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Abstract 
In this work we review the class   of ternary algebras introduced by J. A. Brzozowski and C. J. 
Serger in [1]. We determine properties of the congruence lattice of a ternary algebra A. The most 
important result refers to the construction of the free ternary algebra on a poset. In particular, we 
describe the poset of the join irreducible elements of the free ternary algebra with two free gene-
rators. 
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1. Introduction and Preliminaries 
Different algebras began to be used in the thirties as a tool for the analysis and design of digital circuits. One of 
the pioneers in this field was C. E. Shannon, who in 1938 applied Boolean algebras in his work “ A  Symbolic 
Analysis of Change and Retransmission circuits”. Even though technology has changed substantially, these al-
gebras still play a very important role in this field. In contrast, the use of ternary algebras has been much more 
limited, and the first applications of trivaluada logic to switching circuits were made by Goto in 1948. He 
worked with the algebra { }0,1 2,1 , , , ,0,1A = + ⋅ − , of type ( )2,2,1,0,0 , where { }max ,a b a b+ = ,  

{ }min ,a b a b⋅ = , 1a a= − . He interpreted 1 2  as an indefinite value, and used it to represent a transition 
state between 0 and 1. In addition, by means of the resolution of trivalued logic equations, he managed to derive 
the necessary conditions to prevent hazardous behavior in sequential relay contact networks. In 1959, Muller 
worked with this same ternary algebra, and applied it to the study of the transient phenomena in switching cir-
cuits, and observed, among other things, that it satisfies Kleene’s law: ( ) ( ) ( ) K a a b b b b⋅ + + = + . 

In 1964, Yoeli and Rinon applied them to the study of static hazards in combinational switching circuits. In 
1965, Eichelberger used them in the analysis of hazard phenomena in combinational and sequential switching 
circuits. 
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In 1983, Mukaidono studied a special class of ternary functions, the regular ones, and indicated a set of 
axioms to define a ternary algebra, calling the resulting algebra Kleene algebra with a centre. However, it was 
not until 1995 that Brozozowski and Serger presented them as a De Morgan algebra with an additional constant, 
e , which satisfies these identities: 

1) e e= , 
2) ( )a a e a a+ + = + . 
The same year Negulescu introduced the process spaces, a formalism which allows the modelling of the be-

haviour of interacting systems. 
In 1996, Brozozowski, Lou and Negulescu considered certain subalgebras of the process spaces, i.e. the sub-

set-pair algebras, and showed that each finite ternary algebra is isomorphic to a subset-pair algebra. In 1997, 
Esik showed that this property is valid for any ternary algebra and that, in general, each ternary algebra is iso-
morphic to an algebra of ternary functions, this result being analogous to Caley’s representation for Boolean al-
gebras. 

This class of algebras is applied in the detection of hazards in the combinational circuits, in the modelling of 
interacting systems by means of process spaces and in the analysis of asynchronous sequential circuits by means 
of Eichelberger’s method of ternary simulation, among other applications. 

This article is organized as follows. Firstly, we summarize the main definitions and necessary results for a 
better comprehension of the article. In Section 2, we characterize the subdirectly irreducible algebras, examine 
the congruence lattice of a ternary algebra and establish properties of the variety  . Finally, in Section 4, we 
indicate a construction of the free ternary algebra on a poset, and apply it to the free ternary algebra on one free 
generator and describe the poset of the join irreducible elements of the free ternary algebra on two free genera-
tors. 

Definition 1.1 A ternary algebra is an algebra , , , ,0, ,1L e= + ⋅ ∼L  of type ( )2,2,1,0,0,0  which satisfies 
these conditions: 

(T1) , , , ,0,1L + ⋅ ∼  is a De Morgan algebra, 
(T2) ( )a a e a a+ ∼ + = + ∼  for all a L∈ , 
(T3) e e∼ = . 
This class of algebras forms a variety which will be denoted by  . 
The following properties are satisfied on  : 
(T4) ( )a a e a a⋅ ∼ ⋅ = ⋅ ∼  for all a L∈ . 
(T5) ( ) ( )a a b b a a+ ∼ + ⋅ ∼ = + ∼  for all ,  a b L∈ . 
(T6) In each ternary algebra the only element that satisfies the condition x x∼ =  is e . 
(T7) Every finite ternary algebra has an odd number of elements. 
(T8) There exist, up to isomorphism, one ternary algebra with five elements, two with seven, and four with 

nine. 
(T9) For each odd natural number 3n ≥ , there exists at least one ternary algebra with n  elements. 
Clearly, (T4) is the dual property of (T2) while (T5) is equivalent to (T2). 
Two well known examples of ternary algebras, of significant importance for the rest of this work, are: 
Example 1.1 
1) T0 is the ternary algebra { }0,1 2,1 , , , ,0,1 2,1+ ⋅ ∼ , where { }max ,a b a b+ = , { }min ,a b a b⋅ = , 0 1,∼ =  
1 0∼ =  and 1 2 1 2∼ = . 
2) For each odd integer 3,  nn T>  is the ternary algebra { } ( )0,1,2, , 1 , , , ,0, 1 2, 1n n n− + ⋅ ∼ − − , where 

{ }max ,a b a b+ = , { }min ,a b a b⋅ =  ( )1y a n a∼ = − − . 

2. The Congruence Lattice and Subdirectly Irreducible Algebras 
In order to characterize the subdirectly irreducible ternary algebras we first observe that the ternary algebras 
arises from Kleene algebras endowed with a nullary operation. 

Definition 2.1 A Kleene algebra , , , ,0,1L + ⋅ ∼  is a De Morgan algebra which satisfies the property ( )K  
x x y y⋅ ∼ + ∼  for every ,  x y L∈ . 

Definition 2.2 A Kleene algebra , , , ,0,1L + ⋅ ∼  is centered if there exists an element c L∈  such that 
c c∼ = , c  is said the centre of L . 
We represent this class of algebras by C . 
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Remark 2.1 From Definitions 2.1 y 2.2 we have that: 
1) If , , , ,0, ,1L e+ ⋅ ∼ ∈ , then the reduct ˆ , , , ,0,1 CL L= + ⋅ ∼ ∈ , with centre in e . 
2) If , , , ,0,1 CL + ⋅ ∼ ∈  with centre in e , entonces , , , ,0, ,1L e+ ⋅ ∼ ∈ . 
Well known results from Kleene algebra theory allow us to state the following: 
Theorem 2.1 The only subdirectly irreducible centered Kleene algebra is the three-elements chain. 
As a direct consequence of Theorem 2.1, we can establish 
Corollary 2.1 The only subdirectly irreducible ternary algebra is { }0 0, ,1T e= . 
The preceding results and some from universal algebra allow us to ensure that: 
Theorem 2.2 
1) The simple algebras in this variety coincide with the subdirectly irreducible. 
2) Variety   is semisimple, residually finite and locally finite. 
Besides, with respect to the directly indecomposable algebras we can state that: 
Theorem 2.3 In   there exist directly indecomposable algebras which are not subdirectly irreducible. 
Proof. Any ternary algebra pT  with p  a prime number greater than or equal to 3 is directly indecomposa-

ble but not subdirectly irreducible. □  
From the above results we can conclude that: 
Corollary 2.2 Variety   is not directly representable. 

Lattice ( )Con L  
Now we will consider the congruence lattice of a ternary algebra L , ( )Con L , and will establish some of its 
most relevant properties. 

Theorem 2.4 Variety   is not congruence-permutable. 
Proof. In the ternary algebra 5T , the congruences ( )1 2 5,  Con Tθ θ ∈   associated to partitions  

{ } { } { }{ }1 0,1 , 2 , 3, 4=  and { } { } { }{ }2 0 , 1, 2,3 , 4=  of the set { }0,1,2,3,4  respectively, satisfy that 
1 2 2 1θ θ θ θ=/  , □  
Theorem 2.5 Variety   is not congruence-uniform. 
Proof. It is sufficient to consider the equivalence classes [ ]

1
1

θ
 and [ ]

1
2

θ
 in the congruence ( )1 5Con Tθ ∈   

considered in the proof of the theorem 2.4. □  
Theorem 2.6 Variety   is not congruence-regular. 
Proof. In the ternary algebra 7T , it is sufficient to consider the congruences ( )1 2 7,  Con Tθ θ ∈   associated 

to partitions { } { } { } { } { }{ }1 0,1 , 2 , 3 , 4 , 5,6=  and { } { } { }{ }2 0,1 , 2,3, 4 , 5,6=  of the set { }0,1,2,3,4,5,6 , re-
spectively. □  

As a direct consequence of Theorems 2.4 y 2.5, we can formulate: 
Corollary 2.3 Variety   is neither arithmetic nor discriminatory. 
The equations that define the principal congruences in the De Morgan algebras obtained by H. P. Sankappa-

navar in [2] allows the following: 
Theorem 2.7 Variety   has equationally definable principal congruences. 
From the results obtained by A. Day in 1971 [3], and for W. J. Blok y D. Pigozzi in 1982 [4], we can con-

clude that: 
Theorem 2.8 
1) Variety   is congruence-distributive, it has the congruence extension property and the principal congru-

ence extension property. 
2) ( ) ( ), ,B Aa b a b Bθ θ=  for all ,  A B∈ , being B  a subalgebra of A  and ,  a b B∈ . 
In addition, taking into account the characterization given by P. Kholer y D. Pigozzi in 1980 [5], we have that: 
Theorem 2.9 For all L∈ , ( ) , ,P LC L Id∨  is a ∨ -semilattice with dual relative pseudo-complement, 

where ( )PC L  is the set of the finitely generated congruences of the algebra L . 

3. Free Ternary Algebras over an Poset 
In 1945, R. Dilworth [6] introduced the notion of free lattice over a poset. Later on, this subject was studied by 
many authors and in different classes of algebras. In this section we indicate a construction of the free ternary 
algebra over a poset, a result that generalizes those obtained by R. Balbes over free ternary algebras [7]. 

Let   be a variety of similar algebras which have an underlying ordered structure definable by a set of equ-
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ations ( ) ( ), ,i ip x y q x y= , 1 i n≤ ≤ , which are in terms of the algebra operations. The notion of free algebra 
over an poset I  on   can be defined as follows: 

Definition 3.1 A —algebra ( )L I  is free over I  if it satisfies the conditions that follow: 
(L1) there exists an order-embedding ( ):g I L I→   such that ( ) ( )L I g I=    

 where [ ]X


 is the 
—subalgebra of ( )L I  generated by X , 

(L2) for each  —algebra A  and each increasing function :f I A→ , there exists a homomorphism 
( ):h L I A→  such that h g f= . 

Remark 3.1 It is clear that: 
1) If the free algebra over an poset I  exists, it is unique up to isomorphism. 
2) The homomorphism h  is unique. 
3) If I  is an poset of cardinality n , 0n > , and the order over I  is the identity, then ( )L I  is the free 

algebra with a set of n  free generators. 
4) In variety   each algebra has a underlying ordered structure defined by the equation x y  if, and only 

if, x x y= ⋅ . 
In what follows, we determine the structure of ( )L I . 

3.1. Construction of the Free Ternary Algebra over a Poset I 
A. Figallo Jr. and A. Ziliani in [8] construct the free algebra over a poset in finitely generated varieties; by using 
a similar argument, we indicate a construction of the free ternary algebra over a poset. 

We consider a poset I , the set E  of the increasing functions of I  in the ternary algebra 0T  and the 
function 0: Eg I T→  defined by ( ) ig i G=  where 0:iG E T→  is such that ( ) ( )iG f f i=  for each f E∈  
and for each i I∈ . 

Theorem 3.1 The free ternary algebra ( )L I  over the poset I  is [ ]G


 where { } 0: E
iG G i I T= ∈ ⊆ . 

Proof. 
(L1) It is clear that if ,  i j I∈  are such that i j , then i jG G . 
Conversely, let us suppose that i j , the function 0:f I T→  defined by 

( )
if  ,

0 if     ,
1 otherwise,

e x i
f x x i o x j

=
= <



  

is an increasing function such that ( ) ( )i jG f G f . From what has been stated, we conclude that i j  on I  
if, and only if, i jG G  on G , from which it turns out that ( ):g I g I→  is an order isomorphism, such that  

( ) [ ] ( )g I G L I= =   
. Therefore, (L1) holds. 

(L2) Let L  be a ternary algebra and :f I L→  an increasing function, by Corollary 2.1, L  is isomorphic 
to a subalgebra of 0

XT  being X an arbitrary set, then there exists a subalgebra S  of 0
XT  and an isomorphism 

: L Sϕ → . We claim that there is a homomorphism [ ] 0: Xh G T→


 such that h g fϕ=  . Indeed, for each  
x X∈  let us consider the function 0:xt I T→  defined by ( )( ) ( )( )( )( )xt i f i xϕ=  . It is easily shown that  

xt E∈  for each x X∈ , therefore :t X E→  defined by ( ) xt x t=  is function. From what has been stated it 
follows that the function [ ] 0: Xh G T→


 defined by ( )h F F t=   is a homomorphism such that h g fϕ=  . 

In addition, as h  is a homomorphism and ( ){ }0 :XS F T h F S′ = ∈ ∈  is a ternary subalgebra of 0
XT  which  

contains G , it turns out that [ ]( )h G S⊆


. Therefore, (L2) holds. □  

3.2. Free Ternary Algebra on One Free Generator 
If L  is a ternary algebra and S L⊆ , we denote by [ ]S


 the ternary algebra generated by the set S  and by 

[ ]S  the free ternary algebra with S  as the set of free generators, and we set { }:S s s S∼ = ∼ ∈  and 
{ }S S e= ∪ . 

In [7], R. Balbes proves that [ ]
1

:  and 0
n

i i
i

X S S X X n
=

 = ⊆ ∪ ∼ ≥ 
 
∑∏

, we apply this result and those ob-  

tained before in order to get the free ternary algebra on one free generator. 



A. V. Figallo et al. 
 

 
510 

Let { }0I i=  and { } { }0 1 2 3: :  is increasing , ,E f I T f f f f= → =  where 1 2 3,  ,  f f f  are defined as follows 
( )1 0 0f i = , ( )2 0f i e=  y ( )3 0 1f i =  
Let 0: Eg I T→  defined by ( )

00 ig i G=  where 
0 0:iG E T→  such that ( )

0 1 0iG f = , ( )
0 2iG f e=  y 

( )
0 3 1iG f = . Some of the elements of 0

ET  are specified in the Table 1. 
Then, the free ternary algebra on one free generator is: 

{ }( ) [ ]0
1

:  y 0
n

i i
i

L i G S S G G n
=

 = = ⊆ ∪ ∼ ≥ 
 
∑∏ 

 

where { }0i
G G= . Then, { }( ) { } ( )

00 0 1 4 8 7 9 11 10 12 01, , , , , , , , , , 3 3i eL i G F F F F F F F F F F= = ×  which coincides with 
the result obtained by R. Balbes en [7]. 

The algebra { }( )0L i  is that indicated in Figure 1. 

3.3. The Poset of the Join Irreducible Elements of the Free Ternary Algebra on Two Free 
Generators 

In [7] R. Balbes proves that the poset of the join irreducible elements of the free ternary algebra [ ]X  with a 
finite set of free generators X is isomorphic with ( ) ( )1 2IP IP X IP X= ∪ , being 

( ) { }1 :IP X S X X S S= ⊆ ∪ ∼ ∩ ∼ = ∅  and ( ) { }2 :IP X S X X X S S= ⊆ ∪ ∼ ⊆ ∪ ∼ , 

ordered by the relation T S  if, and only if, S T⊆ . 
We apply this result and those obtained above in order to determine the poset of the join irreducible elements 

of a free ternary algebra on two free generators. We consider the set { }0 0,I i j=  ordered by the identity relation, 
{ } { }0 1 2 3 4 5 6 7 8 9: :  is increasing , , , , , , , ,E f I T f f f f f f f f f f= → =  where each of the functions are defined in 

the Table 2, and 0: Eg I T→  defined by 
 
Table 1. Elements of 0

ET . 

E Gi0 F0 Fe F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

f1 0 0 e 1 0 0 0 e 1 1 0 e 1 e 1 

f2 e 0 e 1 0 0 e 0 0 e e e e e e 

f3 1 0 e 1 e 1 0 0 0 0 e 0 e 1 1 

 

 
Figure 1. The free ternary algebra on one free generator. 
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( ) 0

0

0

0

si

si
i

j

G x i
g x

G x j

==  =
 

where 0:iG E T→  such that ( ) ( )iG f f i=  for each i I∈ . 
In the Table 3, we specify some of the elements of 0

ET . 
 

Table 2. The elements of E. 

I f1 f2 f3 f4 f5 f6 f7 f8 f9 

i0 0 e 1 0 0 e e 1 1 

j0 0 e 1 e 1 0 1 0 e 

 
Table 3. Elements of 0

ET . 

E Gj0 Gi0 Fe F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

f1 0 0 1 e 1 1 0 0 0 1 0 0 0 e 0 

f2 e e 1 e e e e e e e e e e e e 

f3 1 1 1 e 0 0 0 1 0 0 0 e 0 0 0 

f4 e 0 1 e 1 e e 0 0 e e 0 0 e e 

f5 1 0 1 e 1 0 1 0 0 0 e 0 0 0 0 

f6 0 e 1 e e 1 0 0 e e 0 0 e e 0 

f7 1 e 1 e e 0 e e 0 0 e e 0 0 0 

f8 0 1 1 e 0 1 0 0 1 0 0 0 e 0 0 

f9 e 1 1 e 0 e 0 e e 0 0 e e 0 0 

 

 
Figure 2. The poset of join irreducible elements of the free ternary algebra 
on two free generators. 
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Then, 

( ) { } { } { } { } { } { } { } { }{ }
( ) { } { } { } { } { }{

{ } { } { } { }}

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 2 3 2 3 3 2

2 2 3 3 2 2

3 2 3 2 3 2 3

, , , , , , , , , , , , ,

, , , , , , , , , , , , , , , ,

                 , , , , , , , , , , , , , , , , .

i j i j i j

i j e e e i e j i j e

i j e e i e j e i j

IP G G G F F G G F F G F F G

IP G G G F F F F F G F F G F G G F F

G G F F F G F F F G F F F G G F F

= ∅

=  

The poset IP  coincides with that obtained by R. Balbes in [7] and it is the one indicated in Figure 2. 
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