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Abstract 
In the realm of Bounded Topology we now consider supernearness spaces as a common generali-
zation of various kinds of topological structures. Among them the so-called Lodato spaces are of 
significant interest. In one direction they are standing in one-to-one correspondence to some kind 
of topological extensions. This last statement also holds for contiguity spaces in the sense of Iva-
nova and Ivanov, respectively and moreover for bunch-determined nearness spaces as Bentley has 
shown in the past. Further, Doîtchînov proved that the compactly determined Hausdorff exten-
sions of a given topological space are closely connected with a class of supertopologies which he 
called b-supertopologies. Now, the new class of supernearness spaces—called paranearness spac-
es—generalize all of them, and moreover its subclass of clan spaces is in one-to-one correspon-
dence to a certain kind of symmetric strict topological extension. This is leading us to one theorem 
which generalize all former mentioned. 
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1. Basic Concepts 
As usual PX  denotes the power set of a set X , and we use X PX⊂  to denote a collection of bounded 
subsets of X , also known as B -sets, i.e. X  has the following properties: 

(b1) X∅∈ ; 
(b2) 2 1

XB B⊂ ∈  imply 2
XB ∈ ; 

(b3) x X∈  implies { } Xx ∈ . 
Then, for B -sets , X Y   a function :f X Y→  is called bounded iff f  satisfies )(b , i.e. 
(b) [ ]{ }: X Yf B B∈ ⊂  . 

Definition 1.1 For a set X , we call a triple ( ), ,XX N  consisting of X , B -set X  and an operator 
( )( ): XN P P PX→  a prehypernear space iff the following axioms are satisfied, i.e. 

http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2014.411070
http://dx.doi.org/10.4236/apm.2014.411070
http://www.scirp.org/
mailto:leseberg@zedat.fu-berlin.de
http://creativecommons.org/licenses/by/4.0/


D. Leseberg 
 

 
611 

(hn1) XB∈  and ( )2 1 N Bρ ρ ∈  imply ( )2 N Bρ ∈ , where 2 1ρ ρ  iff 2 2 1 1 2 1F F F Fρ ρ∀ ∈ ∃ ∈ ⊃ ; 
(hn2) XB∈  implies ( )X N B∉ ≠ ∅ ; 
(hn3) ( )Nρ ∈ ∅  implies ρ = ∅ ; 
(hn4) x X∈  implies { }{ } { }( )x N x∈ . 
If ( )N Bρ ∈  for some XB∈ , then we call ρ  a B -near collection in N . For prehypernear spaces 

( ), ,XX N , ( ), ,XY M  a bounded function :f X Y→  is called a hypernear map, shortly hn-map iff it sa-
tisfies (hn), i.e. 

(hn) XB∈  and ( )N Bρ ∈  imply [ ]{ } [ ]( ): :f F F f N f Bρ ρ∈ = ∈ ; a sected hn-map, shortly shn-map 
iff it satisfies (shn), i.e. 

(shn) XB∈  and ( )N Bρ ∈  imply ( ) [ ]( )sec secf N f Bρ ∈  with { }sec : :T X F F Tρ ρ= ⊂ ∀ ∈ ∩ ≠ ∅  
and ( ) [ ]{ }: :f D Y A D f A= ⊂ ∃ ∈ ⊃  . 

Remark 1.2 Note, that shn-maps between prehypernear spaces are always hn-maps. We denote by PHN• re-
spectively PHN the corresponding categories. 

Examples 1.3 (i) For a prenearness space ( ),X ξ  ([1]) let X  be B -set. Then we consider the triple 
( ), ,XX Nξ  where ( ) { }:Nξ ∅ = ∅  and ( ) { }{ }: :N B PX Bξ ρ ρ ξ= ⊂ ∪ ∈ , otherwise. 

(ii) For a b -filter space ( ), ,XX τ  ([2]) we consider the triple ( ), ,XX Nτ , where for each XB Nτ∈   
is defined by setting: ( ) ( ) ( )( ){ }: : FIL  and secN B PX X Bτ ρ τ ρ= ⊂ ∃ ∈ × ∈ ⊂    ; 

(iii) For a set-convergence space ( ), ,XX q  ([3] we consider the triple ( ), ,X
qX N , where for each  

X
qN∈   is defined by setting: ( ) ( )( ){ }: : FIL sec  and qN B PX X qBρ ρ= ⊂ ∃ ∈ ⊂   ; 

(iv) For a generalized convergence space ( ),X q  [4], we consider the triple ( )( ), , qX X N , where 

( ) { } { }{ }: :X x x X= ∅ ∪ ∈  and { }( ) ( )( ){ }: : FIL sec  and qN x PX X qxρ ρ= ⊂ ∃ ∈ ⊂    

for x X∈  with ( ) { }:qN ∅ = ∅ ; alternately we look at the following triple ( ), ,qX PX N , where  

( ) ( )( ){ }: : FIL sec  and  for q N B PX x B X qxρ ρ= ⊂ ∃ ∈ ∃ ∈ ⊂ ≠ ∅    , 

and ( ) { }:q N ∅ = ∅ ; 
(v) For a C



ech-closure space ( ),X −  ([5]) let X  be B -set. Then we consider the triple ( ), ,XX N −   
with ( ) { }{ }: : sec :N B PX B F Fρ ρ− = ⊂ ∈ ∈  for each XB∈ ; 

(vi) For a b -proximity space ( ), ,XX δ  ([6]) we consider the triple ( ), ,XX Nδ , where  

( ) ( ){ }: :N B PX Bδ ρ ρ δ= ⊂ ⊂  

for each X∈   with ( ) { }: :B A X B Aδ δ= ⊂ ; 
(vii) For a neighborhood space ( ), ,XX Θ  ([6]) we consider the triple ( ), ,XX NΘ , where for each 

( ) ( ){ }: : secX N B PX Bρ ρΘ∈ = ⊂ ⊂ Θ  . 
Remark 1.4 In preparing the next two important examples we give the following definitions. 
Definitions 1.5 TEXT denote the category, whose objects are triples ( ): , ,XE e Y=  —called topological ex-

tensions—where ( ) ( ): , ,  : ,X YX X cl Y Y cl= =  are topological spaces (given by closure operators) with B -set 
X  and :e X Y→  is a function satisfying the following conditions: 
(tx1) A PX∈  implies ( ) [ ]( )1

X Ycl A e cl e A−  =   , where 1e−  denotes the inverse image under e ; 
(tx2) [ ]( )Ycl e X Y= , which means that the image of X  under e  is dense in Y . 

Morphisms in TEXT have the form ( ) ( ) ( ), : , , , ,X Xf g e Y e Y′′ ′→  , where : ,  :f X X g Y Y′ ′→ →  are 
continuous maps such that f  is bounded, and the following diagram commutes: 

 
If ( ) ( ) ( ), : , , , ,X Xf g e Y e Y′′ ′→   and ( ) ( ) ( ), : , , , ,X Xf g e Y e Y′ ′′′ ′ ′ ′ ′′ ′′→   are TEXT-morphisms, then 
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they can be composed according to the rule: 

( ) ( ) ( ) ( ) ( ), , : , : , , , ,X Xf g f g f f g g e X e Y′′′ ′ ′ ′ ′′ ′′= →      

where “  ” denotes the composition of maps. 
Remark 1.6 Observe, that axiom ( )1tx  in this definition is automatically satisfied if :e X Y→  is a topo-

logical embedding. Moreover we admit an ordinary B -set X  on X  which need not be necessary coincide 
with the power PX . In addition we mention that such an extension is called 

(1) strict iff [ ]( ){ }:Ycl e A A X⊂  forms a base for the closed subsets of Y  [7]; 

(2) symmetric iff x X∈  and ( ){ }( )Yy cl e x∈  imply ( ) { }( )Ye x cl y∈  [8]. 
Examples 1.7 (i) For a topological extension ( ), ,Xe Y  we consider the triple ( ), ,X

eX N , where  

( ) [ ] [ ]( ){ }{ }: : :e YN B PX y e B y cl e A Aρ ρ= ⊂ ∃ ∈ ∈ ∈


 

if B ≠ ∅  and ( ) { }:eN ∅ = ∅ ; 
(ii) For a symmetric topological extension ( ), ,Xe Y  we consider the triple ( ), ,X eX N , where  

( ) [ ]( ) [ ]( ){ }{ }: : :e
Y YN B PX y cl e B y cl e A Aρ ρ= ⊂ ∃ ∈ ∈ ∈  

if B ≠ ∅  and ( ) { }:eN ∅ = ∅ . 

2. Fundamental Classes of Prehypernear Spaces 
With respect to above examples, first let us focus our attention to some important classes of prehypernear 
spaces. 

Definitions 2.1 A prehypernear space ( ), ,XX N  is called 
(i) saturated iff XX ∈ ; 
(ii) discrete iff { } { }{ }: :X x x X= ∅ ∪ ∈ ; 

(iii) symmetric iff { }\XB∈ ∅  and ( )N Bρ ∈  imply { } ( )B N Bρ∪ ∈  and 
{ } ( ){ }: XB N F Fρ ρ∪ ∈∩ ∈ ∩ ; 

(iv) pointed iff { }\XB∈ ∅  implies ( ) { }( ){ }:N B N x x B= ∪ ∈ ; 
(v) conic iff XB∈  implies ( ){ } ( ):PX N B N Bρ ρ∪ ⊂ ∈ ∈ ; 

(vi) set-defined iff XB∈  implies { } ( ): :A X B A B N B⊂ ∩ ≠ ∅ = ∈


. 
Theorem 2.2 The category PNEAR of prenearness spaces and related maps is isomorphic to the category 

SY-PHNS of saturated symmetric prehypernear spaces and hn-maps. 
Proof. According to Example 1.3. (i) we claim that ( ), ,X PX Nξ  is a symmetric saturated prehypernear space. 

Conversely, we consider for such proposed space ( ), ,YY M  the following prenearness space ( ), MY η  de-
fined by setting: 

( ){ }{ }: : :M PX M A Aη = ⊂ ∈ ∈


   . 

Hence, the above mentioned connections are functoriell, and thus it remains to prove that the following two 
statements are valid, i.e. 

(i) Nξ
ξ η= ; 

(ii) 
M

M Nη= . 
To (i): “ ⊂ ”; ξ∈  and A∈  imply A ≠ ∅ , hence { }A ξ∪ ∈ , and ( )N Aξ∈  is valid which 

shows  Nξη∈ . 
“⊃ ”: Nξ

η∈  and without restriction A ≠ ∅ . Choose A∅ ≠ ∈ , hence ( )N Aξ∈  by hypothesis,  

and { }A ξ∪ ∈  follows. 
Since { }A ∪   we claim ξ∈ . 
To (ii): “≤ ”: Without restriction let be A PX∅ ≠ ∈ . 
For ( )M A∈  we have to verify { } MA η∪ ∈ . So, let be A′∈ , hence { } ( )A M A′∪ ∈  since M  
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is symmetric and saturated by hypothesis. Consequently, ( )
M

N Aη∈  is valid. 
“ ≥ ” Conversely, let be ( )

M
N Aη∈ , hence { } MA η∪ ∈ . Choose A′∅ ≠ ∈  (according to ( )1hn  re- 

spectively ( )3hn ). Thus { } ( )A M A′∪ ∈  holds, and { } { }( ) ( )A A M A′ ∪ ∪ ∈  follows by hypothesis. 
But { } { }( )A A′ ∪ ∪  , hence ( )M A∈  is valid.                                           

Remark 2.3 In this context we point out that each prehypernear space ( ), ,XX N  induces in general the 
following C



ech-closure operators by setting: 
(1) ( ) { } { }( ){ }: :Ncl A x X A N x= ∈ ∈ ; 
(2) ( ) { }{ } { }( ){ }: : ,Ncl A x X x A N x= ∈ ∈ , 

where the following inclusion is valid: A PX∈  implies ( ) ( )N
Ncl A cl A⊂ . In the symmetric case these two 

operators coincide, moreover we have ( )x cl Aξ∈  iff ( )Nx cl A
ξ

∈ , and finally ( ), NX cl  defines a symmetric 
C


ech-closure space. 
Definition 2.4 A prehypernear space ( ), ,XX N  is called a pseudohypernear space iff N  is isoton, i.e. 

N  satisfies (is) 1 2
XB B⊂ ∈  imply ( ) ( )1 2N B N B⊂ . We denote by PSHN the corresponding full subcate- 

gory of PHN. 
Remark 2.5 In this context we refer to Examples 1.3. (i), (iv), (v), (vi), (vii), respectively Examples 1.7. (i), 

(ii). 
Theorem 2.6 The category Č-CLO of Čech-closure spaces and continuous maps is isomorphic to a full sub-

category of PSHN. 
Remark 2.7 Now, before showing the above mentioned theorem we give the following definition. 
Definition 2.8 A prehypernear space ( ), ,XX N  is called sected iff N  satisfies ( sec ), i.e. 
(sec) XB∈  and ( )N Bρ ∈  imply ( ){ }sec :NB cl F F ρ∈ ∈ . 
Remark 2.9 In this connexion we point out that each pointed prehypernear space (see Remark 3.6) is always 

sected. 
Moreover, sected prehypernear spaces are already pseudohypernear spaces. 
Definition 2.10 A sected conic saturated prehypernear space is called closed, and we denote by CL-PHSN 

the full subcategory of PSHN, whose objects are closed pseudohypernear spaces. 
Proof of Theorem 2.6. 
According to Example 1.3. (v) we claim that ( ), ,X PX N −  is a closed pseudohypernear space. Conversely, 

we consider for such proposed space ( ), ,YY M  the C


ech-closure space ( ), MY cl . Hence, the above men-
tioned connections are functoriell, and thus it remains to prove that the following two statements are valid, i.e.: 

(i) 
N

cl −− = ; 
(ii) MclM N= . 
To (i): Now let be A PX∈ , we have to verify ( )N

A cl A−= . Firstly, x A∈  implies { } { }secx A∈ , hence 
{ } { }( )A N x−∈ , and ( )N

x cl A−∈  results. 
Secondly, ( )N

x cl A−∈  implies { } { }( )A N x−∈ , hence { } { }secx A∈ , and x A∈  follows. 

To (ii): Now, let be without restriction { }\A PX∈ ∅ . ( )M Aρ ∈  and ρ∈  imply { } ( )F M A∈  ac-
cording to ( )1hn , hence ( )MA cl F∩ ≠ ∅  by hypothesis, and ( )MclN Aρ ∈  results. 

Conversely, ( )MclN Aρ ∈  implies ( ){ }sec :MA cl F F ρ∈ ∈ . 

Now, we will show that ( ){ }:PX M Aρ ⊂ ⊂ ∈


  . F ρ∈  implies ( )MA cl F∩ ≠ ∅  by hypothesis.  

Choose x A∈  with { } { }( )F M x∈ , hence { } ( )F M A∈ , since M  satisfies (is). But then  

( ){ } ( ):PX M A M Aρ ⊂ ⊂ ∈ ∈


   

is valid which implies ( )M Aρ ∈ , hence concluding the proof. 
Remark 2.11 Now, in the following another important class of prehypernear spaces will be examined, being 

fruitful in considering convergence problems and having those properties, which are characterizing topological 
universes. 

3. Grill-Spaces 
Definitions 3.1 A prehypernear space ( ), ,XX N  is called a prehypergrill space iff N satisfies (gri), i.e. 
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(gri) XB∈  and ( )N Bρ ∈  imply there exists ( ) ( )GRL X N Bγ ρ γ∈ ⊂ ∈ , 
where ( ) { }GRL : :  is grillX PXγ γ= ⊂ , and PXγ ⊂  is called grill (Choquet [9]) iff it satisfies 

(gri1) γ∅∉ ; 
(gri2) 1 2G G γ∪ ∈  iff 1G γ∈  or 2G γ∈ . 
We denote by G-PHN the category, whose objects are the prehypergrill spaces with hn-maps between them 

and by G-PHN •  the category, whose objects are the prehypergrill spaces with shn-maps between them. 
Remark 3.2 We refer to Examples 1.3. (ii), (iii), (iv), (vi), (vii) respectively and to Examples 1.7. (i), (ii). 
Theorem 3.3 The category GRILL of grill-determined prenearness spaces and nearness preserving maps is 

isomorphic to a full subcategory of G-PHN. 
Proof. According to Theorem 2.2 we already know that ( ), ,X PX Nξ  is a symmetric saturated prehypernear 

space, hence additionally it is a prehypergrill space by hypothesis. Conversely, Mη  is grill-determined by sup-
position.                                                                                   

Theorem 3.4 The category SETCONV ([3]) of set-convergence spaces and related maps is isomorphic to a 
full subcategory of G-PHN • . 

Proof. According to Example 1.3. (iii) we claim that the triple ( ), ,X
qX N  is a set-defined prehypergrill 

space. Conversely, we consider for such proposed space ( ), ,YY M  the following set-convergence space 
( ), ,Y

MY p  defined by setting: 
Mp B  iff ( )sec M B∈  for each XB∈ . Hence, the above mentioned 

connections are functoriell with respect to shn-maps. Thus, it remains to prove that the following two statements 
are valid, i.e. 

(i) 
qNq p= ; 

(ii) 
MpM N= . 

To (i) “ ≤ ” qB  implies 
qNp B , evidently. 

“ ≥ ”: 
qNp B  implies ( )sec qN B∈ , hence there exists ( )FIL sec secX′ ′∈ ⊂    and qB′ . Since 

′ ⊂   we conclude with qB . 
To (ii): “ ≤ ”: ( )M Bρ ∈  implies the existence of ( )GRL Xγ ∈  with ( )M Bρ γ⊂ ∈ . Consequently, 

( )sec FIL Xγ ∈  and sec Mp Bγ  results, hence ( )
MpN Bρ ∈  is valid. 

“ ≥ ”: ( )
MpN Bρ ∈  implies that secρ ⊂   and 

Mp B  hold. Hence ( )sec M B∈ , and ( )M Bρ ∈  re- 
sults.                                                                                      

Corollary 3.5 The category GCONV of generalized convergence spaces and related maps is isomorphic to 
the category DISG-PHN•, whose objects are the discrete prehypergrill soaces and whose morphisms are the 
sected hn-maps. 

Remark 3.6 Now, in this connextion it is interesting to note that there exists and alternate description of ge-
neralized convergence spaces in the realm of prehypergrill spaces. Analogously, how to describing set conver-
gence on arbitrary B-sets we offer now a corresponding one for the point convergence as follows: Let be given a 
point-convergence space ( ),X q , where ( )FILq X X⊂ ×  is satisfying some natural conditions. Then we con-
sider the following pointed prehyergrill space ( ), , qX PX N  by setting ( ) { }:qN ∅ = ∅  and  

( ) ( )( ){ }: : FIL sec  and qN B PX x B X qxρ ρ= ⊂ ∃ ∈ ∃ ∈ ⊂    

if B ≠ ∅ . 
Conversely let be given a pointed saturated prehypergrill space ( ), ,YY M  then we naturally define a point- 

convergence space ( ), MY p  by setting 
Mp y  iff { }( )sec M y∈ . As a consequence we obtain the result 

that point convergence can be essentially expressed by means of its corresponding pointed saturated prehyper-
grill spaces and sected hn-maps. 

Hence, the last mentioned category also is isomorphic to DISG-PHN•. 
Remark 3.7 Another interesting fact is the following one. As Wyler has shown in [3] supertopological spaces 

in the sense of Doîtchînov can be regarded as special set-convergence spaces. Hence it is also possible for de-
scribing them in the realm of prehypergrill spaces. Concretely let be given a supertopological space (see [10]) or 
more generally a neighborhood space ( ), ,XX Θ  in the sense of [6], in the following referred as to presu-
pertopological space. Then we consider the triple ( ), ,XX NΘ , where ( ) ( ){ }: : secN B PX Bρ ρΘ = ⊂ ⊂ Θ  
for each X∈  . Hence the triple ( ), ,XX NΘ  is a conic pseudohypergrill space. Hereby, a prehypergrill 
space ( ), ,XX N  is called pseudohypergrill space iff N satisfies (is) (see also Definition 2.4). By CG-PSHN 
respectively CG-PSHN• we denote the corresponding categories. At last we point out that conic pseudohyper-
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near spaces are even set-defined. 
Theorem 3.8 The category PRESTOP of presupertopological spaces and continuous maps is isomorphic to 

the category CG-PSHN•. 
Proof. According to Remark 3.7 we consider conversely for a conic pseudohypergrill space ( ), ,YY M  the 

space ( ), ,Y
MY  , where for each Y

MB∈   is defined by setting:  

( ) ( ) ( ){ }: sec GRL :M B Y M Bγ γ= ∈ ∈



 

for each YB∈ . Then ( ), ,Y
MY   is a presupertopological space. Hence, the above mentioned connections 

are functoriell with respect to shn-maps. Thus, it remains to prove that the following two statements are valid, 
i.e. 

(i) NΘΘ = ; 
(ii) N

MM =  . 
To (i): “ ≤ ”: For XB∈  let be ( )U B∈Θ . ( ) ( ){ }GRL :F X N Bγ γ Θ∈∪ ∈ ∈  implies the existence of 

( )N Bγ Θ∈  with F γ∈ , hence ( )sec Bγ ⊂ Θ  follows. Consequently ( )secF B∈ Θ  is valid, showing that 
F U∩ ≠ ∅ . 

“ ≥ ”: Since ( ) ( )sec B N BΘΘ ∈  is grill we get ( ) ( ) ( ){ }sec GRL :B X N Bγ γ ΘΘ ⊂ ∈ ∈


, hence  

( ) ( ){ } ( )sec GRL :X N B Bγ γ Θ∈ ∈ ⊂ Θ


 

is valid. 
To (ii): “ ≤ ” ( )M Bρ ∈  implies the existence of ( )GRL Xγ ∈  with ( )M Bρ γ⊂ ∈  by hypothesis, hence 

( )sec M Bρ ⊂ Θ . 
“ ≥ ” ( )

M
N Bρ ∈


 implies ( ) ( ) ( ){ } ( )sec GRL :M B X M B M Bρ γ γ⊂ Θ = ∈ ∈ ∈


, hence ( )M Bρ ∈  
according to ( )1hn .                                                                         

Remark 3.9 b -proximities (see [6]) are of significant importance when considering topological extensions. 
Here we will give two interesting examples in that direction as follows: 

(1) For a symmetric topological space ( ),Y t  (given by a closure operator t) let X  be a B -set with X Y⊂ , 
then we define a b -proximity X

t PXδ ⊂ ×  by setting: tB Aδ  iff ( ) ( )t B t A∩ ≠ ∅  for each XB∈  and 
A X⊂ . Now, it is easy to verify that tδ  is t -compatible, which means the equality 

t
cl tδ =  holds by re-

stricting t  on X , where 
t

clδ  denotes the closure-operator induced by tδ . 
(2) Let being the same hypothesis as in (1). We set ( ){ }: :X X

t D X B t B D= ⊂ ∃ ∈ ⊃   and define a near-  

ness relation t X
t PXδ ⊂ ×  by setting: tD Aδ  iff ( ) ( )t D t A∩ ≠ ∅ . Then tδ  defines a b-proximity with 

the same properties as mentioned above. Now, we recall the definition of a b-proximity respectively b-proximity 
space as follows:                                                  

Definition 3.10 A b -proximity space consists of a triple ( ), ,XX δ , where X  is set, X  B -set and 
X PXδ ⊂ ×  satisfying the following conditions: 

(bp1) Aδ∅  and Bδ∅  (i.e. ∅  is not in relation to A , and analogously this is also holding for B ); 
(bp2) ( )1 2B A Aδ ∪  iff 1B Aδ  or 2B Aδ ; 
(bp3) x X∈  implies { } { }x xδ ; 
(bp4) 1 2

XB B⊂ ∈  and 1B Aδ  imply 2B Aδ . 
Remark 3.11 Here we point out that b-proximities are in one-to-one correspondence with presupertopologies. 

In the symmetric case, if δ  additionally satisfies (sbp), i.e. 
(sbp) 1 2,  XB B ∈  and 1 2B Bδ  imply 2 1B Bδ  and moreover X  equals PX , then symmetric b-proximities 

coincide with the Čech-proximities mentioned by Deák ([11]). 
Definition 3.12 For b -proximity spaces ( ), ,XX δ , ( ), ,YY γ  a bounded function :f X Y→  is called 

p-map iff f  satisfies (p), i.e. 
(p) ,  XB A PX∈ ∈  and B Aδ  imply [ ] [ ]f B f Aγ . By b-PROX we denote the corresponding category. 
Theorem 3.13 The category b-PROX and CG-PSHN are isomorphic. 
Proof. For a b-proximity space ( ), ,XX δ  we consider the triple ( ), ,XX Nδ , where  

( ) ( ){ }: :N B PX Bδ ρ ρ δ= ⊂ ⊂  
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for each XB∈  with ( ) { }: :B A X B Aδ δ= ⊂ . Then ( ), ,XX Nδ  is a conic pseudohypergrill space. Con-  
versely let be given such a space ( ), ,YY M , then we consider the triple ( ), ,Y

MY p , where Y
Mp PY⊂ ×   

is defined by setting 
MpB A  iff { } ( )A M B∈  for each YB∈  and A Y⊂ . Hence, ( ), ,Y

MY p  is a b-pro- 
ximity space. The above mentioned connections are functoriell, and thus it remains to prove that the following 
two statements are valid, i.e. 

(i) Np
δ

δ = ; 
(ii) 

MpM N= . 

To (i): “⊂ ”: B Aδ  implies { } ( )A N Bδ∈ , hence BpN Aδ . 
“⊃ ”: NBp A

δ
 implies { } ( )A N Bδ∈ , hence B Aδ  follows. 

To (ii): “≤ ”: ( )M Bρ ∈  and F ρ∈  imply { } ( )F M B∈ , hence MBp F , and ( )MF p B∈  results. 
“ ≥ ” ( )

MpN Bρ ∈  implies ( )Mp Bρ ⊂ . We will show that ( ){ }:PX M Bρ ⊂ ⊂ ∈


  . 

F ρ∈  implies ( )MF p B∈  by hypothesis, hence MBp F , and { } ( )F M B∈  results which concludes the 
proof.                                                                                     

Résumé 3.14 Respecting to former advisements we note that we have established only some topological 
concept in which some important classical ones can be now expressed and studied in a very natural way. More-
over, the fundamental categories how as GRILL, b-PROX, PRESTOP, GCONV and SETCONV can be re-
garded as special subcategories of G-PHN. (see also the Theorem 3.3, 3.4, 3.8 and 3.13 respectively). 

4. Bonding in Prehypernear Spaces 
A slight modification of the definition for being a prehypergrill space leads us to the following notation. 

Definition 4.1 A prehypernear space ( ), ,XX N  is called bonded iff N  satisfies (b), i.e. 
(b) XB∈  and ( )1 2 N Bρ ρ∨ ∈  imply ( )1 N Bρ ∈  or ( )2 N Bρ ∈ , where 

{ }1 2 1 2 1 1 2 2: : ,F F F Fρ ρ ρ ρ∨ = ∪ ∈ ∈ . 
Remark 4.2 Each prehypergrill space is bonded. 
Proof. evident.                                                                            
Definition 4.3 Now, we call a bonded pseudohypernear space a semihypernear space and denote by SHN the 

full subcategory of PSHN. 
Theorem 4.4 The category PrTOP of pretopological spaces and continuous maps is isomorphic to a full 

subcategory of SHN. 
Proof. According to Theorem 2.6 respectively Definition 2.10 it is evident that Mcl  additionally satisfies 
( ) ( ) ( )1 2 1 2M M Mcl A A cl A cl A∪ = ∪ , hence being a pretopology on its underlying set. On the other hand −N  is  

bonded, because ( )1 2 N Bρ ρ −∨ ∈  implies { }1 2sec :B F F ρ ρ∈ ∈ ∨ . We suppose that ( )1 2,  N Bρ ρ −∈/ ,  

hence there exist 1 1F ρ∈ , 2 2F ρ∈  such that 1 2B F B F∩ =∅ = ∩ . Consequently,  

( ) ( ) ( )1 2 1 2 1 2B F B F B F F B F F∅ = ∩ ∪ ∩ = ∩ ∪ = ∩ ∪ . 

But 1 2 1 2F F ρ ρ∪ ∈ ∪  leads us to a contradiction.                                               
Theorem 4.5 The category SNEAR of seminearness spaces and related maps is isomorphic to a full sub- 

category of SHN. 
Proof. According to Theorem 2.2 we firstly show that Nξ  is bonded. Without restriction bet be ( )\XB∈ ∅   

and ( )1 2 N Bξρ ρ∨ ∈ , hence { } ( )1 2B ρ ρ ξ∪ ∨ ∈ . Since { }( ) { }( ) { } ( )1 2 1 2B B Bρ ρ ρ ρ∪ ∨ ∪ ∪ ∨  we ob-  

tain { }( ) { }( )1 2B Bρ ρ ξ∪ ∨ ∪ ∈ . Thus { } 1B ρ ξ∪ ∈  or { } 2B ρ ξ∪ ∈  results, showing that Nξ  is satisfying 
(b). On the other hand let be 1 2 Mη∨ ∈   and without restriction 1 2≠ ∅ ≠  . We suppose 1 2,  Mη∈/  , 
hence there exist 1A ∈ , 2 2A ∈  with ( )1 1M A∈/  and ( )2 2M A∈/ . Consequently 1 2 1 2A A∪ ∈ ∨   
follows. Then we get ( )1 2 1 2M A A∨ ∈ ∪   by hypothesis. Since M is bounded we have ( )1 1 2M A A∈ ∪ , 
or ( )2 1 2M A A∈ ∪ . By symmetry of M  we obtain the statement { } ( )1 2 1 1A A M A∪ ∪ ∈  or  
{ } ( )1 2 2 2A A M A∪ ∪ ∈ . Consequently, ( )1 1M A∈  or ( )2 2M A∈  leads us to a contradiction.        

Remark 4.6 A pseudohypernear space ( ), ,XX N  induces two underlying psb-hull operators by setting for 
each XB∈ : 



D. Leseberg 
 

 
617 

{ }{ } ( ){ }
{ }{ } ( ){ }

: : ;

: : , ,

N

N

B x X x N B

B x X x B N B

= ∈ ∈

= ∈ ∈
 

whereby the inclusion N NB B⊂  is valid for each XB∈ . If N  is symmetric then the two operators 
coincide, and moreover we claim the following equalities for each XB∈ , i.e. ( ) ( )N N N

Ncl B cl B B B= = = . 
Hereby, a function : Xh PX→  is called a psb-hull operator, and the triple ( ), ,XX h  is called a psb-hull 
space iff h  satisfies the following conditions: 

(bh1) ( )h ∅ =∅ ; 
(bh2) XB∈  implies ( )B h B⊂ ; 
(bh3) 1 2

XB B⊂ ∈  imply ( ) ( )1 2h B h B⊂ . 
For psb-hull spaces ( ), ,X

XX h , ( ), ,Y
YY h  let :f X Y→  be a bounded function, then f  is called b- 

continuous iff XB∈  implies ( ) [ ]( )X Yf h B h f B⊂   . We denote by Psb-HULL the corresponding catego-
ry. 

Definition 4.7 Now, we call a conic pseudohypernear space ( ), ,XX N  a pseudohull space iff N  satisfies 
(h), i.e. 

(h) XB∈  and ( )N Bρ ∈  imply secNB ρ∈ . We denote by PSHU the full subcategory of PSHN, whose 
objects are the pseudohull spaces. 

Theorem 4.8 The categories Psb-HULL and PSHU are isomorphic. 
Proof. According to Remark 4.6 we already know that ( ), ,XX N−  is a psb-hull space. Conversely, for a  

psb-hull space ( ), ,YY h  we consider the triple ( ), ,Y hY M  by setting for each  

( ) ( ){ }: : : secY hM B PX h Bρ ρ∈ = ⊂ ∈  . 

Then ( ), ,Y hY M  is a pseudohull space. Hence, the above mentioned connections are functoriell. Thus it re- 
mains to prove that the following two statements are valid, i.e. 

(i) hh M= − ; 
(ii) NN M −= . 
To (i): “ ≤ ”: For XB∈  let be ( )x h B∈ , hence ( ) { }{ }sech B x∈ . Consequently, { }{ } ( )hx M B∈  

follows, showing that 
hMx B∈  is valid. 

“ ≥ ”: evident. 
To (ii): “≤ ”: ( )N Bρ ∈  and F ρ∈  imply NB F∩ ≠ ∅  by hypothesis, hence ( )NM Bρ −∈  is valid. 
“ ≥ ”: ( )NM Bρ −∈ ; we will show that ( ){ }:F X N B Fρ ⊂ ∪ ⊂ ∃ ∈ ∈   is valid. F ρ∈  implies  
NB F∩ ≠ ∅  by hypothesis. Choose x F∈  with { }{ } ( )x N B∈ , hence { } ( )F N B∈  according to (hn1). 

Consequently, the above mentioned inclusion is valid, showing that ( )N Bρ ∈ .                         
Corollary 4.9 In the saturated case CL-PSHN and PSHU are isomorphic categories. 
Proof. We refer to Theorem 2.6, Definition 2.10 and Theorem 4.8 respectively. 
Definition 4.10 A prehypernear space ( ), ,XX N  is called connected if N  satisfies (cnc), i.e. 
(cnc) 1 2,  B B X⊂  and 1 2

XB B∪ ∈  imply ( ) ( ) ( )1 2 1 2N B B N B N B∪ = ∪ . 
Remark 4.11 We note that each pointed prehypernear space is connected, moreover this also is holding for 

any symmetric semihypernear space. Consequently, the underlying psb-hull operator N−  additionally satisfy-
ing (ad), i.e. 

(ad) ( ) ( ) ( )1 2 1 2h B B h B h B∪ = ∪ . Now, let us call such an operator h  b-hull operator, and we denote by 
b-HULL the corresponding full subcategory of Psb-HULL with related objects. In the saturated case we claim 
that b-HULL and CL-SHN are isomorphic categories. Hereby CL-SHN denotes the full subcategory of SHN, 
whose objects are the closed semihypernear spaces. 

5. Hypernear Spaces 
As already observed, hypertopologies appear in connexion with certain interior operators studied by Kent and 
Min ([12]). Hereby a function : PX PX− →  is called a hypertopology on X , and the pair ( ),X −  is called a 
hypertopological space iff “−” satisfies the following conditions: 
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(hyt1) ∅ =∅ ; 
(hyt2) A PX∈  implies A A⊂ ; 
(hyt3) 1 2A A PX⊂ ∈  imply 1 2A A⊂ ; 
(hyt4) A PX∈  implies A A⊂ . 
For hypertopological spaces ( ),X X− , ( ),Y Y−  let :f X Y→  be a function, then f  is called continuous  

iff A PX∈  implies [ ]
YXf A f A  ⊂  . By HYTOP we denote the corresponding subcategory of C



-CLO.  

Evidenly, the category TOP of topological spaces and continuous maps can be now regarded as a special case of 
HYTOP. On the other hand certain nearnesses play an important role in the realm of unifications and extensions, 
respectively. This is holding for distinguished nearness spaces and b-proximity spaces in fact. Moreover, certain 
supertopologies are involved, too. Now, in the following we will give a common description of them all by in-
troducing the so called concept of a hypernear space. 

Definition 5.1 A pseudohypernear space ( ), ,XX N  is called a hypernear space iff N  satisfies (hn), i.e. 
(hn) XB∈  and ( ){ } ( ):Ncl F F N Bρ∈ ∈  imply ( )N Bρ ∈ . 
We denote by HN the corresponding full subcategory of PSHN. Note, that in this case Ncl  is a hypertopol-

ogy on X . 
Theorem 5.2 CL-HN denotes the full subcategory of CL-PSHN, whose objects are the closed hypernear spaces, 

then CL-HN and HYTOP are isomorphic. 
Proof. The reader is referred to Theorem 2.6 and Definition 2.10, respectively.                         
Remark 5.3 As pointed out in Remark 3.6, point convergence can be described by certain pointed prehyper-

near spaces. To obtain a result more closer related to hypertopologies we will give the following definition. 
Definition 5.4 A prehypernear space ( ), ,XX N  is called surrounded, iff N  satisfies (sr), i.e. 
(sr) { }\XB∈ ∅  and ( )N Bρ ∈  imply there exists x B∈  ( ){ }:Nx cl F F ρ∈ ∈



. 

Remark 5.5 Here we claim that each pointed prehypernear space is surrounded, hence sected, too. (See also 
Definition 2.8). 

Lemma 5.6 For a hypernear space ( ), ,XX N  the following statements are equivalent: 
(i) ( ), ,XX N  is pointed; 
(ii) ( ), ,XX N  is surrounded. 

Proof. The only remaining implication “(ii) ⇒  (i)” will be shown now: { }\XB∈ ∅  and ( )N Bρ ∈  
imply the existence of x B∈  with ( ){ }:Nx cl F F ρ∈ ∈



. Consequently,  

( ){ } { }{ } { }( ):Ncl F F x N xρ∈ ∈ , 

hence ( ){ } { }( ):Ncl F F N xρ∈ ∈  follows, and { }( )N xρ ∈  results according to (hn). 
Remark 5.7 Now, if we consider a bounded hypertopology, this is a psb-hull operator h  on a B-set X , 

which additionally satisfies (bh4), i.e. 
(bh4) B X⊂  and ( ) Xh B ∈  imply ( )( ) ( )h h B h B= , then the corresponding category is isomorphic to 

the full subcategory SR-HN of HN, whose objects are the surrounded hypernear spaces. In this connexion we 
consider the restriction of Ncl  on the B-set X . Conversely, for a bounded hypertopological space ( ), ,YY t  
we define the corresponding sourrounded hypernear space ( ), ,Y

tY M  by setting ( ) { }:tM ∅ = ∅ ; and 
( ) ( ){ }{ }: : :tM B PX x Bx t F Fρ ρ= ⊂ ∃ ∈ ∈ ∈



, otherwise. In the saturated case then we can recover all hy- 
pertopological spaces. So, in general it is now possible to study those closure operators not only on PX , but 
also on arbitrary B-sets even in the realm of the broader concept of hypernear spaces. 

Remark 5.8 In this connexion another concept of closure operators seems to be of interest, and it is playing 
an important rule when considering classical nearness structures. In the following we will give some notes in 
this direction. 

Definition 5.9 We call a prehypernear space ( ), ,XX N  neartopological iff N  is satisfying (nt), i.e. 
(nt) { }\XB∈ ∅  and ( )N Bρ ∈  imply ( ) { }{ }:Ncl A A Bρ∩ ∈ ∪ ≠ ∅ . 
Remark 5.10 We note that each surrounded prehypernear space is neartopological. On the other hand let be 

given a symmetric bounded hypertopological space ( ), ,YY h , where in addition h  is satisfying (sym), i.e. 
(sym) ,  x z Y∈  and { }( )x h z∈  imply { }( )z h x∈ , 
then we define the corresponding neartopological hypernear space ( ), ,Y hY M  by setting: ( ) { }:hM ∅ = ∅  
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and ( ) ( ) { }{ }{ }: : :hM B PX h A A Bρ ρ= ⊂ ∩ ∈ ∪ ≠ ∅ , otherwise. By definition ( ), ,Y hY M  is automatically 
symmetric (see Definition 2.1. (iii)). At this point we mention the fact that symmetric hypernear spaces are 
always dense, which means N  is satisfying (d), i.e. 

(d) XB ⊂  and ( ) X
Ncl B ∈  imply ( )( ) ( )NN cl B N B= . 

This can be seen as follows: Without restriction let be { }\XB∈ ∅ , ( )( )NN cl Bρ ∈  implies  

( ){ } ( )( )N Ncl B N cl Bρ∪ ∈  

by hypothesis.  

( ){ } ( ){ } ( ){ }: :N N Ncl B cl F F cl Bγ ρ ρ= ∪ ∈ ∪ , 

hence ( )( )NN cl Bγ ∈  follows, and { } ( )( )NB N cl Bρ∪ ∈  is valid according to (hn). But then  

( ){ } { }( ) ( )Ncl B B N Bρ∪ ∪ ∈  

results, since N  is symmetric. Consequently, ( )N Bρ ∈  can be deduced according to (hn 1 ). Now, we point 
out that in some cases ( ), ,XX N  is round which means X  additionally satisfies (ron), i.e. 

(ron) XB∈  implies ( ) X
Ncl B ∈ . (see also Remark 3.9.(2)). 

A detailed description of this fact will be given in some forthcoming papers. Then evidently saturated spaces are 
round. Analogously, we can consider roundbounded symmetric hypertopological spaces, i.e. spaces ( ), ,XX h , 
where X  is satisfying (rb), i.e. 

(rd) XB∈  implies ( ) Xh B ∈ . 
Then the corresponding category is isomorphic to the full subcategory RNT-HN of HN, whose objects are the 

round neartopological hypernear spaces. As above defined we only verify the following two statements: 
(i) hM

cl h≤ ; 
(ii) NclM N≤ . 
To (i): Let be A X⊂  and ( )hM

x cl A∈ , then { } { }( )hA M x∈  by definition. Hence there exists ( )y h A∈  
with { }( )y t x∈ . Since t  is symmetric we get { }( )x t y∈ , and ( )x t A∈  results. 

To (ii): Without restriction let be { }\XB∈ ∅ . ( )NclM Bρ ∈  implies the existence of ( )Nx cl B∈  such  
that ( ){ }:Nx cl F F ρ∈ ∈



. Consequently, ( ){ } { }{ } { }( ) ( )( ) ( ):N Ncl F F x N x N cl B N Bρ∈ ∈ ⊂ ⊂ , and  

( )N Bρ ∈  results. 
In the saturated case then we can recover all symmetric hypertopological spaces. 

6. Supernear and Paranear Spaces 
Now, based on former advisements we are going to consider two special classes of hypernear spaces, which are 
being fundamental in the theory of topological extensions. 

Definition 6.1 We call a bonded hypernear space a supernear space and denote by SN the corresponding full 
subcategory of HN. 

Corollary 6.2 The category TOP of topological spaces and continuous maps is isomorphic to a full sub- 
category of SN. 

Proof. According to Example 1.3. (v), Theorem 2.6, Theorem 4.4 and Definition 5.1 we only have to verify 
that N −  is satisfying (hn). Now, let be XB∈ , PXρ ⊂  with ( ){ } ( ):

N
cl F F N Bρ−

−∈ ∈ , hence  

( ){ }sec :
N

B cl F F ρ−∈ ∈ . 

For F ρ∈  we have ( )N
B cl F−∩ ≠ ∅ . But ( )N

cl F F− =  is valid. Since “−” is a topological closure oper-  

ator we get Ncl F F− = , and consequently ( )N Bρ −∈  results.                                     
Corollary 6.3 The category STOP of supertopological spaces and continuous maps is isomorphic to a sub- 

category of SN. 
Proof. The reader is referred to Remark 3.7, Theorem 3.8 and Remark 4.2 respectively.                  
Remark 6.4 b-proximities (see Definition 3.10) are playing an important rule when considering topological 

extensions (see Remark 3.9). In this connexion we are now giving two special cases of them. First of all we call 
a b-proximity space ( ), ,XX δ  a preLEADER space iff δ  in addition satisfies (bp5), i.e. 
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(bp5) XB∈  and B Aδ  with ( )A cl Cδ⊂  imply B Cδ , where ( ) { }{ }: :cl C x X x Cδ δ= ∈ . 
By pLESP we denote the corresponding full subcategory of b-PROX. 
In the saturated case (if XX ∈ ) LEADER proximity spaces then can be recovered as special objects. 
Corollary 6.5 The category pLESP is isomorphic to a full subcategory of SN. 
Proof. According to Example 1.3. (vi), Remark 3.11 and Theorem 3.13 respectively it remains to verify that 

Nδ  satisfies (hn) and Mp  (bp5) respectively. 
To (hn): XB∈ , PXρ ⊂  and ( ){ } ( ): :Ncl F F N B

δ δγ ρ= ∈ ∈  imply ( )Bγ δ⊂ . We have to verify that  

( )Bρ δ⊂ . So let be F ρ∈ , hence ( ) ( )Ncl F B
δ

δ∈ , and consequently ( )NB cl F
δ

δ  is valid. The inclusion  
( ) ( )Ncl F cl F

δ δ⊂  holds, because ( )Nx cl F
δ

∈  implies { } { }( )F N xδ∈ , hence { } { }( )F xδ⊂ , and { }x Fδ   

results, showing that ( )x cl Fδ∈  is valid. According to (bp5) we get B Fδ , and the proposed inclusion holds. 
To (bp5): Conversely, let be XB∈  and MBp A  with ( )

MpA cl C⊂ , we have to verify CBpM . 
By hypothesis { } ( )A M B∈  is valid. ( ){ } { }Mcl C A , since ( ) ( )

Mp Mcl C cl C⊂ . Because ( )
Mpx cl C∈   

implies { } Mx p C , { } { }( )C M x∈  leads us to the statement ( )Mx cl C∈ . According to (hn1) we obtain  

( ){ } ( )Mcl C M B∈ , and { } ( )C M B∈  results by axiom (hn). Consequently MBp C  is valid.              
Remark 6.6 At this point we note that certain supernear spaces are in one-to-one correspondence to strict to-

pological extensions which we study in a forthcoming paper. Here, we will examine the case if a symmetric to-
pological extension is presumed (see Example 1.7. (ii)). In this connexion bunch-determined nearness and cer-
tain preLODATO spaces are playing an important role. Now, we will give the definition of a preLODATO space: 

Definition 6.7 A preLEADER space ( ), ,XX δ  is called a preLODATO space iff δ  in addition satisfies 
the following axioms, i.e. 

(bp6) 1 2
XB B∪ ∈  and ( )1 2B B Aδ∪  imply 1B Aδ  or 2B Aδ ; 

(bp6) ( ),  ,  XB A X cl Bδ⊂ ∈  and ( )cl B Aδ δ  imply B Aδ ; 
(bp6) 1 2,  XB B ∈  and 1 2B Bδ  imply 2 1B Bδ . 
By pLOSP we denote the corresponding full subcategory of pLESP. 
Remark 6.8 In the saturated case LODATO proximity spaces then can be recovered as special objects. More- 

over, we note that each b-supertopological space then can be regarded as special preLODATO space. A slight 
specialization lead us to the so-called LODATO space by adding the axiom (bp9), i.e. 

(bp9) XB∈  implies ( ) Xcl Bδ ∈ . 
Once again, in the saturated case the two definitions coincide, and LODATO proximity spaces then can be re-

covered as special objects. 
But in general the two definitions differ, and the reader is referred to Remark 3.9 in connexion with Remark 

5.10. In a forthcoming paper we will show that the corresponding category LOSP of LODATO spaces can be re- 
garded as a full subcategory of SN, whose objects are symmetric. On the other hand nearness also leads us to a 
certain symmetric supernear space, hence we give the following definition. 

Definition 6.9. A symmetric supernear space is called a paranear space and we denote by PN the corres-
ponding full subcategory of SN. 

Theorem 6.10. The category NEAR of nearness spaces and related maps is isomorphic to a full subcategory 
of PN. 

Proof. According to Example 1.3. (ii) and Theorem 4.5 respectively it remains to verify that Nξ  satisfies (hn) 
and Mη  the nearness axiom. 

To (hn): Without restriction let be { }\XB∈ ∅ , PXρ ∈  and ( ){ } ( ):Ncl F F N B
ξ ξρ∈ ∈ , hence 

{ } ( ){ }: :NB cl F F
ξ

γ ρ ξ= ∪ ∈ ∈ . 

But ( ){ } ( ){ }:cl B cl F Fξ ξ ρ γ∪ ∈  , because for F ρ∈  and ( )Nx cl F
ξ

∈  we have { } { }( )F N xξ∈ , hence  
{ } { }{ }x F ξ∪ ∈  is valid. Consequently { }{ },x F ξ∈  results which shows ( )x cl Fξ∈ . Since ξ  satisfies the  

nearness axiom: we get { }B ρ ξ∪ ∈ , and ( )N Bξρ ∈  results. Conversely, let be ( ){ }:
M Mcl F Fη ρ η∈ ∈  for 

PXρ ⊂ . We have to verify Mρ η∈ . So let be A ρ∈ , our goal is to show ( )M Aρ ∈ . By hypothesis we get  
( ){ } ( )( ):

M M
cl F F M cl Aη ηρ∈ ∈ . But ( ) ( )

M Mcl A cl Aη ⊂ , since ( )
M

x cl Aη∈  implies { }{ }, Mx A η∈ , hence  
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{ }{ } { }( ),x A M x∈  follows, and { } { }( )A M x∈  is valid, which shows ( )Mx cl A∈ . Consequently,  
( ){ } ( )( ): :

M Mcl F F M cl Aηγ ρ= ∈ ∈  with ( ){ }:Mcl F F ρ γ∈   is valid according to (is) of Definition 2.4.  

Since M is dense (see Remark 5.10) we get ( ){ } ( ):Mcl F F M Aρ∈ ∈  according to (hn1). But then ( )M Aρ ∈  
follows by (hn), which concludes the proof.                                                       

Corollary 6.11. For a saturated paranear space ( ), ,XX N  the following statements are equivalent: 
(i) Mη  is topological nearness; 
(ii) ( ), ,XX N  is neartopological. 
Proof. evident according to Remark 5.10. 
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7. Topological Extensions and Their Corresponding Paranear Spaces 
Taking into account Example 1.7.(ii), Remark 3.9, 6.6 and 6.8 respectively we will now consider the problem 
for finding a one-to-one correspondence between certain topological extensions and their related paranear spaces. 
In this connexion we point out that certain grill-spaces come into play. 

Definition 7.1 Let be given a supernear space ( ), ,XX N . For { }\XB∈ ∅ , ( )GRL X∈  is called a 
B-clan in N  iff it satisfies 

(cla1) ( )B N B∈ ∈ ; 
(cla2) A∈  and ( )NA cl F⊂  imply F ∈ . 
Remark 7.2 For a supernear space ( ), ,XX N  and each XB∈  with ( ){ }: :N Nx Bx A X x cl A∈ = ⊂ ∈  

is a B-clan in N . 
Definitions 7.3 A supernear space respectively paranear space ( ), ,XX N  is called superclan space respec-

tively paraclan space iff N  satisfies (cla), i.e. 
(cla) { }\XB∈ ∅  and ( )N Bρ ∈  imply the existence of a B-clan   in N  with ρ ⊂  . 
Remark 7.4 In giving some examples we note that each surrounded supernear space is a superclan space, and 

each neartopological paranear space is a paraclan space. This is analogical valid for the spaces considered in 1.7. 
Proof of Example 1.7. (ii) 
First, we prove the equality of the corresponding closure operators. So, let be A PX∈  and ( )Xx cl A∈ , 

then by (tx1) ( ) [ ]( )Ye x cl e A∈  with ( ) ( ){ }( )Ye x cl e x∈ , hence { } { }( )eA N x∈  follows, which shows 
( )eN

x cl A∈ . Conversely, let ( )eN
x cl A∈ , hence { } { }( )eA N x∈  follows, which implies the existence of  

( ){ }( )Yy cl e x∈  with [ ]( )Yy cl e A∈ . But now, ( ) { }( )Ye x cl y∈  holds, because the presumed extension is sym-  

metric. Consequently, ( ) [ ]( )Ye x cl e A∈  follows, which shows that ( )Xx cl A∈  according to (tx1). Alltogether, 
the equality now results. Secondly, it is easy to verify that ( ), ,X eX N  fulfills the axioms for being a semihy-
pernear space. Ne is symmetric, since ( )eN Bρ ∈  for { }\XB∈ ∅  implies the existence of [ ]( )Yy cl e B∈  with 

[ ]( ){ }:Yy cl e A A ρ∈ ∈


, hence { } ( )eB N Bρ∪ ∈  follows. Now, XF ρ∈ ∩  implies { } ( )eB N Fρ∪ ∈ ,  

since [ ]( ) [ ]( )Y Yy cl e B cl e F∈ ∩  by supposition, hence eN  symmetric. ( ), ,X eX N  is a supernear space,  
because PXρ ⊂  and ( ){ } ( ): :e

e
N

cl F F N Bρ∈ = ∈  imply the existence of [ ]( )Yy cl e B∈  with  

[ ]( ){ }:Yy cl e A A∈ ∈


 . F ρ∈  implies ( )eN
cl F ∈ , hence  

( )( ) ( )( ) [ ]( )( ) [ ]( )eY Y X Y Y YN
y cl e cl F cl e cl F cl cl e F cl e F ∈ = ⊂ ⊂    , 

consequently ( )eN Bρ ∈  follows, which shows that ( ), ,X eX N  is a paranearness space. It remains to prove 
Ne satisfies the axiom (cla). For { }\XB∈ ∅  let be ( )eN Bρ ∈ , hence [ ]( ){ }:Yy cl e A A ρ∈ ∈



 for some 
[ ]( )Yy cl e B∈ . We set [ ]( ){ }: : YT X y cl e T= ⊂ ∈ , consequently   is the desired B -clan in eN  proving  

that ( ), ,X eX N  is a paraclan space. 
Convention 7.5 We denote by SY-TEXT the full subcategory of TEXT, whose objects are the symmetric to-

pological extensions and by CLA-PN the full subcategory of PN, whose objects are the paraclan spaces. 
Theorem 7.6 Let :F  SY-TEXT →  CLA-PN be defined by: 
(a) For a SY-TEXT-object ( ), ,Xe Y  we put ( ) ( ), , : , ,X X eF e Y X N=  ; 

(b) for a TEXT-morphism ( ) ( ) ( ), : , , , ,X Xf g e Y e Y′′ ′→   we put ( ), :F f g f= . 

Then F : SY-TEXT →  CLA-PN is a functor. 
Proof. We already know that the image of F  lies in CLA-PN. Now, let ( ) ( ) ( ), : , , , ,X Xf g e Y e Y′′ ′→   be 

a TEXT-morphism; it has to be shown that f  preserves B-near collections for each XB∈ . Without restric- 
tion let { }\XB∈ ∅  and ( )eN Bρ ∈ , hence we can choose [ ]( )Yy cl e B∈  with [ ]( ){ }:Yy cl e A A ρ∈ ∈



.  

Our goal is to verify the existence of ( )( )Yz cl e f B′ ′∈     such that [ ]( ){ }:Yz cl e f A A ρ′ ′∈ ∈


. By hypothesis  
we have ( ) [ ]( )( )Yg y g cl e B∈ , consequently ( ) [ ]( )Yg y cl e f B′ ′  ∈    results, since (f, g) is a TEXT-morphism  

by assumption. Now, consider some A ρ∈ , because [ ]( )Yy cl e A∈ , we have ( ) [ ]( )Yg y cl e f A′ ′  ∈   , which 
results in [ ]( )ef N f Bρ ′∈ .                                                                   
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8. Strict Topological Extensions 
Remark 8.1 In the previous section we have found a functor from SY-TEXT to CLA-PN. Now, we are going to 
introduce a related one in the opposite direction. 

Lemma 8.2 Let ( ), ,XX N  be a paranear space. We set { }: :CX PX= ⊂   is a B-clan in N  for some 
{ }\XB∈ ∅ , and for each C CA X⊂  we put: 

( ) { }: :C
C C C

X
cl A X A= ∈ ∆ ⊂   

where { }: :C CA F X A F∆ = ⊂ ∀ ∈ ∈  . (By convention CA PX∆ =  if CA = ∅ ). Then :C
C C

X
cl PX PX→  

is a topological closure operator. 
Proof. We first note that ( )CX

cl ∅ =∅ , since ∅∉  for each CX∈ . Let CA  be a subset of CX  and 
consider CA∈ . Then CF A∈∆  implies F ∈ , hence ( )C

C C
X

A cl A⊂ . Now, let be 1 2
C C CA A X⊂ ⊂ .  

Then, 2 1
C CA A∆ ⊂ ∆ , which implies ( ) ( )1 2C C

C C
X X

cl A cl A⊂ . For arbitrary subsets 1 2,  C C CA A X⊂  we consider  

an element CX∈  such that ( ) ( )1 2C C
C C

X X
cl A cl A∉ ∪ . Then we have 1

CA∆ ⊂/   and 2
CA∆ ⊂/  . Choose  

1 1
CF A∈∆  with F ∉  and 2 2

CF A∈∆  with 2F ∉ . Because ( )GRL X∈  we get 1 2F F∪ ∉ . On the  
other hand, ( )1 2 1 2 1 2

C C C CF F A A A A∪ ∈∆ ∪∆ ⊂ ∆ ∪  implies ( )1 2C
C C

X
cl A A∉ ∪ . At last, let C  be an element  

of ( )( )C C
C

X X
cl cl A  and suppose ( )C

C
X

cl A∉ . Choose CF A∈∆  with F ∉ . By assumption we have  
( )C

C
X

cl A∆ ⊂  , hence ( )C
C

X
F cl A∉∆ . Consequently there exists ( )C

C
X

cl A∈  with F ∉  But this im-  

plies CA∆ ⊂  , and F ∈  results, which leads us to a contradiction.                                
Theorem 8.3 For paranear spaces ( ), ,XX N , ( ), ,YY M  let :f X Y→  be a hn-map. Define a func- 

tion :C C Cf X Y→  by setting for each CX∈ : 

( ) ( ){ }1: :C
Mf D Y f cl D−= ⊂ ∈     

Then the following statements are valid: 
(1) Cf  is a continuous map from ( ), C

C
X

X cl  to ( ), C
C

Y
Y cl ; 

(2) The composites C
Xf e  and Ye f  coincide, where : C

Xe X X→  denotes the function which assigns 
the { }x -clan Nx  to each x X∈ . 

Proof. First, let   be a B -clan in N . We will show that ( )Cf   is a [ ]f B -clan in M . It is easy to 
verify that ( ) ( )GRLCf Y∈ , which satisfies (cla 2 ) in Definition 7.1. In order to establish (cla1) we observe 
that ( )B N B∈ ∈  by hypothesis. We will now verify that 

( ) ( ){ }: C
Mcl D D f f∈    

(Note, that f  is a hn-map by assumption.) For any ( )CD f∈   we have ( )1
Mf cl D− ∈    , hence  

( ) ( )1 C
M Mcl D f f cl D f− ⊃ ∈     . 

Since ∈B  and [ ] [ ]( )1 1
MB f f B f cl f B− −   ⊂ ⊂     we get [ ] ( )Cf B f∈  , and all together we con- 

clude that ( )Cf   defines a [ ]f B -clan in M . Consequently, ( )C Cf Y∈  results. 
To (1): Let C CA X⊂ , ( )C

C
X

cl A∈  and suppose ( ) ( )C
C C C

Y
f cl f A ∉   . Then ( )C C Cf A f ∆ ⊂/   ,  

hence ( )CD f∉   for some C CD f A ∈∆   , which means ( )1
Mf cl D− ∉    . Since CA∆ ⊂  , we get  

( )1
Mf cl D− ∉     for some CA∈ . Consequently ( )CD f∉   results, which leads us to a contradiction, 

because C CD f A ∈∆    is valid. 
To (2): Let x  be an element of X . We will prove the validity of ( )( ) ( )( )C

X Yf e x e f x= . To this end, let  
( )( )YD e f x∈ . Then, ( ) ( )Mf x cl D∈ , hence ( )1

Mx f cl D−∈   , and consequently ( ) ( )1
M N Xf cl D x e x− ∈ =   .  

Thus ( )( )C
XD f e x∈ , proving the inclusion ( )( ) ( )( )C

Y Xe f x f e x⊂ . Since ( )( )Ye f x  is maximal with re- 
spect to ( ){ } { }( )( )\ ,M f x ∅ ⊂  and moreover ( ) ( )( ){ } ( ): C

M X Xcl D D f e x fe x∈  , since by hypothesis f   

is a hn-map, we obtain the desired equality.                                                       
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Theorem 8.4 We obtain a functor G : CLA-PN to SY-TEXT by setting: 
(a) ( ) ( ), , : , ,X X C

XG X N e X=   for any paraclan space ( ), ,XX N  with ( ): , NX X cl=  and 

( ): , C
C C

X
X X cl= ; 

(b) ( ) ( ): , CG f f f=  for any hn-map ( ) ( ): , , , ,X Yf X N Y M→  . 
Proof. With respect to Corollary 6.2 it is straight forward to verify that Ncl  is a topological closure operator 

on X . We also have the topological closure operator CX
cl  on CX . Therefore we obtain topological spaces 

with B -set X , and : C
Xe X X→  is a continuous map, which can be seen as follows: Let ( )X Ne cl A∈     

for A X⊂ , we have to verify that [ ]Xe A∆ ⊂  . [ ]XF e A∈∆  implies ( )NA cl F⊂  and ( )Xe x=  for 
some ( )Nx cl A∈  by supposition. Consequently, ( )Nx cl F∈  follows which shows ( )N XF x e x∈ = =  . To 
establish (tx1), let A  be a subset of X  and suppose ( )Nx cl A∈ . Then we get [ ] ( )X Xe A e x∆ ⊂ , hence  

( ) [ ]( )CX XX
e x cl e A⊂  which means that [ ]( )1

CX XX
x e cl e A−  ∈   . Conversely, let x  be an element of  

[ ]( )1
CX XX

e cl e A−    . Then by definition we have ( ) [ ]( )CX XX
e x cl e A∈ , and consequently [ ] ( )X Xe A e x∆ ⊂ . 

This implies ( )XA e x∈ , which means ( )Nx cl A∈ . To establish (tx2), let be CX∈  and suppose  
[ ]( )C XX

cl e X∉ . By definition we get [ ]Xe X∆ ⊂/  , so that there exists a set [ ]XF e X∈∆  with F ∉ . But  

( )NX cl F⊂  follows. Since B∈  for some { }\XB∈ ∅ , we get ( )Ncl F ∈ , hence F ∈ , because    
satisfies (cla2). But this is a contradiction, and thus [ ]( )C XX

cl e X∈  is valid. In showing ( ), ,X C
Xe X  is  

symmetric let x be an element of X  such that ( ){ }( )C xX
cl e x∈ . We have to prove ( ) { }( )CX X

e x cl∈  . By  
hypothesis we have ( )N Xx e x= ⊂   and moreover ( )B N B∈ ∈  for some { }\XB∈ ∅ . Since { }x ∈   
and N is symmetric we get { } { }( )B N x∪ ∈  with { }B ∪  , hence { }( )N x∈  follows according to (hn1). 
But Nx  is maximal with respect to { }( ) { }( )\ ,N x ∅ ⊂ , which means that   coincides with ( )N Xx e x= . By  

hypothesis ( ) ( ): , , ,X Yf X N Y M→   is a hn-map, so that f  is continuous and bounded with respect to 
the given B -sets and corresponding closure operators. It remains to prove that the following diagram com-
mutes: 

 
To this end let x  be an element of X . We must show ( )( ) ( )( )c

X Yf e x e f x=  . 
“⊂ ” ( )( )c

XD f e x∈   implies ( )C
ND f x∈ , which means ( )1

M Nf cl D x− ∈   , hence  

( )( )1
N Mx cl f cl D−∈    . 

Since f  is continuous we have ( ) ( )( )1
M Mf x cl f f cl D− ∈      and ( ) ( )( )YMD f x e f x∈ =  follows. 

“⊃ ” ( )( )YD e f x∈  implies ( ) ( )Mf x cl D∈ , hence ( )1
Mx f cl D−∈     follows and consequently 

( )( )1
N Mx cl f cl D−∈    . Thus, ( ) ( )1

M Xf cl D e x− ∈   , which means ( )( )C
XD f e x∈ . 

Finally, this establishes that the composition of hn-maps is preserved by G. At last we will show that the image 
of G also is contained in STR-TEXT, whose objects are the strict topological extensions. Consider CX∈  and 
let CA  be closed in CX  with CA∉ . Then ( )C

C
X

cl A∉ , hence CA∆ ⊂/  . We can find some CF A∈∆  
such that F ∉ . Now, for each CA∈  we have F ∈ , which implies [ ]Xe F∆ ⊂  , and therefore we 
conclude [ ]( )C XX

cl e F∈ . On the other hand since F ∉ , we have [ ]Xe F∆ ⊂/  , hence [ ]( )C XX
cl e F∉ , 

which put an end of this.                                                                      
Theorem 8.5 Let F : SY-TEXT →  CLA-PN and G : CLA-PN →  SY-TEXT be the above defined func- 

tors. For each object ( ), ,XX N  of CLA-PN let ( ),X N
t


 denote the identity map 

( )( ) ( ): , , , ,X X
Xid F G X N X N→   

Then -: 1CLA PNt F G →  is natural equivalence from GF   to the identity functor PNCLA−1 , i.e.  
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( )( ) ( ): , , , ,X X
Xid F G X N X N→   

is a hn-map in both directions for each object ( ), ,XX N , and the following diagram commutes for each 
hn-map ( ) ( ): , , , ,X Yf X N Y M→  : 

 
Proof. The commutativity of the diagram is obvious, because of ( )( )F G f f= . It remains to prove that  

( )( ) ( ): , , , ,X X
Xid F G X N X N→   

is a hn-map in both directions. To fix the notation let 1N  be such that  

( )( ) ( ) ( )1, , , , , ,X X C X
XF G X N F e X X N= =   . 

It suffices to show that for each { }\XB∈ ∅  we have ( ) ( ) ( )1 1N B N B N B⊂ ⊂ . To this end assume  
( )1N Bρ ∈ , then there exists [ ]( )C XX

cl e B∈  such that [ ]( ){ }:C XX
cl e A A ρ∈ ∈



 , hence [ ]Xe B∆ ⊂  . We    

get B∈  and ( )1N B∈  for some { }\XB∈ ∅ . Since N is symmetric, we obtain { } ( )1B N B∪ ∈  with  
{ }1B ∪  , hence ( )N B∈ . But A ρ∈  implies [ ]( )C XX

cl e A∈ , hence [ ]Xe A∆ ⊂   with [ ]XA e A∈∆ .  

Now A∈  results, which shows ( )N Bρ ∈ . Conversely, let ( )N Bρ ∈ . Since ( ), ,XX N  is a paraclan 
space we can choose a B -clan in N  such that ρ ⊂  . In order to show ( )1N Bρ ∈  we need to verify 

(1) [ ]( )C XX
cl e B∈ ; 

(2) A ρ∈  implies [ ]( )C XX
cl e A∈ . 

To (1): By definition of CX
cl  it suffices to establish [ ]Xe B∆ ⊂  . So let D  be an element of [ ]Xe B∆ , 

hence ( )NB cl D⊂  follows which implies ( )Ncl D ∈ . But   is B-clan in N, consequently we get D∈ . 
To (2): Let A be an element of ρ  and D be an element of [ ]Xe A∆ , hence ( )NA cl D⊂ . Since A∈  by 

hypothesis, we get ( )Ncl D ∈  and analogously as above we infer D C∈ , which concludes the proof.      
Remark 8.6 Making the theorem more transparent we claim that a paranear space is a paraclan space if it can 

be embedded in a topological space Y  such that the B-near collections are characterized by the fact that the 
closures of its members meet in Y . Therefore this theorem generalize in one direction the Bentley- 
characterization of bunch-determined nearness spaces, in another the description of Doitchinov’s b-superto- 
pologies by compactly determined topological extensions and moreover the analogous existing correspondence 
respected to LODATO spaces involving the famous theorem of LODATO. 

Corollary 8.7 If ( ), ,XX N  is separated that means N  satisfies (sep), i.e. 
(sep) ,  x z X∈  and { }{ } { }( )Z N x∈  imply x z= , then : C

Xe X X→  is injective. Conversely, for a 1T  
extension ( ), ,Xe Y , where e  is a topological embedding and ( ), YY Y cl=  a 1T -space, then ( ), ,X eX N  
is separated. 
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