 
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Figure 6. Convergence of coefficients Ck, k = 1, 2, ∙∙∙, 8 (a) p = 0.1, (b) p = 1, and (c) p = 10 
at ω = 3 and γ = 0.01. 
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Figure 7. Lower bound of p “˗” Prediction of first iteration, “- - -” Prediction of second itera-
tion, “…o…” Numerical simulation. 

5. Concluding Remarks 
In this study, period-one rotating solution of a horizontally excited pendulum was solved by the iterative har-
monic balance method. The general formulas of solutions were derived. The numerical solution obtained from 
the Dormand-Prince method (ODE45 in MATLAB©) was used as the baseline for performance evaluation. The 
performance of the solutions was evaluated by two criteria, one based on the system energy error and the other 
based on the global residual error. The results showed that two iterations were sufficient for a reasonable accu-
racy. In addition, the solutions based on the multi-scale method were also shown for comparison. Under lower- 
level excitations, the performance of solution based on the multi-scale method was slightly better than that of the 
iterative method. Under higher-level excitations, however, the iterative harmonic balance method was more ac-
curate. 
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Appendix 
nth Iteration (n > 3) 
In the nth iteration, the modified governing equation is 

( ) ( ) ( ) ( )
1 10 0 0 0cos cos sin sin cos

n nn n n np θ θθ γθ ωτ ωτ ϕ ωτ ϕ ωτ ϕ ωτ ϕ
− −

   + = + − + ⋅ − + + + ⋅   
�� �   .   (22) 

where ( )
( )

( )( )1

2 1
1 11 sin

n

n
n k n kk C kθ ωτ ϕ

−

−
− −=

= +∑  is obtained from the (n − 1)th iteration. 

The solution of Equation (22) can be obtained as 

( )2
0 1 sinn

n n nk nkk C kθ ωτ ϕ ωτ ϕ
=

= + + +∑ .                         (23) 
where 

0 2 2
1 2

2arccosn
K K

γωϕ ψ
 
 = −
 + 

.                              (24) 

and 

( )
( )

( )
( )

( )

1 2 1 2 1
1 21 1 1 1

2

2 2
2

, , arctan
2 2

, arctan , 1,2,3,4, , 2 1 ,2 .

n n
n n

nk
nk nk nk k

nk

pB pA KK A K p B
K

B
C A B k n n

A

ψ

ϕ

− −
− −= = − − =

= + = −

− +

= �
               (25) 

in which 

( ) ( )
1 2 1 2

2 22 2
,

k k k k

nk nk

R R R R
k kA B

k k

γ γ
ω ω

ω γ ω γ

− + +
= = −

+ +
                        (26) 

and 
( )

( )( ) ( )
( )( ) ( )

( )( )
( )

( )( ) ( )
( )( )

( )
( )( ) ( )

( )( )
( )

( )( ) ( )

1 1 1 2 1 3
1 0 0 0 01 1 1 2 1 3

1 1 1 2
12 0 0 01 1 1 2

1 1 1 3
0 01 1 1 3

1 1 1 2
21 0 01 1

cos sin cos sin
4 2 4

sin cos sin
4 2

cos cos
2 4

sin cos
2 2 2

n n n
n n n n nn n n

n n
n n nn n

n n
n nn n

n n
n nn
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 (27) 
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As ( )0cos nϕ ψ+  is bounded in [−1, 1], the necessary condition for solution to exist is 

2 2
1 2

2 1
K K

γω
≤

+
.                                    (28) 
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