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Abstract

In the realm of Bounded Topology we now consider supernearness spaces as a common generali-
zation of various kinds of topological structures. Among them the so-called Lodato spaces are of
significant interest. In one direction they are standing in one-to-one correspondence to some kind
of topological extensions. This last statement also holds for contiguity spaces in the sense of Iva-
nova and Ivanov, respectively and moreover for bunch-determined nearness spaces as Bentley has
shown in the past. Further, Doitchinov proved that the compactly determined Hausdorff exten-
sions of a given topological space are closely connected with a class of supertopologies which he
called b-supertopologies. Now, the new class of supernearness spaces—called paranearness spac-
es—generalize all of them, and moreover its subclass of clan spaces is in one-to-one correspon-
dence to a certain kind of symmetric strict topological extension. This is leading us to one theorem
which generalize all former mentioned.
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1. Basic Concepts

As usual PX denotes the power set of a set X, and we use B* — PX to denote a collection of bounded
subsets of X , also known as B -sets, i.e. B* has the following properties:

(by) DeB*;

(b;) B, =B, eB” imply B, eB*;

(bs) xeX implies {x}eB*.

Then, for B -sets B*,B" afunction f:X —Y iscalled bounded iff f satisfies (b),i.e.

(b) {f[B]:BeB*}cB".

Definition 1.1 For a set X, we call a triple (X,B>< ,N) consisting of X, B-set B* and an operator
N:B* - E(E(EX )) a prehypernear space iff the following axioms are satisfied, i.e.
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(hn) BeB* and p, < p, eN(B) imply p,eN(B), where p, < p, iff VF,ep,3F epF,oF;

(hny) BeB* implies BX ¢ N(B)=@;

(hny) peN(D) implies p=J;

(hn) xe X implies {{x}}eN({x}).

If pe N(B for some BeB*, then we call p a B -near collection in N . For prehypernear spaces

X,B%, N), Y,B*, M) a bounded function f:X —Y is called a hypernear map, shortly hn-map iff it sa-
tisfies (hn), i.e.

(hn) BeB* and peN(B) imply {f[F]:Fep}=fpeN(f[B]);a sected hn-map, shortly shn-map
iff it satisfies (shn), i.e.

(shn) BeB* and peN(B) imply secf(secp)e N(f[B]) with secp={T = X :VF e pF N T =@}
and f(A)={DcY:3Ae AD> f[A]}.

Remark 1.2 Note, that shn-maps between prehypernear spaces are always hn-maps. We denote by PHN® re-
spectively PHN the corresponding categories.

Examples 1.3 (i) For a prenearness space (x,g) ([1]) let B* be B -set. Then we consider the triple
(X,B*,N,) where N,(@)={@} and N, (B):={p<PX:{B}upe&},otherwise.

(ii) For a” b -filter space (X,B,z) ([2]) we consider the triple (X,B*,N,), where for each BeB*N,
is defined by setting: N_(B):= {p CPX :3F eFIL(X)(FxF er(B) and p csec]-")} ;

(iii) For a set-convergence space (X, M*,q) ([3] we consider the triple (X,AM*,N, ), where for each
Be M*N, is defined by setting: N, (B):={p < PX :3F eFIL(X)(p =secF and 7gB)} ;

(iv) For a generalized convergence space (X,q) [4], we consider the triple (X,D(X ), N1 ) , Where
D(X)={D}u{{x}:xe X} and N({x}):={p<PX :3F eFIL(X)(p =secF and Fgx)}
for xe X with N(&):={d} ; alternately we look at the following triple (X,EX,q N), where
IN(B):={p <= PX:3xeB3F eFIL(X)(p =secF and Fgx)} for B=Q,

and "N (9):={D};

(v) For a Cech-closure space (X,—) ([5]) let B be B -set. Then we consider the triple (X,BX,N’)
with N’(B)::{chX 'Besec{F:F ep}} foreach BeB*;

(vi) For a b -proximity space (X, M*,5) ([6]) we consider the triple (X,M*,N,), where

N;(B)={p<=PX:pcds(B)}

foreach Be M* with §(B):={Ac X :BSA};

(vii) For a neighborhood space (X,MX ,G)) ([6]) we consider the triple (X,MX,NG,), where for each
Be M Ng (B):={pcPX:pcsecO(B)}.

Remark 1.4 In preparing the next two important examples we give the following definitions.

Definitions 1.5 TEXT denote the category, whose objects are triples E :=(e, B*,Y )—called topological ex-
tensions—where X :=(X,cly ), Y :=(Y,cl,) are topological spaces (given by closure operators) with B -set
B* and e:X —Y isa function satisfying the following conditions:

(tx)) AePX implies cl, (A)=e™ [clY (e[A])] , Where e™ denotes the inverse image under e;

(txo) cly (e[X])=Y , which means that the image of X under e isdensein Y .

Morphisms in TEXT have the form (f,g):(e,BX,Y)—)(e’,BX',Y'), where f:X - X', g:Y >Y' are
continuous maps such that f is bounded, and the following diagram commutes:

X—-Y

)

X’ﬁy/

If (f,9):(e,B*.Y)—>(e,B*,Y") and (f'g'):(e’,B*,Y')—>(e",B*",Y") are TEXT-morphisms, then
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they can be composed according to the rule:
(f.9')o(f.g)=(f"o f,g'og):(e,Bx , X)—)(e",BX",Y")

where “o” denotes the composition of maps.

Remark 1.6 Observe, that axiom (txl) in this definition is automatically satisfied if e: X —>Y is a topo-
logical embedding. Moreover we admit an ordinary B -set B* on X which need not be necessary coincide
with the power PX . In addition we mention that such an extension is called

(1) strict iff {clY (e[A]): Ac X} forms a base for the closed subsets of Y [7];

(2) symmetric iff xe X and yecl, ({e(x)}) imply e(x)ecl, ({y}) [8l.
Examples 1.7 (i) For a topological extension (e,BX,Y) we consider the triple (X,BX,NE),Where

N, (B)={p = PX:3yee[B]lye{cl, (e[A]): Ac p}|

if B#J and N,(0):={d};
(ii) For a symmetric topological extension (e, B*,Y ) we consider the triple (X,3*,N°), where

NE(B)::{chX:EIyecIY (e[B])ye{cIY(e[A]):Aep}}
if B¢ and N°(J):={J}.

2. Fundamental Classes of Prehypernear Spaces

With respect to above examples, first let us focus our attention to some important classes of prehypernear
spaces.

Definitions 2.1 A prehypernear space (X ,BX, N) is called

(i) saturated iff X e B*;

(ii) discrete iff B* ={@}U{{x}:xe X};

(iii) symmetric iff BeB* \{<} and peN(B) imply {B}upeN(B) and
{B}upem{N(F): F epml’j’x};

(iv) pointed iff BeB* \{@} implies N(B) :U{N ({x}):xe B} ;

(v) conic iff BeB* implies U{p<PX:peN(B)}eN(B);

(vi) set-defined iff B eB* implies {Ac X :BnA=@}=BeN(B).

Theorem 2.2 The category PNEAR of prenearness spaces and related maps is isomorphic to the category
SY-PHNS® of saturated symmetric prehypernear spaces and hn-maps.

Proof. According to Example 1.3. (i) we claim that (X,EX, N, ) isasymmetric saturated prehypernear space.

Conversely, we consider for such proposed space (Y,B‘Y , M) the following prenearness space (Y,7,, ) de-
fined by setting:

my ={AcPX:Ae({M(A):Ac A}}.

Hence, the above mentioned connections are functoriell, and thus it remains to prove that the following two
statements are valid, i.e.

(i) &=y,

(i) M=N, .

To (i): “c”; Ae& and Ae A imply A=J, hence {AjuAdeé, and AeN,(A) is valid which
shows A enN,.

57 A €1y, and without restriction A= . Choose &= Ae A, hence Ae Ng(A) by hypothesis,

and {AluAdeé follows.
Since A< {AluA weclaim Ae¢.
To (ii): “<”: Without restriction lethe &= Ae PX.
For AeM(A) we have to verify {AjuAen, .So, letbe A'e A, hence {AjuAdeM(A’) since M
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is symmetric and saturated by hypothesis. Consequently, AeN, (A) is valid.

“>” Conversely, lethe AeN, (A),hence {AjUAen, "Choose @ = A’ e A (according to (hn,) re-
spectively (hn,)). Thus { }uA e M (A’) holds, and {A} ({A} uA) eM(A) follows by hypothesis.
But A<<{A’}u({A}uA),hence AeM(A) isvalid. O

Remark 2.3 In this context we point out that each prehypernear space (X,lS’X , N) induces in general the
following Cech-closure operators by setting:

1) cly (A) ::{x eX:{AleN ({x})}

) c"(A) Zz{Xe X :{{x},AleN ({x})} ,
where the following inclusion is valid: Ae PX implies ¢l (A)ccl, (A). In the symmetric case these two
operators coincide, moreover we have x e cl, ( A) iff xecly, (A),and finally (X,cly) definesasymmetric
C ech-closure space. ’

Definition 2.4 A prehypernear space (X,B*,N) is called a pseudohypernear space iff N is isoton, i.e.
N satisfies (is) B, =B, e B* imply N(B,)<=N{B,). We denote by PSHN the corresponding full subcate-
gory of PHN.

Remark 2.5 In this context we refer to Examples 1.3. (i), (iv), (v), (vi), (vii), respectively Examples 1.7. (i),
(ii).

Theorem 2.6 The category C-CLO of Cech-closure spaces and continuous maps is isomorphic to a full sub-
category of PSHN.

Remark 2.7 Now, before showing the above mentioned theorem we give the following definition.

Definition 2.8 A prehypernear space (X,B*,N) iscalled sected iff N satisfies (sec), i.e.

(sec) BeB* and peN(B) imply Besec{cl, (F):Fep}.

Remark 2.9 In this connexion we point out that each pointed prehypernear space (see Remark 3.6) is always
sected.

Moreover, sected prehypernear spaces are already pseudohypernear spaces.

Definition 2.10 A sected conic saturated prehypernear space is called closed, and we denote by CL-PHSN
the full subcategory of PSHN, whose objects are closed pseudohypernear spaces.

Proof of Theorem 2.6.

According to Example 1.3. (v) we claim that ( X,PX,N~) is a closed pseudohypernear space. Conversely,
we consider for such proposed space (Y,BY ,M ) the Cech-closure space (Y,cIM ) Hence, the above men-
tioned connections are functoriell, and thus it remains to prove that the following two statements are valid, i.e.:

(i) -= (:Ihr ;

(i) M =N,

To (i): Now let be AePX , we have to verify A=cl _(A).Firstly, xeA implies {x} esec{A}, hence
{AbeN~({x}),and xecl _(A) results.

Secondly, xecl (A) implies {A}eN~({x}),hence {x}esec{A} and xeA follows.

To (ii): Now, let be without restriction AePX\{Q&}. peM(A) and Fep imply {F}eM(A) ac-
cordingto (hn,), hence Ancl, (F)#@ by hypothesis, and pe N (A) results.
Conversely, peN°®™ (A) implies Aesec{cl, (F):Fep}.
Now, we will show that ch{Ac PX:AeM (A)} Fep implies Ancl, (F)#@ by hypothesis.
Choose xe A with {F}eM({x}),hence {F}eM(A),since M satisfies (is). But then
pcJ{AcPX:AeM(A)eM(A)

is valid which implies p € M (A), hence concluding the proof.

Remark 2.11 Now, in the following another important class of prehypernear spaces will be examined, being
fruitful in considering convergence problems and having those properties, which are characterizing topological
universes.

3. Grill-Spaces

Definitions 3.1 A prehypernear space (X ,BX, N) is called a prehypergrill space iff N satisfies (gri), i.e.
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(gri) BeB* and peN(B) imply there exists y e GRL(X)p <y eN(B),
where GRL(X):={y cPX:yisgrill},and y < PX is called grill (Choquet [9]) iff it satisfies

(griy) Dey,

(grip) G,uUG, ey iff G ey or G,ey.

We denote by G-PHN the category, whose objects are the prehypergrill spaces with hn-maps between them
and by G-PHN* the category, whose objects are the prehypergrill spaces with shn-maps between them.

Remark 3.2 We refer to Examples 1.3. (ii), (iii), (iv), (vi), (vii) respectively and to Examples 1.7. (i), (ii).

Theorem 3.3 The category GRILL of grill-determined prenearness spaces and nearness preserving maps is
isomorphic to a full subcategory of G-PHN.

Proof. According to Theorem 2.2 we already know that (X ,PX,N 5) is a symmetric saturated prehypernear
space, hence additionally it is a prehypergrill space by hypothesis. Conversely, 7,, is grill-determined by sup-
position. O

Theorem 3.4 The category SETCONV ([3]) of set-convergence spaces and related maps is isomorphic to a
full subcategory of G-PHN* .

Proof. According to Example 1.3. (iii) we claim that the triple (X,MX , Nq) is a set-defined prehypergrill
space. Conversely, we consider for such proposed space (Y,BY,M) the following set-convergence space
(Y,BY, pM) defined by setting: F, B iff secF eM (B) for each B eB”. Hence, the above mentioned
connections are functoriell with respect to shn-maps. Thus, it remains to prove that the following two statements
are valid, i.e.

() a=npy,;

(i) M=N, .

To (i) “<” FgB implies ]—'qu B, evidently.

“2" Fpy B implies secF e N, (B), hence there exists F'eFIL(X)secF csecF' and FgB. Since
F'< F we conclude with FgB.

To (ii): “<™ peM(B) implies the existence of y e GRL(X) with pcyeM(B). Consequently,
secy e FIL(X) and secyp,B results, hence peN, (B) isvalid.

“>" peN, (B) implies that pcsecF and F, B hold. Hence secF €M (B), and peM(B) re-
sults. O

Corollary 3.5 The category GCONV of generalized convergence spaces and related maps is isomorphic to
the category DISG-PHN?®, whose objects are the discrete prehypergrill soaces and whose morphisms are the
sected hn-maps.

Remark 3.6 Now, in this connextion it is interesting to note that there exists and alternate description of ge-
neralized convergence spaces in the realm of prehypergrill spaces. Analogously, how to describing set conver-
gence on arbitrary B-sets we offer now a corresponding one for the point convergence as follows: Let be given a
point-convergence space (X,q), where g c FIL(X)x X is satisfying some natural conditions. Then we con-
sider the following pointed prehyergrill space (X,EX,N“) by setting N%(&):={&} and

N9 (B):={p < PX :3xeB3F e FIL(X)(p =secF and Fux)}

if BxJ.

Conversely let be given a pointed saturated prehypergrill space (Y,B",M) then we naturally define a point-
convergence space (Y, pM) by setting 7, y iff secFeM ({y ) As a consequence we obtain the result
that point convergence can be essentially expressed by means of its corresponding pointed saturated prehyper-
grill spaces and sected hn-maps.

Hence, the last mentioned category also is isomorphic to DISG-PHN".

Remark 3.7 Another interesting fact is the following one. As Wyler has shown in [3] supertopological spaces
in the sense of Doitchinov can be regarded as special set-convergence spaces. Hence it is also possible for de-
scribing them in the realm of prehypergrill spaces. Concretely let be given a supertopological space (see [10]) or
more generally a neighborhood space (X,/\/lx ,®) in the sense of [6], in the following referred as to presu-
pertopological space. Then we consider the triple (X,/\/lX , Ne), where NG,(B):={pc PX :p csecG)(B)}
for each B e M* . Hence the triple (X, M*,N, ) is a conic pseudohypergrill space. Hereby, a prehypergrill
space (X,lS’X , N) is called pseudohypergrill space iff N satisfies (is) (see also Definition 2.4). By CG-PSHN
respectively CG-PSHN® we denote the corresponding categories. At last we point out that conic pseudohyper-
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near spaces are even set-defined.

Theorem 3.8 The category PRESTOP of presupertopological spaces and continuous maps is isomorphic to
the category CG-PSHN".

Proof. According to Remark 3.7 we consider conversely for a conic pseudohypergrill space (Y,BY , M) the
space (Y ,B",0, ) , where for each Be B' ©,, is defined by setting:

Oy (B)=sec|J{r e GRL(Y):y e M (B)}

foreach BeB".Then (Y,B",0, ) is a presupertopological space. Hence, the above mentioned connections
are functoriell with respect to shn-maps. Thus, it remains to prove that the following two statements are valid,
i.e.

(i) ®=° N,

(i) M ="o,.

To (i): “<™ For Be M” letbe Ue®(B). Feu{yeGRL(X):yeN,(B)} implies the existence of
7€Ng(B) with Fey, hence y —sec®(B) follows. Consequently F esec®(B) is valid, showing that
FNU=J.

“>": Since secO®(B)e Ng (B) isgrill we get sec®(B) | J{y € GRL(X):y € Ny (B)}, hence

sec|J{7 e GRL(X):y € Ny (B)} = ©(B)

is valid.

To (ii): “<” peM(B) implies the existence of y e GRL(X) with p<yeM(B) by hypothesis, hence
p csecO,, (B).

“>" peN, (B) implies pcsecO, (B):U{y eGRL(X):yeM (B)} eM(B), hence peM(B)
according to (hn,). O

Remark 3.9 b -proximities (see [6]) are of significant importance when considering topological extensions.
Here we will give two interesting examples in that direction as follows:

(1) For a symmetric topological space (Y,t) (given by a closure operator t) let B* bea B -setwith X Y,
then we define a b -proximity &, = B* xPX by setting: BS,A iff t(B)nt(A)= foreach BeB* and
Ac X . Now, it is easy to verify that &, is t-compatible, which means the equality cl; =t holds by re-
stricting t on X, where cl; denotes the closure-operator induced by o, .

(2) Let being the same hypothesis as in (1). We set B* :={D < X :3B e B*t(B)> D! and define a near-
t

ness relation &' < B xPX by setting: D5'A iff t(D)nt(A)=Q. Then &' defines a b-proximity with
the same properties as mentioned above. Now, we recall the definition of a b-proximity respectively b-proximity
space as follows:

Definition 3.10 A b -proximity space consists of a triple (X,BX ,5), where X is set, B* B -set and
8 < B* xPX satisfying the following conditions:

(bpy) DSA and BS (i.e. & isnotinrelationto A, and analogously this is also holding for B );

(bp;) BS(A UA,) iff BSA or BSA,;

(bps) xe X implies {x}&{x};

(bps) B, cB,eB* and BJSA imply B,5A.

Remark 3.11 Here we point out that b-proximities are in one-to-one correspondence with presupertopologies.
In the symmetric case, if ¢ additionally satisfies (sbp), i.e.

(sbp) B, B, e B* and BB, imply B,5B, and moreover B* equals PX , then symmetric b-proximities
coincide with the Cech-proximities mentioned by Deak ([11]).

Definition 3.12 For b -proximity spaces (X,Bx ,5), (Y,BY,;/) a bounded function f:X —Y is called
p-map iff f satisfies (p), i.e.

() BeB*, AePX and BSA imply f[B]yf[A].Byb-PROX we denote the corresponding category.

Theorem 3.13 The category b-PROX and CG-PSHN are isomorphic.

Proof. For a b-proximity space (X , M* ,5) we consider the triple (X S MY Nﬁ) , where

N;(B)={p=PX:pcs5(B)}
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for each Be M* with §(B):={Ac X :BSA}. Then (X,/\/tX , Ng) is a conic pseudohypergrill space. Con-
versely let be given such a space (Y,BY M ) then we consider the triple (Y,BY, Pu ) where p,, < B xPY

is defined by setting B, A iff {A}eM(B) foreach BeB" and AcY .Hence, (Y,BY, pM) is a b-pro-
ximity space. The above mentioned connections are functoriell, and thus it remains to prove that the following
two statements are valid, i.e.

(i) o=np,;

(i) M=N, .

To(i):“c=™ BSA implies {A}eN;(B),hence BpN A.

“>™ Bp,,A implies {A}eN,(B), hence BSA follows.

To (ii): “<™ peM(B) and Fep imply {F}eM(B), hence Bp,F,and Fep, (B) results.

“>" peN, (B) implies pc p, (B). Wewill showthat pc|J{AcPX:AeM(B)}.

Fep implies Fep,(B) by hypothesis, hence Bp,F,and {F}eM(B) results which concludes the
proof. O

Résumé 3.14 Respecting to former advisements we note that we have established only some topological
concept in which some important classical ones can be now expressed and studied in a very natural way. More-
over, the fundamental categories how as GRILL, b-PROX, PRESTOP, GCONV and SETCONV can be re-
garded as special subcategories of G-PHN. (see also the Theorem 3.3, 3.4, 3.8 and 3.13 respectively).

4. Bonding in Prehypernear Spaces

A slight modification of the definition for being a prehypergrill space leads us to the following notation.

Definition 4.1 A prehypernear space (X ,B* N is called bonded iff N satisfies (b), i.e.

(b) BeB* and p vp,eN(B) imply p eN(B) or p, eN(B),where
pvp,={RUFRRep,Fep,).

Remark 4.2 Each prehypergrill space is bonded.

Proof. evident. O

Definition 4.3 Now, we call a bonded pseudohypernear space a semihypernear space and denote by SHN the
full subcategory of PSHN.

Theorem 4.4 The category PrTOP of pretopological spaces and continuous maps is isomorphic to a full
subcategory of SHN.

Proof. According to Theorem 2.6 respectively Definition 2.10 it is evident that cl,, additionally satisfies
cly (AUA,)=cl, (A)ucly, (A,), hence being a pretopology on its underlying set. On the other hand N~ is

bonded, because p;v p, e N"(B) implies Besec{F:Fep v p,|. We suppose that p,, p, ¢ N (B),
hence there exist F, € p,, F, ep, suchthat BNF, =& =BnF,.Consequently,

@=(BNR)U(BNF,)=Bn(FRUF,)=BNRUF,.

But FUF, € pup, leadsusto a contradiction. O
Theorem 4.5 The category SNEAR of seminearness spaces and related maps is isomorphic to a full sub-
category of SHN.

Proof. According to Theorem 2.2 we firstly show that N, is bonded. Without restriction bet be B e B* \(@)
and p,vp,eN,(B), hence {B}uU(p,vp,)eé. Since ({Bjup)v({Blup,)<{B}u(pvp,) we ob-
tain ({B}up)v({Bjup,)e&. Thus {Blup e& or {Bjup,e& results, showing that N, is satisfying
(b). On the other hand let be A v A, €7, and without restriction A =< = A,. We suppose A, A, €7, ,
hence there exist A eA, A eA, with 4 ¢M(A) and A, ¢ M(A,). Consequently A UA, e A v A,
follows. Then we get A, v.A, e M (A UA,) by hypothesis. Since M is bounded we have A4 e M (A UA,),
or A, eM (A UA,).Bysymmetryof M we obtain the statement {A UA,}UA eM(A) or

{AUA}UA, eM(A,). Consequently, A4 eM(A) or A, eM(A,) leads us to a contradiction. 0
Remark 4.6 A pseudohypernear space (X ,B*,N) induces two underlying psh-hull operators by setting for

each BeB*:
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B" ={xe X:{{x}}eN(B)};

NI§:={XeX :{{x},B}eN(B)},

whereby the inclusion B < B" is valid for each BeB*. If N is symmetric then the two operators
coincide, and moreover we claim the following equalities for each BeB*, i.e. cl(B)=cl" (B)=" B=B".
Hereby, a function h:B* — PX is called a psb-hull operator, and the triple (X,Bx,h) is called a psb-hull
space iff h satisfies the following conditions:

(bhy) h(D)=92;

(bh) BeB” implies B<h(B);

(bhy) B, =B, eB” imply h(B,)=h(B,).

For psb-hull spaces (X,B%,h, ), (Y,B",h,) let f:X —Y be abounded function, then f is called b-
continuous iff B e B* implies f [hx (B)] ch, (f [B]) We denote by Psb-HULL the corresponding catego-
ry.

Definition 4.7 Now, we call a conic pseudohypernear space (X ,B*, N) a pseudohull space iff N satisfies
(h), i.e.

(h) BeB* and peN(B) imply B" esecp.We denote by PSHU the full subcategory of PSHN, whose
objects are the pseudohull spaces.

Theorem 4.8 The categories Psb-HULL and PSHU are isomorphic.

Proof. According to Remark 4.6 we already know that (X,BX ,—N) is a psb-hull space. Conversely, for a

psb-hull space (Y,BY , h) we consider the triple (Y,BY M “) by setting for each
BeB':M"(B):={p<PX:h(B)esecp}.

Then (Y,B",M") isa pseudohull space. Hence, the above mentioned connections are functoriell. Thus it re-
mains to prove that the following two statements are valid, i.e.

(i) h=-M";

@iy N=M""N,

To (i): “<™ For BeB* let be xeh(B), hence h(B)esec{{x}}. Consequently, {{x}}eM"(B)
follows, showing that x e BM" s valid.

“>": evident.

To (ii): “<™ peN(B) and Fep imply B" nF =@ by hypothesis, hence peM™ (B) is valid.

“>™ peM™(B); we will show that pcU{F < X:34eN(B)FeA} is valid. Fep implies

B" NF =@ by hypothesis. Choose xeF with {{x}}eN(B), hence {F}eN(B) according to (hny).
Consequently, the above mentioned inclusion is valid, showing that p e N (B) O

Corollary 4.9 In the saturated case CL-PSHN and PSHU are isomorphic categories.

Proof. We refer to Theorem 2.6, Definition 2.10 and Theorem 4.8 respectively.

Definition 4.10 A prehypernear space (X,B*,N) is called connected if N satisfies (cnc), i.e.

(cnc) B, B,= X and B, UB,eB* imply N(B UB,)=N(B)UN(B,).

Remark 4.11 We note that each pointed prehypernear space is connected, moreover this also is holding for
any symmetric semihypernear space. Consequently, the underlying psb-hull operator —N additionally satisfy-
ing (ad), i.e.

(ad) h(B,uB,)=h(B,)uh(B,). Now, let us call such an operator h b-hull operator, and we denote by
b-HULL the corresponding full subcategory of Psb-HULL with related objects. In the saturated case we claim
that b-HULL and CL-SHN are isomorphic categories. Hereby CL-SHN denotes the full subcategory of SHN,
whose objects are the closed semihypernear spaces.

5. Hypernear Spaces

As already observed, hypertopologies appear in connexion with certain interior operators studied by Kent and
Min ([12]). Hereby a function —:PX — PX is called a hypertopology on X, and the pair (X,—) is called a
hypertopological space iff “—” satisfies the following conditions:
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(hyty) @=4; B

(hyt,) AePX implies Ac A;

(hyts) A A, ePX imply AchA;

(hyty) AePX implies Ac A.

For hypertopological spaces (X,—-X), (Y,-Y) let f:X —Y be a function, then f is called continuous
iff AePX implies f[ﬂx]cmy. By HYTOP we denote the corresponding subcategory of C-CLO.

Evidenly, the category TOP of topological spaces and continuous maps can be now regarded as a special case of
HYTOP. On the other hand certain nearnesses play an important role in the realm of unifications and extensions,
respectively. This is holding for distinguished nearness spaces and b-proximity spaces in fact. Moreover, certain
supertopologies are involved, too. Now, in the following we will give a common description of them all by in-
troducing the so called concept of a hypernear space.

Definition 5.1 A pseudohypernear space (X,B*,N) is called a hypernear space iff N satisfies (hn), i.e.

(hn) BeB* and {cl, (F):Fep}eN(B) imply peN(B).

We denote by HN the corresponding full subcategory of PSHN. Note, that in this case cl is a hypertopol-
ogyon X.

Theorem 5.2 CL-HN denotes the full subcategory of CL-PSHN, whose objects are the closed hypernear spaces,
then CL-HN and HYTOP are isomorphic.

Proof. The reader is referred to Theorem 2.6 and Definition 2.10, respectively. O

Remark 5.3 As pointed out in Remark 3.6, point convergence can be described by certain pointed prehyper-
near spaces. To obtain a result more closer related to hypertopologies we will give the following definition.

Definition 5.4 A prehypernear space (X ,B*, N) is called surrounded, iff N satisfies (sr), i.e.

(sr) BeB*\{@} and peN(B) implythereexists xeB xe(){cl,(F):Fep}.

Remark 5.5 Here we claim that each pointed prehypernear space is surrounded, hence sected, too. (See also
Definition 2.8).

Lemma 5.6 For a hypernear space (X B, N) the following statements are equivalent:

(i) (X,B*,N) is pointed;

(ii) (X,BX , N) is surrounded.

Proof. The only remaining implication “(ii) = (i)” will be shown now: B e B* \{@} and pe N(B)
imply the existence of xe B with xe(){cl, (F):F € p}. Consequently,

{cly (F):Fepl<{{x}}eN({x}),

hence {cl, (F):F e p}eN({x}) follows,and peN({x}) results according to (hn).

Remark 5.7 Now, if we consider a bounded hypertopology, this is a psh-hull operator h on a B-set B*,
which additionally satisfies (bhy), i.e.

(bh;) Bc X and h(B)eB” imply h(h(B))=h(B), then the corresponding category is isomorphic to
the full subcategory SR-HN of HN, whose objects are the surrounded hypernear spaces. In this connexion we
consider the restriction of cl, onthe B-set B*. Conversely, for a bounded hypertopological space g ,BY ,t)
we define the corresponding sourrounded hypernear space (Y,B", Mt) by setting M, (<)={J}; and
M, (B):={p<=PX:3xeBxe[{t(F):Fe p}} , otherwise. In the saturated case then we can recover all hy-
pertopological spaces. So, in general it is now possible to study those closure operators not only on PX , but
also on arbitrary B-sets even in the realm of the broader concept of hypernear spaces.

Remark 5.8 In this connexion another concept of closure operators seems to be of interest, and it is playing
an important rule when considering classical nearness structures. In the following we will give some notes in
this direction.

Definition 5.9 We call a prehypernear space (X,B*,N) neartopological iff N is satisfying (nt), i.e.

(nt) BeB*\{T} and peN(B) imply n{cl,(A):Aepu{B}}=2.

Remark 5.10 We note that each surrounded prehypernear space is neartopological. On the other hand let be
given a symmetric bounded hypertopological space (Y,B", h) , Where in addition h is satisfying (sym), i.e.

(sym) x,zeY and xeh({z}) imply zeh({x}),

then we define the corresponding neartopological hypernear space (Y,BY M “) by setting: M" (@) = {@}
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and M"(B)={pcPX:n{h(A): Ae pu{B}} =@}, otherwise. By definition (Y,B",M") is automatically
symmetric (see Definition 2.1. (iii)). At this point we mention the fact that symmetric hypernear spaces are
always dense, which means N is satisfying (d), i.e.

(d) B X and cly(B)eB* imply N(cl,(B))=N(B).

This can be seen as follows: Without restriction lethe B e B* \{Q}, peN(cl,(B)) implies

{cly (B)} wpeN(cl(B))
by hypothesis.
y={cly (B)}ufcly (F):F e p} <{cly (B)}up,
hence y e N(cly (B)) follows, and {B}u pe N(cl, (B)) is valid according to (hn). But then
{cly (B)} u({B}up)eN(B)

results, since N is symmetric. Consequently, pe N (B) can be deduced according to (hn, ). Now, we point
out that in some cases (X,B*,N) is round which means B* additionally satisfies (ron), i.e.

(ron) BeB* implies cly(B)eB*. (see also Remark 3.9.(2)).

A detailed description of this fact will be given in some forthcoming papers. Then evidently saturated spaces are
round. Analogously, we can consider roundbounded symmetric hypertopological spaces, i.e. spaces (X,BX , h),
where B* is satisfying (rb), i.e.

(rd) BeB* implies h(B)eB*.

Then the corresponding category is isomorphic to the full subcategory RNT-HN of HN, whose objects are the
round neartopological hypernear spaces. As above defined we only verify the following two statements:

(i) cIMh <h;

(i) M <N.

To (i): Letbe Ac X and xecl ,(A), then {A}eM"({x}) by definition. Hence there exists yeh(A)
with yet({x}).Since t issymmetric weget xet({y}),and xet(A) results.

To (ii): Without restriction let be Be B \{@}. peM® (B) implies the existence of xecl, (B) such

that xe("){cly (F):F e p}. Consequently, {cl, (F):F e p}<{{x}}eN({x})=N(cly(B))=N(B), and

peN(B) results.
In the saturated case then we can recover all symmetric hypertopological spaces.

6. Supernear and Paranear Spaces

Now, based on former advisements we are going to consider two special classes of hypernear spaces, which are
being fundamental in the theory of topological extensions.

Definition 6.1 We call a bonded hypernear space a supernear space and denote by SN the corresponding full
subcategory of HN.

Corollary 6.2 The category TOP of topological spaces and continuous maps is isomorphic to a full sub-
category of SN.

Proof. According to Example 1.3. (v), Theorem 2.6, Theorem 4.4 and Definition 5.1 we only have to verify
that N~ is satisfying (hn). Now, letbe BeB*, pcPX with {CIN, (F):Fe p} e N™(B), hence

Besec{cIN,(F): F ep}.

For Fep we have BmcIN, (F)# Q. But cl,- (F)= F is valid. Since “—" is a topological closure oper-

ator we get cl, —F = F, and consequently pe N~ (B) results. O
Corollary 6.3 The category STOP of supertopological spaces and continuous maps is isomorphic to a sub-
category of SN.
Proof. The reader is referred to Remark 3.7, Theorem 3.8 and Remark 4.2 respectively. O
Remark 6.4 b-proximities (see Definition 3.10) are playing an important rule when considering topological
extensions (see Remark 3.9). In this connexion we are now giving two special cases of them. First of all we call
a b-proximity space (X ,B* ,5) a preLEADER space iff ¢ in addition satisfies (bps), i.e.
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(bps) BeB* and BSA with Accl,(C) imply BSC,where cl;(C):={xe X :{x}5C}.

By pLESP we denote the corresponding full subcategory of b-PROX.

In the saturated case (if X e B*) LEADER proximity spaces then can be recovered as special objects.

Corollary 6.5 The category pLESP is isomorphic to a full subcategory of SN.

Proof. According to Example 1.3. (vi), Remark 3.11 and Theorem 3.13 respectively it remains to verify that
N, satisfies (hn) and p,, (bps) respectively.

To (hn): BeB*, pcPX and )/:={C|N§(F):Fep}eN5(B) imply » < &(B). We have to verify that

pcd(B).Soletbe Fep, hence cl, (F)ed&(B), and consequently Bdcly (F) is valid. The inclusion
cly, (F)ccl;(F) holds, because xecly (F) implies {F}eN({x}), hence {F}c&({x}),and {x}5F

results, showing that x e cl; (F) is valid. According to (bps) we get BOF , and the proposed inclusion holds.
To (bps): Conversely, letbe B eB* and Bp,A with Ac cly,, (C) , we have to verify Bp,,C.
By hypothesis {A} M (B) is valid. {cl, (C)} <{A}, since cl, (C)ccl,(C). Because xecl, (C)
implies {x} p,C, {C}e M({x}) leads us to the statement xecl, (C). According to (hn;) we obtain

{cly (C)}eM(B),and {C}eM(B) results by axiom (hn). Consequently Bp,,C is valid. O

Remark 6.6 At this point we note that certain supernear spaces are in one-to-one correspondence to strict to-
pological extensions which we study in a forthcoming paper. Here, we will examine the case if a symmetric to-
pological extension is presumed (see Example 1.7. (ii)). In this connexion bunch-determined nearness and cer-
tain preLODATO spaces are playing an important role. Now, we will give the definition of a preLODATO space:

Definition 6.7 A preLEADER space (X,BX ,5) is called a preLODATO space iff ¢ in addition satisfies
the following axioms, i.e.

(bps) B,UB, eB* and (B,UB,)S5A imply BSA or B,5A;

(bps) B, Ac X, cly(B)eB” and cl;(B)SA imply BSA;

(bps) B,, B, eB* and BB, imply B,5B,.

By pLOSP we denote the corresponding full subcategory of pLESP.

Remark 6.8 In the saturated case LODATO proximity spaces then can be recovered as special objects. More-
over, we note that each b-supertopological space then can be regarded as special preLODATO space. A slight
specialization lead us to the so-called LODATO space by adding the axiom (bpy), i.€.

(bps) BeB* implies cl;(B)eB”.

Once again, in the saturated case the two definitions coincide, and LODATO proximity spaces then can be re-
covered as special objects.

But in general the two definitions differ, and the reader is referred to Remark 3.9 in connexion with Remark
5.10. In a forthcoming paper we will show that the corresponding category LOSP of LODATO spaces can be re-
garded as a full subcategory of SN, whose objects are symmetric. On the other hand nearness also leads us to a
certain symmetric supernear space, hence we give the following definition.

Definition 6.9. A symmetric supernear space is called a paranear space and we denote by PN the corres-
ponding full subcategory of SN.

Theorem 6.10. The category NEAR of nearness spaces and related maps is isomorphic to a full subcategory
of PN.

Proof. According to Example 1.3. (ii) and Theorem 4.5 respectively it remains to verify that N, satisfies (hn)
and 7, the nearness axiom.

To (hn): Without restriction letbe B e B*\{@}, pePX and {CIN; (F):Fe p} e N, (B), hence

y={B}uld,, (F):Fepjes.
But {cl, (B)ju{cl,(F):F e p} <y, because for Fep and xecly (F) wehave {F}eN,({x}), hence
{{x}U{F}} e& isvalid. Consequently {{x},F}e& results whichshows xecl,(F).Since ¢ satisfies the

nearness axiom: we get {Bjupe&,and peN,(B) results. Conversely, letbe {cl, (F):Fe p} en, for
p < PX . We have to verify pen, .Soletbe Ae p,ourgoalistoshow peM (Ay By hypothesis we get

{C|I7M (F):F ep} eM (clnM (A)) But cl, (A)ccl, (A),since xecl, (A) implies {{x},A}en, , hence
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{{x},A} e M ({x}) follows,and {A}eM ({x}) isvalid, which shows xecl, (A).Consequently,
7= {clw (F):Fe p} eM (cl, (A)) with {cl, (F):F e p}<y is valid according to (is) of Definition 2.4.
Since M is dense (see Remark 5.10) we get {clM (F):Fe p} e M (A) according to (hn). But then pe M (A)
follows by (hn), which concludes the proof. O
Corollary 6.11. For a saturated paranear space (X B, N) the following statements are equivalent:
(i) n, istopological nearness;
(ii) gx ,B*,N) is neartopological.
Proof. evident according to Remark 5.10.
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7. Topological Extensions and Their Corresponding Paranear Spaces

Taking into account Example 1.7.(ii), Remark 3.9, 6.6 and 6.8 respectively we will now consider the problem
for finding a one-to-one correspondence between certain topological extensions and their related paranear spaces.
In this connexion we point out that certain grill-spaces come into play.

Definition 7.1 Let be given a supernear space (X,BX,N). For BeB*\{Q}, CeGRL(X) is called a
B-clanin N iff it satisfies

(clay) BeCe N(B);

(clay) AeC and Accly(F) imply FeC.

Remark 7.2 For a supernear space (X,lS’X , N) and each BeB* with xeBx, ={Ac X :xecl,(A)}
isaB-clanin N.

Definitions 7.3 A supernear space respectively paranear space (X ,B*, N) is called superclan space respec-
tively paraclan space iff N satisfies (cla), i.e.

(clay BeB*\{&} and peN(B) imply the existence of aB-clan C in N with pcC.

Remark 7.4 In giving some examples we note that each surrounded supernear space is a superclan space, and
each neartopological paranear space is a paraclan space. This is analogical valid for the spaces considered in 1.7.

Proof of Example 1.7. (ii)

First, we prove the equality of the corresponding closure operators. So, let be Ae PX and xecl, (A)
then by (tx;) e(x)ecl (e[A]) with e(x)ecl, ({e(x)}), hence {A}eN°({x}) follows, which shows
xecl . (A). Conversely, let xecl ,(A), hence {A}eN°({x}) follows, which implies the existence of

y ecl, ({e(x)}) with y cl, (e[A]). But now, e(x)ecl, ({y}) holds, because the presumed extension is sym-

metric. Consequently, e(x)ecl, (e[A]) follows, which shows that x e cl, (A) according to (tx). Alltogether,
the equality now results. Secondly, it is easy to verify that ( X,B8%,N®) fulfills the axioms for being a semihy-
pernear space. N° is symmetric, since p e N°(B) for B 5" \ {3} implies the existence of y ecl, (e[B]) with

yeﬂ{clY (e[A]):Aep}, hence {B}upeN®(B) follows. Now, FepnB* implies {B}upeN®(F),
since yecl, (e[B])ncl, (e[F]) by supposition, hence N° symmetric. (X,BX,Ne) is a supernear space,
because p < PX and {clNe (F):Fe p} = MeN*®(B) imply the existence of yecl, (e[B]) with
yeﬁ{clY (e[A]):AeM}. Fep implies cl , (F)e M, hence

yecl (e[cINe (F)J) =cl, (e[clx (F)])=cl, (cl (e[F])) = cly (e[F]).
consequently p e N° (B) follows, which shows that ( X,B%,N¢) is a paranearness space. It remains to prove
N® satisfies the axiom (cla). For B e B* \{&} letbe peN°(B), hence ye ﬂ{clY (e[A]): Ae p} for some
y ecl, (e[B]). We set C:= {T cX:yecl (e[T])}, consequently C is the desired B -clan in N°® proving

that (X,B*,/N°¢) isa paraclan space.
Convention 7.5 We denote by SY-TEXT the full subcategory of TEXT, whose objects are the symmetric to-
pological extensions and by CLA-PN the full subcategory of PN, whose objects are the paraclan spaces.
Theorem 7.6 Let F: SY-TEXT — CLA-PN be defined by:

(a) For a SY-TEXT-object (e,BX,Y) we put F(e,BX,Y):z(X,BX,Ne);
(b) for a TEXT-morphism (f,g):(e,BX,Y)a(e’,BX',Y') weput F(f,g)="f.

Then F:SY-TEXT — CLA-PNis a functor.
Proof. We already know that the image of F lies in CLA-PN. Now, let (f,g):(e,BX,Y N e',BX',Y') be
a TEXT-morphism; it has to be shown that f preserves B-near collections for each B e B* . Without restric-

tion let BeB*\{@} and peN°(B), hence we can choose yecl, (e[B]) with ye ﬂ{clY (e[A]):Ae p} :
Our goal is to verify the existence of zecl,, (e’[f (B)j) such that z e ﬂ{cIY, (e’f [A]): Ac p} . By hypothesis
we have g(y)e g(cl, (e[B])), consequently g(y)ecl, (e’ f[B]]) results, since (f, g) is a TEXT-morphism
by assumption. Now, consider some A€ p, because yecl, (e[A]), we have g(y)ecl, (e’[f [A]]) , which

(|

resultsin fpe N®(f[B]).
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8. Strict Topological Extensions

Remark 8.1 In the previous section we have found a functor from SY-TEXT to CLA-PN. Now, we are going to
introduce a related one in the opposite direction.

Lemma 8.2 Let (X B, le be a paranear space. We set X© = {C c PX :C} isaB-clanin N for some
BeB*\{@},andforeach A° < X® we put:

cl . (AC):z{Ce XC :AAC cC}

where AA® ::{F c X:VCeA°F eC} . (By convention AA® =PX if A°=@). Then cl . :PX® —PX°
is a topological closure operator.

Proof. We first note that cl &@) =@, since @¢C foreach Ce X®. Let A® be a subset of X and
consider Ce A°. Then F eAA® implies FeC, hence A° ccl o (A°). Now, let be A® < A7 < X©.

Then, AA7 < AA®, which implies cl . (A°)<cl . (AS). For arbitrary subsets A°, A7 = X we consider
an element Ce X such that Cecl . (Af)uclXC (AZC) Then we have AA® ¢ C and AA; ¢ C. Choose
F eAA” with F¢C and F, e AAS with F,¢C. Because CeGRL(X) we get F,UF,¢C. On the
other hand, F, UF, € AA® UAAT A(AiC v AZC) implies Cecl . (AlC uAZC) At last, let C be an element
of cIXc (clXC (AC)) and suppose Cecl ¢ (AC). Choose F e AA® with F ¢C. By assumption we have
Acl . (A°)=C, hence F e Acl . (A®). Consequently there exists Decl . (A°) with FeD But this im-

plies AA° =D ,and FeD results, which leads us to a contradiction. O
Theorem 8.3 For paranear spaces (X,BX , N), (Y,BY,M) let f:X —>Y bea hn-map. Define a func-
tion f¢:X® —Y® by setting foreach Ce X°:

f¢(C)={D=Y:f[cl, (D)]ec}

Then the following statements are valid:

(1) f© isacontinuous map from (X%,cl o) to (YCcl.);

(2) The composites f©oe, and e, o f coincide, where e, : X — X° denotes the function which assigns
the {x}j-clan x, toeach xeX .

Proof. First, let C be a B-clan in N . We will show that fC(C) is a f[B]—cIan in M. Itis easy to
verify that f©(C)e GRL(Y ), which satisfies (cla, ) in Definition 7.1. In order to establish (cla;) we observe
that BeCeN(B) by hypothesis. We will now verify that

{cly (D):De f¢(C)} < fC
(Note, that f is a hn-map by assumption.) Forany D e f° (C) we have f* [clM (D)] e C, hence
cly (D)= £ f7[cl, (D)]]e fC.

Since BeC and Bc [ f[B]]c f’l[clM (f[B])J we get f[B]e f°(C), and all together we con-
clude that f©(C) definesa f[B]-clanin M . Consequently, f¢(C)eY® results.

To (1): Let A< X®, Cecl . (A°) and suppose f°(C)ecl. (fC[Ac]). Then AfC[A°]e °(C),
hence D¢ f¢(C) for some DeAfC[ACJ, which means f*[cl, (D)]eC. Since AA°<C, we get

f [clM (D)] ¢ D for some D e A°. Consequently D¢ € (D) results, which leads us to a contradiction,
because D e Af© EAC is valid.
To (2): Let x be an element of X . We will prove the validity of £ (e, (x))=e, (f(x)). To this end, let

Dee, (f(x)) Then, f(x)ecl, (D) hence xe f*[cl, (D)] and consequently f*[cl, (D)]ex, =&, (X).
Thus D e (e, (x)), proving the inclusion e, (f(x))< £ (e, (x)). Since e, (f(x)) is maximal with re-
spect to (M ({f (x)}\{@},c)) and moreover {clM (D):De f€ (eX (x))} < fe, (x), since by hypothesis  f

is a hn-map, we obtain the desired equality. O
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Theorem 8.4 We obtain a functor G : CLA-PN {5 SY-TEXT by setting:

(@) G(X,BX,N):z(eX,BX,XC) for any paraclan space (X,BX,N) with X :=(X,cly) and
X°© :=(X°,c|xc);

(b) G(f):=(f,f°) foranyhn-map f:(X,B*,N)—>(Y,B",M

Proof. With respect to Corollary 6.2 it is straight forward to verify that cl, is a topological closure operator
on X . We also have the topological closure operator cI on X©. Therefore we obtain topological spaces
with B-set B*,and e, :X — X isa continuous map, WhICh can be seen as follows: Let C e, [cl ]
for Ac X, we have to verify that Ae, [A]cC. FeAe,[A] implies Accl (F) and C=e, (x) for
some Xe cIN (A) by supposition. Consequently, xecly (F) follows which shows Fex,=e(x)=C.To
establish (tx;), let A be a subset of X and suppose xecl,(A). Then we get Ae, [A]c=e, (x), hence

e, (x)cclc (eX [A]) which means that x e e [clXC (eX [A])J . Conversely, let x be an element of

e [clXc (ex [A])J Then by definition we have e, (x)ecl . (e [A]), and consequently Ae, [A]c ey (X).
Thisimplies A€, (x), which means xecly (A). To establish (tx,), lethbe Ce X® and suppose

Cecl . (e [X]). By definition we get Ae, [X]¢ C, so that there exists a set F e Ae, [X] with F ¢C.But
X ccly (F) follows. Since BeC for some BeB*\{Q}, we get cl,(F)eC, hence FeC, because C
satisfies (clay). But this is a contradiction, and thus C e cIXC (ex [X]) is valid. In showing (eX ,BX, XC) is
symmetric let x be an element of X suchthat Cecl . ({eX (x)}) We have to prove e, (x)ecl . ({c}). By
hypothesis we have x, =e, (x)=C and moreover BeCeN(B) for some BeB*\{@}. Since {x}eC
and N is symmetric we get {B}UC e N({x}) with C < {B}uC, hence Ce N({x}) follows according to (hn).
But x, is maximal with respect to (N ({x})\{@},c), which means that C coincides with x, =e, (x). By
hypothesis f :(X,BX N)—> YBY,M) is a hn-map, so that f is continuous and bounded with respect to

the given B -sets and corresponding closure operators. It remains to prove that the following diagram com-
mutes:

X 2 xc

e

Yy ——=Y¢
ey

Tothisend let x be anelementof X .We must show (f°oex)(x)=(eYof)(x).
“c” De(f%oe,)(x) implies De f€(xy), whichmeans f™[cl, (D)]ex,, hence

xecl (f*[cly, (D)]) :

Since f is continuous we have f(x)ecl,, (f [f’l [chy (D)ﬂ) and De f(x), =e (f(x)) follows.

“5” Deeg, (f (x)) implies f (x)ecl,, (D), hence xe f™ [clM (D)] follows and consequently

xecl, (f’l [cly (D)])- Thus, f*[cl, (D)]eey(x), whichmeans De € (e, (x))

Finally, this establishes that the composition of hn-maps is preserved by G. At last we will show that the image
of G also is contained in STR-TEXT, whose objects are the strict topological extensions. Consider C e X¢ and
let A° beclosed in X with CeA°. Then Cecl ( ) hence AA® ¢ C . We can find some F e AA°
such that F ¢ C. Now, for each D e A® we have F e D, which implies Ae, [F]< D, and therefore we
conclude Decl . (e, [F]). On the other hand since F ¢C, we have Ae, [F]¢C hence Cecl . (e [F]),
which put an end of this. O

Theorem 8.5 Let F:SY-TEXT — CLA-PNand G:CLA-PN — SY-TEXT be the above defined func-
tors. For each object (X,Bx , N) of CLA-PN let tBX " denote the identity map

idy 1 F(G(X,B*,N))— (X, B*,N)

Then t:F oG — 1, ,p Iisnatural equivalence from F oG to the identity functor 1., ., i.e.
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id, :F(G(X,BX,N))A(X,BX,N)

is a hn-map in both directions for each object (X,BX,N), and the following diagram commutes for each
hn-map f :(X,BX,N)—>(Y,BY,M):

F(G(X,BX,N)) —2~ (X, BY, N)

F(G(f))l lf

F(G(Y,BY , M)) 2% (v, BY | M)
Proof. The commutativity of the diagram is obvious, because of F (G ( f )) = f . It remains to prove that
idy - F(G(X,B*,N))—>(X,B*,N)
is a hn-map in both directions. To fix the notation let N, be such that
F(G(X,BX,N))=F (e, B*,X)=(X,B*,N,).

It suffices to show that for each BeB* \{@} we have N,(B)cN(B)cN,(B). To this end assume
p €N, (B), then there exists C ecl . (e, [B]) such that C e ﬂ{clxC (ex [A]): Ae p}, hence Ae, [B] <= C. We

get BeC and CeN(B,) forsome BeB*\{Q}. Since N is symmetric, we obtain {B,}\UCeN(B) with
C<{B}uC, hence CeN(B). But Acp implies Cecl . (e, [A]) hence Ae, [A]cC with AecAe, [A].

Now AeC results, which shows peN(B). Conversely, let peN(B). Since (X,BX,N) is a paraclan
space we can choosea B -clanin N suchthat o< C. Inordertoshow pe Nl(B) we need to verify

(1) Cecl (e [B]);

(2) Acp implies Cecl . (e [A]).

To (1): By definition of cl . it suffices to establish Ae, [B]C. So let D be an element of Ae, [B],
hence B ccly (D) follows which implies cl (D)eC.But C isB-clanin N, consequently we get DeC .

To (2): Let A be an element of p and D be an element of Ae, [A] hence Accl (D) Since AeC by
hypothesis, we get cl (D) e C and analogously as above we infer D e C , which concludes the proof. O

Remark 8.6 Making the theorem more transparent we claim that a paranear space is a paraclan space if it can
be embedded in a topological space Y such that the B-near collections are characterized by the fact that the
closures of its members meet in Y . Therefore this theorem generalize in one direction the Bentley-
characterization of bunch-determined nearness spaces, in another the description of Doitchinov’s b-superto-
pologies by compactly determined topological extensions and moreover the analogous existing correspondence
respected to LODATO spaces involving the famous theorem of LODATO.

Corollary 8.7 If X,BX,N) is separated that means N satisfies (sep), i.e.

(sep) x, ze X and {{Z}}e N({x}) imply x=z, then e, :X — X s injective. Conversely, for a T,
extension Se,BX,Y), where e is a topological embedding and (Y =Y,cl,) a T,-space, then (X,BX,Nej
is separated.
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