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Abstract

Let A be the class of all analytic functions which are analytic in the open unit disc U ={z:[z/]<1}.In

this paper we study the problem of univalence for the following general integral operators:
o (F () g )
F.(2)= I;H[_It( )eg'(‘)J dt,
i=1

6, @)= T e o

in the open unitdisc U, when f,, g, €A, «,, 5, €C.
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1. Introduction
Let U= {z : |z| < 1} be the unit disk and A be the class of all functions of the form

f(z)=z+> a2 zeU €))

which are analytic in U and satisfy the conditions
f(0)=f'(0)-1=0.
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A. Oprea, D. Breaz

We denote by S the class of univalent and regular functions.

In order to derive our main results, we have to recall here the following univalence conditions.
Theorem 1.1. [1] (Becker’s univalence criterion).

If the function f is regular in unit disk U, f(z)=z+a,z’+-- and

\|2f"(2)
ey
then the function f is univalent in U.

Theorem 1.2. [2] If the function g is regular in U and |g(z)| <1 in U, then forall £<U the following in-
equalities hold

<1, forall zeU, 2

3(0)-9(2)| | -2 .
L-o(2)a(e)| 12-7
and
oy 119 )
|g (Z)| 1_|Z|2
the equalities hold in case g(z):ng:UuZ where |¢|=1 and |u|<1.
Remark 1.3. [2] For z =0, from inequality (3) we obtain for every &eU
-g(0
9(6)-99)] €] @)
1-9(0)g(¢)
and, hence
[¢]+]9(0)
9 S — = ®)
=1 ool
Considering g(0)=a and &=z, then
|2 +|al
9N Loy

forall zeU.

2. Main Results

In this paper we study the univalence of the following general integral operators:

a (F () )

= _ i s | gt, 6

(2) Jog( e J (6)
where f,,g,€A and o, €C,

G, (2)= [ TI(f(t)e*®) " at, ™

1

where f;,g,€A and g eC.
Theorem 2.1. Let «,eC, f €S, f (z)=z+a;z%+, neN", g,€S, ¢,(2)=z+bz%+,

n
neN”,
If

<1, (8)
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forall neN*,forall zeU and

0 (z) <1
] +la |+ +lan| ©
|ozloc2 a|
a,Q, ---an| < ! (10)

2| +]e] |
'?éf{ (112 |)||1+¢c”

where

al(ai +1)+---+an (ag +1)‘

2|0£1052 ---an|

then the function

F.(2)= j;f[[wegi“’ ]ai dt, (11)
is in the class S.
Proof. We have f €S, fy EZ) %0, forall neN" and (@egmr-{@eg"(z)r =1, when z=0.
Let us consider the function:
1 F(2)

. 12
2|aa, | () (12)

h(z)=

From (6), we have:
Fn'(Z): : [fi(z)eg.(l)j i (13)

and

i=1

Fl(z) =
Using relations before the function h has the form
(2)-fi(2) J
h(z o, +0/(2) | (15)
O oM O
We have
1 1
h(0)=——— ) U+ 47— 1
(O) 2|0(10(2-~01n|0(1<az+ ) 2|011052 o | (a2 " ) 2|0(lot2 -a | (a2 " )

By using the relations (15), (8) and (9), we obtain:
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(D)< g—r

B )

o (8 +1)+-+a, (ag +1)

h(0)| = =|c].

2|0{1a2 ---an|

Tl <

2 |a1a2 2 |a1a2

Applying Remark 1.3 for the function h, we obtain:

n(2)=

1
2 |ala2

Fr(2)|_ [2+[h©) _ [2]+|d
F(2)] " 1+h(0 ||| L+[clfz|

From (18), we get:

RG] LR
(1-I )an,(Z) <Jeyr, | 2(1- ] )|z|1+|c||z|,
forall zeU.
Let us consider the function: H :[0,1] >R
X+]c|
H(x):2(l—x2)xm =|z].
Since H [ij =§l+—2|0|> 0, it results:
2) 42+
max H (x) > 0.

xe[0,1]

Using this result and the form (19), we have:

2\ F(z
(1—|z| )z FH'EZ;‘S‘Q

2]+
{ () |
forall zeU.

Applying the condition (10) in relation (20), we obtain:

(1—|z|2)i(z) <1

Fi(2)]

forall zeU andfrom Theorem 1.1, we have F, €S.

Corollary 2.2. Let o be a complex number and the functions feS, f(z)=z+a,z*+-,

9(z)=z+b,z* +-
If
2f'(z)-f(z)
zf (z)
forall zeU and the constant |a| satisfies the condition:
1

<1 and |g'(z)| <1

o] < 202 +[a, +1 |

B

then the function

(16)

(17)

(18)

(19)

(20)

gesS,

(21)

(22)

(23)
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is in the class S.
Proof. We consider n=1 in Theorem 2.1.

Remark 2.3. For n=1, %" =1, a,=1 and f =1f inrelation (11), we obtain the integral operator

2 f(t
I(z)= fo %)dt , introduced by J. W. Alexander in [3].

Remark 2.4. For n=1, e =1, ¢, =a, f =f inrelation (6), we obtain the integral operator

A (1))
F(z) :j [#j dt, defined and studied by V. Pescar in [4] [5].

0

(24)

(25)

(26)

Remark 2.5. For €% =1, for all i=1---,n, we get the integral operator I_ IH. 1[ (t)] ,
zeU studied by D. Breaz, N. Breaz in [6] and D. Breaz in [7].
Theorem 2.6.
Let B, eC, f eS, f (z)=z+ajz*+---, neN", g, €S, ¢,(z)=z+bjz*+---, neN".
If
fnrr(z) Sl,
fa(2)
(2) <1
B+ 18|+ + 1A
|ﬂ1ﬂ2 n| ,
0 1
1]«
= max (1 |z| )| ||Z| |
ke L+f
where

/a(2a§+l)+~-+/ﬁ(2a§+lﬂ
2|ﬂ1ﬂ2"'ﬂn|

then the function

is in the class S.

Proof. We have f eS,forall ne N* and (fl’(z)e‘-l‘l(z))ﬂl--~<f’(z)eg”(z))ﬂn =1,when z=0.

Let us consider the function:
1 G(2)

P(z)= 2|88, B, Gi(2)

From (27), we have:

and

From (29) and (30), we get:

(27)

(28)

(29)

(30)
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Using relation (31) the function p has the form:

y-— L 3 fi”(Z)+ /(2
o0 2 (o)

We have:

B.(28; +1)+ B, (285 +1)+---+ 3, (285 +1)
2|ﬂ1:32"':3n| ’

By using the relations (24), (25) and (28), we obtain:

p(0)=

() X J _—2 1
pla)l< 2|ﬂ1ﬂz mz [ () 9% 2|ﬂ1ﬂz Bl I
and
B (2a) +1)+ B, (2a% +1)+---+ B, (2a) +1
15(0) = (22 +1)+ 4 ) ( >L|C|.
2|ﬂ1ﬂ2 ﬂn|
Applying Remark 1.3 for the function p, we obtain:
1 IG"ZI [2+[P(O) _ |2+l
PO |G )|~ 1+ p O] IRl

From (34), we get:

(1) e
o) S <l ol

forall zeU.
Let us consider the function Q:[0,1]— R

X+|c|
Q(x)=2(1- 2)Xl+|c| =W
Since Q(lj :§1+—2|C|> 0, it results:
2) 4 2+
max Q(x) > 0.

xe[0,1]

Using this result and the form (35), we have:

2]+
el ) G <[ | ot
forall zeU.
Applying the condition (26) in relation (36), we obtain:

(127 ) 2 <

Fi(2)]

forall zeU andfrom Theorem1.1, we have G, €S .

(31)

(32)

(33)

(34)

(35)

(36)
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Corollary 2.7. Let g be a complex number and the functions f €S, f(z)=z+a222+~--, gesS,
9(z)=z+b,z%+--.

If

t"(2)
f'(2)

<l and |g'(z)[<1 (37)

forall zeU and the constant |B| satisfies the condition:

1
< , 38
4 2]+ 23 <1 (38)
max| 2[|(1-[z )=
= 2+|2a, +1/|7]
then the function
G.(2)=[[(f'(t)e) at, (39)

is in the class S.
Proof. We consider n=1 in Theorem 2.6.
Remark 2.8.For n=1, e =1, g =4, f =f inrelation (27), we obtain the integral operator

G,(2)= I:( f ’(t))ﬂ dt , defined and studied by V. Pescar in [8] [9].
Remark 2.9. For n=1 and g =« in relation (27), we obtain the integral operator
IL,(f.9)(z)= J'OZ( f ’(t)eg(‘))a dt, introduced and studied by N. Ularu and D. Breaz in [10] and [11].
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