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ABSTRACT 

The design of this paper is to present the first installment of a complete and final theory of rational human intelligence. 
The theory is mathematical in the strictest possible sense. The mathematics involved is strictly digital—not quantitative 
in the manner that what is usually thought of as mathematics is quantitative. It is anticipated at this time that the exclu- 
sively digital nature of rational human intelligence exhibits four flavors of digitality, apparently no more, and that each 
flavor will require a lengthy study in its own right. The four flavors are as follows: 1) Selection Digitality (SelDi); 2) 
Nexus Digitality (NexDi); 3) Certification Digitality (CerDi); and 4) Supplement Digitality (SupDi). The provisional 
title of the forthoming second installment is “The Mathematical and Physical Theory of Rational Human Intelligence, 
Part II (“SelDi”): Selection Digitality and Probability as Its Perfect Analogue; Probability Redefined and Inverse Prob- 
ability Inverted, or from Numbers of Balls to Numbers of Urns”. The following account will be as explicit as possible in 
order to afford access to those who have only limited prior acquaintance with the overall topic. Succinctness has many 
virtues. But these virtues only go so far. The theory at hand describes the operations of a physical tool, the brain. In that 
regard, the theory is not only mathematical but also physical—more or less in the same way that, say, the theory de- 
scribing the operations of an electric motor is both mathematical and physical. To the extent that it is designed to fully 
explain a physical phenomenon, the proposed theory of rational human intelligence can rightly be called a theory of 
physics and has been called so in the title of this paper. Then again, the physics involved is theoretical rather than ap- 
plied. As a theory of physics, the theory of rational human intelligence contains a dominant mathematical component in 
the sense that J.-L. Lagrange’s application of partial differential Equations to mechanical phenomena and J. C. Max- 
well’s application of such Equations to electromagnetic phenomena can be said to be purely mathematical. In fact, the 
Equations in question say nothing about what the actual phenomena that they describe really are. In that regard, J. C. 
Maxwell’s theory of electromagnetism is not directly and bodily empirical. Nor is the proposed theory of rational hu- 
man intelligence bodily empirical. Still, the intention at this time is that a future installment of the present description of 
rational human intelligence will include reflections on the empirical and bodily—which, in the case of the brain, means 
electrochemical—nature of rational human intelligence. What is more, as the description of a tool, the theory of rational 
human intelligence should be relevant to a practical side of physics, namely engineering. Since the tool in question is 
biological, the theory pertains more specifically to bioengineering. What follows in this first installment is not the the- 
ory of rational human intelligence itself. This installment is rather concerned with the mathematical foundations of the 
theory. Two critical preliminary concerns will need to be addressed. The first concern is with the kind of mathematics 
and the kind of mathematical notation that are needed and that will fully suffice to describe rational human intelligence 
in its entirety. The second concern is with the feasibility of a complete theory of rational human intelligence. First is the 
kind of mathematics and the kind of mathematical notation that are needed. It has already been noted above that the 
mathematics that is needed is entirely digital. The complete theory of rational human intelligence to be proposed below 
owes much if not most to the works of G. Boole and to the digital mathematics that is expounded in them. One reads on 
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occasion that G. Boole tried to establish how we think rationally and failed. Quite to the contrary, his efforts made it all 
the way there for the greater part. It will need to be clarified exactly what digital means. Evidently, G. Boole himself did 
not call his mathematics of the intellect digital. The term is derived from modern computer science, which owes it 
foundations to G. Boole. In any mathematical theory, the need is for a rigorously defined, consistent, and purely 
mathematical notation—in the way that the notation of, say, trigonometry is rigorously defined, consistent, and purely 
mathematical. In that regard, not only does what follows owe much if not most to G. Boole, but the notation that will be 
used in what follows is almost entirely his. Ever since J. Venn, no one has actively used G. Boole’s notation of digital 
mathematics, even if this notation is discussed in all kinds of historicizing accounts. A principal aim of the present, first 
installment of a proposed complete theory of rational human intelligence is to discuss and illustrate G. Boole’s notation 
and aver its singular solidity, veracity, and parsimony, argue in defense of its eminent superiority, and even expand it 
somewhat. The driving assumption will be that G. Boole’s notation is by far the most effective. Meanwhile, a veritable 
Tower of Babel has been erected in the late nineteenth and early twentieth century in regard to the notation of symbolic 
logic, logics, propositional logic, and the like. There seem to be as many notations as prominent logicians. The working 
assumption is that none of these alternative notations is able to capture all of rational human intelligence in the way that 
G. Boole’s notation can and actually does. Second is the feasibility of a complete theory of rational human intelligence. 
Hardly anything is known at this time about how rational human intelligence is propagated electrochemically in the 
brain. It will therefore be necessary to derive a theory about how rational human intelligence functions in the brain as a 
biological tool entirely from the outputs of the tool. Such a theory may be called a black box theory, in the sense that 
one has to derive what is in the box from what comes out of the box without being able to look inside the box. The box 
is black, in the sense of opaque, because one cannot look inside it. In fact, black box theories are common in physics. 
The theory of gravity is a black box theory. No one knows what gravity is. The black box theory that will be singled out 
in the final paragraph, §25, for detailed comparison, is J. C. Maxwell’s theory of electromagnetism, because unlike the 
theory of gravity, it is more or less complete. And a more or less complete theory of rational human intelligence appears 
to be feasible. Some biographical notes on G. Boole and J. C. Maxwell will be presented in the same §25. The vicinity 
of the two men in place and in time makes it interesting to examine possible connections between them. Evidence of at 
least one direct connection between J. C. Maxwell and the work of G. Boole has been found, but so far no evidence of a 
personal encounter between the two men. There are otherwise many shared indirect connections between the two. Some 
of the most prominent ones will be noted. An interesting related matter is how machine intelligence compares to ra- 
tional human intelligence. Both are fundamentally digital, but in different ways. It is hoped that the matter will be 
treated in a section of a future installment of the present effort or in a separate article entitled “Neurons versus Transis- 
tors: Macrodigitality vs. Microdigitality; Human Intelligence vs. Machine Intelligence”. Among other recent efforts 
relating to the larger project of which the present paper is part, namely increasingly digitalizing the analysis of rational 
thought and language, are the following: 1) “Higher Variations of the Monty Hall Problem (3.0, 4.0) and Empirical 
Definition of the Phenomenon of Mathematics, in Boole’s Footsteps, as Something the Brain Does”, in Advances in 
Pure Mathematics (www.scirp.org/journal/apm), Vol. 2, No. 4 (July 2012), pp. 243-273; 2) “To Comma or Not to 
Comma: The Mathematics of the Relative Clause, All Types, via Boole and Venn”, in International Journal of Intelli- 
gence Science (www.scirp.org/journal/jis), Vol. 2, No. 4 (2012), pp. 106-114. The CONTENTS of the 25 sections of the 
present article may be briefly summarized as follows. In Section 1 (§1), the proposed theory of rational human intel- 
ligence is characterized as a theory of physics with a dominant mathematical component. It describes the mathematical 
laws by which the brain as a physical tool operates. In Section 2 (§2), the proposed theory of rational human intelli- 
gence is characterized as a black box theory. Like the theory of electromagnetism, it infers what is in the brain in terms 
of rational human intelligence from what comes out of it without being able to look inside. In Section 3 (§3), the pro- 
posed theory of rational human intelligence is characterized as a complete theory. Section 4 (§4) describes what differ- 
entiates the physics of matter and motion from the physics of rational human intelligence. The physics of matter and 
motion involves quantity. The description of physical quantities necessitates the creation of units. The physics of ra- 
tional human intelligence does not involve quantity. No units are therefore required. The minimal component is instead 
the attribute. In Section 5 (§5), attributivity is defined. It is noted that both the physics of motion and the physics of ra- 
tional human intelligence pertain to the mathematical description of certain distinct properties of mass. But whereas the 
physics of motion describes motion as a property of mass, the physics of rational human intelligence describes attribu- 
tivity as a property of mass. Attributivity is the property of mass to exhibit features that make things or entities distinct 
from one another to the perceiving brain. In Section 6 (§6), the attribute is defined. Attributes reside in the brain and are 
derived from the distinctive features that make up attributivity as a property of mass as a physical reality. Inside the 
brain, the attribute is a biochemical link between the imprint of an impression derived from such a distinctive feature of 
physical reality and an imprint of a sound pattern. In Section 7 (§7), the attribute set or attribute class is defined. Set or 
class is a concept often used in mathematics. The present section clarifies how exactly the concept will be defined in the 
theory of rational human intelligence. The simple fact is that certain distinct features of things are shared by more than 
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one thing. Common features naturally unite things into groups called sets or classes. In Section 8 (§8), the intensive 
interpretation of the attribute and the extensive interpretation of the attribute are compared with one another. Both in- 
terpretations are valid. The intensive interpretation has often been applied in philosophy, for example by G. W. Leibniz. 
But in the end, it is the extensive interpretation that is strictly mathematical. It is therefore the extensive interpretation 
that will be used exclusively in the theory of rational human intelligence. In Section 9 (§9), attribute mathematics is 
defined as one type of digital mathematics. In Section 10 (§10), the four flavors of digitality that make up the totality of 
rational human intelligence are defined. In Section 11 (§11), rational human intelligence is differentiated from rational 
human knowledge. In Section 12 (§12), reflexivity is noted as a property of rational human intelligence. Rational hu- 
man intelligence is a digital mathematical system that is able to describe itself. Sections 13 (§13), 14 (§14), and 15 (§15) 
are concerned with the syllogism. For more than two millennia, since about Aristotle, no topic has been more closely 
associated with rational human intelligence than the syllogism. The syllogism has been widely viewed for the longest 
time, and still often is, as the epitome of rational and logical thought. However, it is proposed here that the syllogism 
has nothing to do with rational human intelligence. The best evidence is that one does not need to know anything about 
the syllogism to be endowed with rational human intelligence. Most people, in fact, do not. Then again, the syllogism is 
a valid concept. One problem is otherwise that the syllogism is incomplete and only reaches so far. The structure of the 
syllogism is fully digital and mathematical, like rational human intelligence itself. Because the syllogism exhibits close 
affinity with rational human intelligence, it will be most desirable to reach a proper understanding of how exactly the 
two relate to one another. In Section 13 (§13), the syllogism is described as a pure digital mathematical structure and it 
is examined what exactly this means. In Section 14 (§14), one specific example of a supposed syllogism is analyzed in 
strictly digital and mathematical fashion. The syllogism in question is as follows. The first premise is that all philoso- 
phers are logical. The second premise is that an illogical man is always obstinate. The conclusion is, therefore, that 
some obstinate persons are not philosophers. It is established that, contrary to what has been assumed, this syllogism 
does not afford any conclusions whatsoever. In Section 15 (§15), the basic steps are presented towards a computer algo- 
rithm that makes it possible to solve any expansion of any syllogism to any degree. In Section 16 (§16), it is noted that 
G. Boole conflates two designs in his work on digital mathematics. It has on occasion been wondered what he is doing, 
pure mathematics or describing how we think rationally. It appears that he is doing both without saying so. The confu- 
sion has led to a certain degree of misunderstanding of his true design. In Section 17 (§17), the quest for a deeper un- 
derstanding of mathematics is described as being to a considerable degree a quest to heed the call of the adage “Know 
Thyself”. In Section 18 (§18), G. Boole’s digital mathematical procedure of “squaring” as a means of reducing two or 
more Equations to one is described. In Section 19 (§19), an alternative to G. Boole’s procedure of “squaring” is pre- 
sented, namely multiplication by supplements. In Section 20 (§20), examples of multiplication by supplements are pre- 

sented. In Section 21 (§21), E. Schröder’s attempt to remove G. Boole’s 
0

0
 from digital mathematics is rebutted. Sec- 

tions 22 (§22), 23 (§23), and 24 (§24) are designed to illustrate and clarify the significance and validity of 
0

0
. In Sec- 

tion 22 (§22), 
0

0
 is defined as fundamentally digital, as opposed to quantitative. A problem proposed by A. 

Macfarlane is adduced to illustrate 
0

0
 and its quantitative counterpart as two facets of a single reality, as two sides of a 

single coin as it were. In Section 23 (§23), G. Boole’s two symbols denoting indefiniteness, namely 
0

0
 and v, are dis- 

cussed and an attempt is made to resolve G. Boole’s confusing treatment of the two. In Section 24 (§24), additional so- 

phistication is lent to the interpretation of 
0

0
 by considering the significance of the expression 

0 0

0 0
 . Finally, in Sec- 

tion 25 (§25), J. C. Maxwell’s theory of electromagnetism and the proposed theory of rational human intelligence are 
compared with one another in their capacities as black box theories and complete theories and possible associations 
between the person and work of J. C. Maxwell and the person and work of G. Boole are examined. This final section is 
in large part historical and can be read independently from all the other sections. 
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1. General Characterization of the Theory  

of Rational Human Intelligence as a  
Scientific Theory: A Theory of Physics 
with a Dominant Mathematical  
Component 

The design of this paper is to present the first installment 
of a complete and final theory of rational human intelli- 
gence. The present mode of inquiry has been applied in 
preliminary fashion in various ways in other publications 
[1-6]. It is not fully clear at this time how many install- 
ments will be needed to describe the theory in its entirety, 
but probably four, one devoted to each flavor of digitality 
(see §10). 

There is nothing spiritual or philosophical, let alone 
mystical, about the theory that is to be proposed. It is a 
materialistic theory that describes a phenomenon of phy- 
sical reality that is subject to absolute mathematical 
laws. 

Being a scientific theory, with which domain of sci- 
ence does the theory of rational human intelligence ex- 
hibit the most affinity? The theory concerns the operation 
of the brain as a tool, more specifically the propagation 
of rational human intelligence as an event of nature. In 
that regard, the theory would appear to exhibit the closest 
affinity with physics. 

Naturally, there are no sharp dividing lines between 
the domains of science. Thus, it is clear that physics has 
an extensive mathematical component. It is more or less 
the task of theoretical physics to define that mathematical 
component. It is more or less the task of applied physics 
to study the multiple concrete applications of the mathe- 
matical component of theoretical physics. 

The theory at hand includes a description of the 
mathematics that explains rational human intelligence. In 
that regard, the theory belongs to the domain of theoreti- 
cal physics. Owing to certain circumstances, its affinity 
with mathematics is especially strong and its affinity 
with applied physics somewhat weak at the present time. 

2. The Theory of Rational Human  
Intelligence as a Black Box Theory 

The inner workings of the brain are at this time only 
poorly understood. Does this mean that one should per- 
haps better abandon, or at least postpone, efforts to pre- 
sent a complete mathematical and physical theory of ra- 
tional human intelligence? If a complete theory of ra- 
tional human intelligence can be formulated at this time, 
it will need to be a so-called black box theory, that is, a 
theory that explains the inner workings of a system en- 
tirely based on the empirically observable outputs of the 
system. 

J. C. Maxwell’s theory of electromagnetism provides a 
splendid example of a black box theory of physics. The 

theory in question is more or less complete, and that 
while J. C. Maxwell did not even know what an electron 
is. J. C. Maxwell’s theory is discussed in more detail in 
§25. 

Only one of the four main forces of physical nature 
(strong, weak, electromagnetic, and gravity) is at this 
time more or less completely described and it is J. C. 
Maxwell’s theory that has accomplished the feat. In that 
regard, I am firmly convinced that a complete theory of 
rational human intelligence is possible along the same 
lines. There is an abundance of information that can be 
derived from the outputs of the system. 

If a complete mathematical description of rational hu- 
man intelligence is possible, as I believe that it is, then 
what about the rational human intelligence as an actual 
physical event? It is evident that the event in question 
takes place inside the brain and is therefore electro- 
chemical in nature. The accurate description of this event 
belongs to the fields of biochemistry and bioengineering. 

What can be said about the actual physical event is at 
this time very limited. Then again, it will be proposed in 
the continuation of this effort that certain intimations 
about the physical nature of this event may be possible. 

To the extent that the description of the system also 
leads to a desire to build an analogous system in a dif- 
ferent platform, the theory of rational human intelligence 
acquires an affinity with the field of engineering. And to 
the extent that the brain is a biological tool and not a tool 
made of steel or any other lifeless material, the theory 
becomes of concern to the field that is now called bioen- 
gineering. 

3. The Theory of Rational Human  
Intelligence as a Complete Theory 

It will be useful to address right at the outset a potential 
major objection. How can a theory of rational human 
intelligence be more or less complete if so little is known 
about the brain? 

It goes without saying that, if an essential requirement 
for completeness were a full account of the electro- 
chemical operations of the brain, then no theory of ra- 
tional human intelligence could at this time be anywhere 
near complete. 

The best way to convey in which respect the theory of 
rational human intelligence that will be proposed is 
deemed to be more or less complete is again J. C. Max- 
well’s theory of electromagnetism. The theory is consid- 
ered more or less complete even though, as was noted 
before, J. C. Maxwell was not aware of something now 
considered so elementary as the electron. 

If knowledge of the electron were a requirement for J. 
C. Maxwell’s theory to be complete, then it would cer- 
tainly not be anywhere near complete. Then again, it is 
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generally accepted that J. C. Maxwell’s celebrated Equa- 
tions more or less completely account for all the essential 
workings of electromagnetism. These Equations provide 
a complete mathematical account of the physics of elec- 
tromagnetism. In the same way, the design of the theory 
of rational human intelligence proposed below is to pro- 
vide a complete mathematical account of rational human 
intelligence. 

J. C. Maxwell’s theory has been adduced by analogy 
not only to point to the feasibility of success on the part 
of a black box theory but also to the possibility that a 
black box theory is complete. 

4. Quantity and Units in the Physics of  
Matter and Motion 

The theory of rational human intelligence has been char- 
acterized above as a theory of physics. The brain is a tool 
and the propagation of rational human intelligence is a 
physical event. At this time, the human brain is the only 
type of tool in which rational human intelligence is 
propagated. The design of what follows is to describe 
rational human intelligence as a physical event or physi- 
cal events. The need is therefore for describing the ma- 
thematical relations that define the propagation of ra- 
tional human intelligence as physical events. In that re- 
gard, the theory of rational human intelligence has to be 
profoundly mathematical, just as all theories of physics 
are. 

In order to better envision the theory of rational human 
intelligence as a theory of physics, it will be useful to 
examine how the well-known theories of physics are 
constituted and compare these theories of physics with 
the theory of rational human intelligence. 

J. C. Maxwell played a crucial role in the standardiza- 
tion of the units of physics in the nineteenth century and 
he wrote a celebrated essay on the nature of physics enti- 
tled “Matter and Motion” [7]. It will be useful to seek 
inspiration from these pioneering efforts pertaining to the 
standardization and definition of physics. J. C. Maxwell 
would be the first to agree, I believe, that “science is al- 
ways most completely assimilated when it is in the nas- 
cent state” [8]. 

What does physics study and how does what it studies 
compare to what the theory of rational human intelli- 
gence studies as a theory of physics? It will be useful to 
distinguish between that which physics pertains to and 
which facet of what it pertains to it studies. Physics per- 
tains to physical bodies, that is, matter. Physics studies 
certain properties of those physical bodies. These proper- 
ties can be summed up by means of a single word: mo- 
tion. It does not come as a surprise that J. C. Maxwell 
called his pioneering essay on the nature of physics 
“Matter and Motion”. Matter may be called the object of 

physics. But what physics actually studies is the behavior 
of this object, more specifically motion. Consequently, 
motion may be called the study object of physics. 

The motion of physical bodies is all about how physi- 
cal bodies relate to the two dimensions of the human 
condition: space and time. Features of motion include 
Displacement, Velocity, Momentum, Acceleration, Force, 
Work, and Power. 

These features of motion all have a fundamental char- 
acteristic in common. They all exhibit quantity. There is 
no escaping the impression that they are all capable of 
increase or diminution. They can get bigger or smaller. It 
may already be anticipated right now that the mathemat- 
ics and physics of rational human knowledge will not 
involve quantity. In that regard, it sets itself apart from 
most other fields of mathematics. 

How can one describe the quantity of any phenomenon 
of physical reality very much in general? It is obvious 
that one cannot describe all of quantity all at the same 
time. The need is for describing partial quantities. 

In that regard, the problem is that quantity does not 
have discrete parts. Quantity does not have any subcom- 
ponents of a certain size that are given naturally in nature. 
In other words, the increase or diminution of quantity is 
continuous. As a quantity increases or decreases, it at no 
point reaches a point that is given as a natural subdivi- 
sion in nature. I am disregarding the quanta of quantum 
theory on the subatomic level. They are not needed to 
formulate the classical physics of matter and motion. 

The evident solution to describe quantity has always 
been and will always need to be to completely randomly 
pick a certain quantity and measure all the other quanti- 
ties by establishing either how often that certain quantity 
fits into the other quantities or what part of that certain 
quantity fits into the other quantities. That certain quan- 
tity is counted as 1. It is therefore called the unit, from 
Latin unus “one”. If that quantity fits twice into another 
quantity, then that other quantity is counted as 2 and 
contains 2 units. 

It may already be anticipated right now that the phys- 
ics of rational human knowledge does not involve units 
because it does not involve quantity. But before turning 
to what exactly in the description of the physics of ra- 
tional human intelligence corresponds to quantity in the 
description of the physics of matter and motion, it will be 
useful to add some detail about the description of quan- 
tity in the physics of matter and motion to afford a better 
contrastive comparison with the physics of rational hu- 
man intelligence and add clarity to the latter.  

The physics of matter and motion involves three types 
of quantities. One of the three quantities pertains to mass. 
It needs to be possible to establish how much of it there 
is. The two other quantities pertain to the motion of mass. 
The two dimensions of motion are the same as the two 
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fundamental dimensions of the human condition, space 
and time. Motion is a change in space that happens over 
time. It is therefore necessary to create three units, one 
for mass, one for length (in one, two, or three dimen- 
sions), and one for time. Three examples of units of mass, 
space, and time are the kilo, the meter, and the second.  

All the quantities of the physics of matter and motion 
are compounds of these three units. Displacement is ex- 
pressed in just meters, m; Velocity, in meters over sec- 
onds, m/s; Momentum, in kilos multiplied by meters over 
seconds, k × m/s; Acceleration, in meters over seconds 
squared, m/s2; Force, in kilos multiplied by meters over 
seconds squared, k × m/s2 (that is, in newtons); Work, in 
kilos multiplied by meters squared over seconds squared, 
k × m2/s2 (that is, in joules); and Power, in kilos multi- 
plied by meters squared over seconds cubed, k × m2/s3 
(that is, in watts). 

If object and study object of the physics of matter and 
motion are matter and motion, then what are the object 
and the study object of the mathematics and physics of 
rational human intelligence?  

It has already been anticipated above that quantity 
does not play a role in rational human intelligence. There 
is therefore no need for countable units in order to de- 
scribe rational human intelligence.  

But before turning to how rational human intelligence 
is described, if not in terms of units, it will be useful to 
address a potential objection to the notion that rational 
human intelligence does not have anything to do with 
quantity.  

It is a fact that knowledge exhibits quantity in two re- 
spects. First, it can grow and it can decrease. Second, 
part of knowledge concerns the knowledge of quantity, 
including numbers. Does this mean that rational human 
intelligence somehow involves quantity? 

It does not. Knowledge needs to be distinguished from 
intelligence. Intelligence is a vehicle or tool that can be 
used in the service of an increase in knowledge. And to 
this knowledge belongs the knowledge of numbers. As a 
tool, intelligence itself does not exhibit quantity.  

It is quite likely that human intelligence has become 
more complex and will continue to become more com- 
plex in the course of human evolution. No one would 
assume that the Neanderthals were as intelligent as we 
are. Does this then mean that intelligence somehow ex- 
hibits quantity? It does not. The principles that govern 
rational human intelligence have presumably remained 
independent of quantity throughout. 

Any likely increase in the complexity of intelligence 
over time does mean that intelligence would have grown 
more powerful as a tool. Accordingly, the acquisition of 
knowledge would have become more efficient and more 
sophisticated in the course of human evolution.  

5. Absence of Quantity and Presence of  
Attributivity in the Physics of Rational 
Human Intelligence 

Matter has been called above the object of the physics of 
matter and motion. And motion has been called its study 
object. What, then, are the object and the study object of 
the physics of rational human intelligence? 

It appears that the object of rational human intelli- 
gence is the same, that is, mass or physical things. 

It goes without saying that many things are not physi- 
cal. Examples are friendship and wisdom. However, it 
seems obvious that the brain conceives of non-physical 
things as being just as physical as physical things. In that 
regard, non-physical things are conceived as exhibiting 
mass and being subject to space and time just as much as 
physical things are. Accordingly, it is possible to speak 
of great wisdom in terms of space and of a long friend- 
ship in terms of time. In terms of mass, friendship can 
be called a burden. Like physical things, wisdom and 
friendship can be imparted, received, expanded, and so 
on. 

The same mathematical laws of rational human intel- 
ligence will therefore apply to things such as wood and 
iron just as much as they do to things such as friendship 
and wisdom. 

Whereas the physics of matter and motion and the 
physics of rational human intelligence share the same 
object, they do not share the same study object. Each 
studies a different property of matter. Physics studies 
how matter behaves in relation to space and time. The 
focus of the study of rational human intelligence is on a 
different property of matter. This property may be called 
attributivity.  

Attributivity is the property of exhibiting certain dis- 
tinctive features that can be perceived by the brain as 
what will be called here attributes. There is a fundamen- 
tal difference, however, between motion and attributivity 
as study objects. 

6. The Attribute as the Fundamental  
Component of the Physics of Rational 
Human Intelligence 

The mathematics and physics of rational human intelli- 
gence is all about attributivity as a mathematical notion. 
As contrasted with motion, attributivity does not exhibit 
quantity. 

As a quantity, motion consists of units. Units are not 
given in physical reality. They are a construct of the 
brain.  

By contrast, attributivity consists of attributes. Attrib- 
utes are likewise a construct of the brain. But they do 
originate in features of physical reality. As part of ra- 
tional human intelligence, they are acquired properties of 
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the brain that are reflections of features of physical real- 
ity outside the brain. 

More attributes do not make a thing larger in size, as 
more units would. Rather, more attributes make a thing 
more distinctive. Again, attributivity does not exhibit 
quantity.  

What, then, are attributes? As has been said, attributes 
are acquired properties of the brain that originate in a 
certain facet of reality outside the brain. What is this 
facet of physical reality outside the brain?  

It is evident that physical reality is not uniform. It con- 
sists of a countless variety of things, which will also be 
called entities. All matter may be subject to the same 
laws of motion. But all matter is not uniform in appear- 
ance. If one item of matter differs from another item, 
then there must be one or more distinctive features ex- 
hibited by the former that is not found in the latter and 
typically vice versa. Such distinctive features are the ori- 
gin of the attributes. It is such distinctive features that lie 
at the origin of the existence of what may be called at- 
tributes in the brain. 

The attributes presumably originate in certain proper- 
ties of physical reality outside the brain. But as a com- 
ponent of rational human intelligence, the attributes are 
acquired properties of the brain. The brain of a newborn 
child is entirely free of such attributes. The attributes are 
part of the rational operation of the brain as a biological 
tool.  

Attributes consists of two sides or two parts. It is the 
connection between the two sides that makes the attrib- 
ute. 

How are attributes acquired by the brain? The brain is 
able to take note of the distinctive features of different 
items of matter. These distinctive features of reality make 
an impression on the brain. As a result, each distinctive 
feature leaves a biochemical imprint of some kind in the 
brain.  

These imprints can be visual or auditory or relate to 
any other of the senses by which the brain communicates 
with that which is outside itself. This much for one side 
or one part of what makes an attribute. What about the 
second side or part?  

The brain is able to associate a distinctive imprint of a 
feature of reality with a distinctive sound pattern. That 
distinctive sound pattern is also stored as an imprint in 
the brain. This imprint can steer the speech organs to 
pronounce the sound pattern whenever such a pronuncia- 
tion is needed.  

But it is the link between the imprint of a distinctive 
feature of a certain item of matter and the imprint of a 
sound pattern that makes an attribute. That link is itself 
an imprint.  

Again, all three types of imprints are assumed to be of 
the biochemical kind.  

Whenever the imprint of a distinctive feature of a cer- 
tain item of matter is linked with an imprint of a sound 
pattern, an attribute is born. The attribute is the funda- 
mental component of rational human intelligence. The 
design of this paper and forthcoming papers is to de- 
scribe the mathematics of the attributes that make up 
rational human intelligence. The mathematics of the at- 
tributes is not quantitative. This type of non-quantitative 
mathematics can be called attribute mathematics or at- 
tributivity mathematics. Attribute mathematics is funda- 
mentally digital. The concept “digital” is defined in more 
detail further below. 

Consider as an example of a distinctive feature the 
visual impression of a dog (hairy, walks on four legs, 
generally cheerful, and so on).  

No two people have the exact same visual impression 
of what a dog is. But the visual impression of a dog is 
sufficiently distinct or different from any other possible 
impression, whether visual or auditory or related to any 
other of the senses, that two or more people can readily 
agree that they have the same impression in mind when 
communicating. Difference is everything.  

In the brains of English speakers, the imprint of the 
sound pattern dog is linked to the imprint of the visual 
impression of a dog as the reflection of a distinctive fea- 
ture of matter. 

The brains of French speakers link the imprint of the 
sound pattern chien to the same visual imprint. 

The fact that the visual imprint is the same but the 
sound pattern imprint differs in a sense demonstrates the 
independent existence of the two imprints. 

The brains of German speakers link the imprint of the 
sound pattern Hund to the imprint of that very same vis- 
ual impression. 

In sum, there is something profoundly dual about lan- 
guage and thought. If one includes the link between 
sound pattern and notion, then there is something pro- 
foundly ternary about language and thought. 

The independence and separate physical existence of 
the imprint of a certain sound pattern and the imprint of 
the visual impression of a dog is guaranteed by the very 
fact that different sound patterns can be linked to the 
same visual impression in different languages. The sound 
pattern can only change while the visual impression re- 
mains the same if the sound pattern and the visual im- 
pression are distinct from one another and lead inde- 
pendent existences. 

In other words, the sound pattern could not change and 
the visual impression at the same time stay the same if 
the two were the exact same thing. If such a thing were 
possible, then the very same single thing would at the 
same time both change and not change or remain the 
same. It is impossible for something to simultaneously 
become something else and remain the same. 
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It must be assumed that the following three items have 
their distinct biochemical imprint in the brain: 1) the 
sound patterns dog, chien, and Hund; 2) the visual notion 
of a dog; and 3) the link between 1) and 2). It is safe to 
assume that these imprints will some day be found and 
empirically verified. They are fundamental to the opera- 
tion of the brain as a physical tool. 

But until these imprints are found in the flesh, as it 
were, the theory of rational human intelligence will re- 
main a black box theory in the sense that J. C. Maxwell’s 
theory of electromagnetism is a black box theory. 

Additional links that will need to be found inside the 
physical brain and described are the following: 1) those 
between the imprint of the sound pattern in the brain and 
the speech organs—mouth, tongue, and so on—that can 
activate the sound pattern; 2) those between the imprint 
of the sound pattern and the writing hand that can give 
written expression to the sound pattern; and 3) those be- 
tween the eyes and the brain that first store the visual 
impression of a dog in the brain and also make it possible 
to recognize a dog for what it is once the visual impres- 
sion in question has been stored in the brain. 

In sum, the study of rational human intelligence is in 
the first place the study of the brain. But it is secondarily 
also the study of how the brain communicates with what 
is outside itself. 

It is not necessary for the brain to activate or exterior- 
ize the imprint of a sound pattern by means of the speech 
organs for the imprint to be stored inside it. The bio- 
chemical imprint of a sound pattern such as dog is ready 
to be triggered any time, as it were, by an act of pronun- 
ciation whenever the visual impression of a dog arises in 
the mind. Until such an occasion arises, the imprint is 
inactive or dormant, yet very much present. 

This approach involving 1) impression, visual or other, 
2) sound pattern, and 3) link between the two will not in 
the least be strange to anyone even remotely familiar 
with F. de Saussure’s foundational theory of linguistics 
of the early twentieth century. As is well-known, F. de 
Saussure calls an impression a “signified”; a sound pat- 
tern, a “signifier”; and the link between the two, a “sign” 
(in French, signe linguistique “linguistic sign”). In F. de 
Saussure’s linguistic terminology, the “sign” is not a 
physical thing, say like a traffic sign, but rather a link 
inside in the brain between the signified and the signifier. 

G. Boole was in fact fully in possession of this con- 
ception of signified, signifier, and sign a few decades 
before F. de Saussure [9]. But none of the many, many 
who have commented on F. de Saussure’s celebrated 
theory and its antecedents make reference to G. Boole, as 
far as I know.  

As F. de Saussure and G. Boole both well understood, 
there is a profoundly social aspect to attributes or signs. 
All the speakers of English tacitly agree to call a dog a 

dog, that is, to link the visual impression of a dog to the 
imprint of the same sound pattern, namely dog. They do 
not really have to. But they do so unawares. However, if 
one would not, one cannot be understood by other Eng- 
lish speakers.  

As F. de Saussure and G. Boole also well understood, 
there is something at the same time profoundly arbitrary 
and profoundly mandatory about attributes or signs. It 
does not really matter what one calls a dog. The sound 
pattern dog has no necessary relation with the animal in 
question. The relation is completely arbitrary. Then again, 
if one wishes to be understood by speakers of English, 
then the relation becomes mandatory.  

Motion is a property of mass. The relation between 
mass and motion leaves an imprint on the brain. It is then 
upon the brain to establish the mathematical laws that 
characterize the physics of mass and motion. These laws 
involve quantity.  

Like the relation between mass and motion, the rela- 
tion between mass and attributivity leaves an imprint on 
the brain. It is then upon the brain to establish the mathe- 
matical laws of the physics of mass and attributivity. Part 
of those laws is also the mathematics of rational human 
intelligence. As opposed to the mathematics of mass and 
motion, the mathematics of mass and attributivity do not 
involve quantity. 

Substantives or nouns and adjectives both signify at- 
tributes of things. The difference between the two is that 
substantives or nouns typically refer to what may be 
called clusters of attribute components viewed as a single, 
but composite, attribute whereas adjectives signify single 
attributes.  

For example, the noun “tree” signifies all the multiple 
attributes that collectively make up a tree as distinct from 
any other kind of thing. There are obviously several at- 
tributes that together make a tree distinct from other 
kinds of things. The noun “tree” refers to all these attrib- 
ute components as a single whole, that is, it refers to a 
single compound attribute. 

By contrast, the adjective “green” typically signifies a 
single attribute that makes a certain kind of thing distinct 
from all other kinds of things. 

7. Attributes and Attribute Sets or Classes 

Sets or classes have played a prominent role in mathe- 
matics for well over a century now. As far as their role in 
quantitative mathematics is concerned, many have as- 
sumed that sets have led mathematics into paradise. As a 
result, it seems difficult to imagine quantitative mathe- 
matics without sets. Sets seem ubiquitous. Still, my own 
sense is that quantitative mathematics might well do per- 
fectly fine without sets. But this is not the place to elabo- 
rate on this perception. 
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In any event, the present section is not concerned with 
the role of sets or classes in quantitative mathematics but 
rather with their role in attribute mathematics. The need 
is for providing an exact mathematical definition of the 
class or set. There is evidently a widespread sense that 
classes play a role in logic. But what exactly are classes 
in attribute mathematics? 

Consider attributes such as the noun “tree” or the ad- 
jective “yellow”. These attributes serve to identify a 
thing as distinct from all other possible things. But at the 
same time, something else is immediately apparent in an 
axiomatic way, that is, in a way that is so self-evident 
that one cannot possibly doubt it, in the way that the 
axioms of mathematics are accepted without proof. 

That something else is the fundamental fact of physi- 
cal reality that a certain distinctive feature may be shared 
by more than one thing. For example, there is more than 
one thing that is a tree and there is more than one thing 
that is green. 

It follows that two or more things exhibit an affinity or 
are members of a group of things that all exhibit a certain 
distinctive feature in reality and therefore a certain at- 
tribute in the brain. Nothing seems more natural. Nothing 
is easier to accept as an axiom of attribute mathematics. 
The need arises for a term to denote a group of things all 
sharing a single distinctive feature and therefore a single 
attribute in the brain. The time-honored and more or less 
synonymous terms “class” and “set” both present them- 
selves as ideally suited to fill this need. It follows that, in 
the propagation of rational human intelligence, an attrib- 
ute can refer to an entire group of things, called a class or 
set. But rational human intelligence also includes the 
means of referring to certain members of the class or set. 
Details regarding this matter will follow in later stages of 
this effort to describe rational human intelligence in its 
entirety. 

In conclusion, the attributes are the crucial building- 
blocks of rational human intelligence. The rest of rational 
human intelligence consists of operations, actions that 
the brain performs with the attributes as building-blocks. 

It is possible to think of the attributes independently of 
any things or events to which they are attached. An ex- 
ample is the attribute “yellow”. It is possible to contem- 
plate the attribute “yellow” independently from anything 
that is yellow and establish what is known about it. 
However, such an effort is all about knowledge and not 
about intelligence. It is not possible to propagate rational 
human intelligence without treating attributes as proper- 
ties of things or entities. 

8. The “Extensive” Function of Attributes 

In past centuries, there have been two fundamentally 
different ways of handling attributes. They may be called, 

with J. Venn, the extensive interpretation and the inten- 
sive interpretation of attributes. 

J. Venn devotes a detailed discussion to the intensive 
interpretation as compared to the extensive interpretation 
[10]. But the main point of his discussion is the observa- 
tion that it is the extensive interpretation of attributes that 
prevails in G. Boole’s algebra—and hence also in the 
mathematical and physical theory of rational human in- 
telligence. It will be useful to show definitively that only 
the extensive interpretation is strictly mathematical. 

Then again, that does not mean that the intensive in- 
terpretation is devoid of meaning or usefulness. It has its 
rightful place in the study of the human condition. But it 
is at home in the domain of knowledge rather than in the 
domain of intelligence. 

“Extensive” and “intensive” are somewhat abstract as 
terms. Their abstract character is in danger of obscuring 
how fundamentally different the two are. The difference 
between them may be defined as follows.  

In the extensive interpretation, attributes are always 
interpreted as properties of physical things or entities. 
Their meaning extends to, and includes, the actual things 
that exhibit them. As was noted above, abstract things 
such as “wisdom” and “friendship” are for all practical 
purposes treated by the brain as physical things and 
therefore function as such in rational human intelligence.  

In the intensive interpretation, attributes are considered 
in and by themselves, independently from the actual 
physical entities with which they associated or to which 
they are attached as it were.  

An example may serve to clarify the distinction be- 
tween the two. Consider the two attributes “rational” and 
“animal”. According to the well-known classical defini- 
tion, man is a rational animal. 

In the philosophical interpretation of this definition, 
the attributes “man”, “rational”, and “animal” are inten- 
sive. In other words, they are considered by themselves 
independently from any entities to which they are at- 
tached.  

According to the above definition, if one adds the at- 
tribute “rational” to “animal”, one obtains “man”. The 
attribute “rational” does not stand for the class or set of 
all the things that are rational, as it would in G. Boole’s 
algebra. By the same definition, if one subtracts the pure 
attribute “rational” from “man”, one obtains “animal”.  

A prominent practitioner of the intensive interpretation 
was G. W. Leibniz. I owe the following reference to J. 
Venn, whose knowledge of the history of logic before 
and during his time was unparalleled [11]. G. W. Leibniz 
formulates the above definition as follows [12]:  

Homo − Rationalis ∞ Brutum 

That is, “Man minus (−) rational equals (∞) brute”. 
G. W. Leibniz uses the symbol “∞” as an equivalent of 
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“=” and by “brute” he presumably means more or less 
the same as “animal”. 

The way in which G. W. Leibniz formulates the defi- 
nition gives it the aura of mathematics. But mathematical 
it is not, in the way that G. Boole’s algebra and the 
mathematics of rational human intelligence are mathe- 
matical. Then again, that does not mean that G. W. Leib- 
niz’s intensive interpretation of attributes is devoid of 
meaning. 

In the interest of fully clarifying the relation between 
the intensive interpretation of attributes and the extensive 
interpretation of attributes, certain questions are in need 
of an answer: 

1) What would be the strictly mathematical interpreta- 
tion of the definition “Man is a rational animal” accord- 
ing to G. Boole’s algebra and the mathematics of rational 
human intelligence? 

2) What in G. Boole’s algebra and in the mathematics 
of rational human intelligence would be the strictly 
mathematical interpretation of subtracting “rational” from 
“man” as G. W. Leibniz does? 

3) What is the purport of G. W. Leibniz’s interpreta- 
tion if it is not part of the mathematics of rational human 
intelligence? 

The following answers to these questions may be pro- 
posed: 

1) The obvious way of representing a statement such 
as “Man (m) is a rational (r) animal (a)” in G. Boole’s 
algebra is as follows: 

m r a  . 

G. Boole generally omits the symbol “×” and hence 
would normally write as follows: 

.m ra  

This Equation implies that “man” encompasses all that 
is both rational and an animal and not just an indefinite 
amount of what is both rational and an animal. If the lat- 
ter were the case, then the Equation would rather be as 
follows: 

. Or also:m m r a m mra    . 

In the above Equations, “  ” signifies the Boolean op- 
erator AND. 

But what does the definition “Man is a rational ani- 
mal” mean if it is stated in G. Boole’s algebra as it has 
been above? 

It will be good to compare the definition with a similar 
statement exhibiting the same structure, such as “The 
Flemish (f) are the Dutch-speaking (d) Belgians (b)”. 
There are Dutch speakers that are not Belgians and Bel- 
gians that are not Dutch speakers. The Flemish are all 
those that are both, nothing more, nothing less. The 
statement would be represented as follows in G. Boole’s 
algebra: 

. Or also: .f d b f db    

The only interpretation of this statement that makes 
sense is evidently the extensive one. There are entities 
that are Dutch-speaking and there are entities that are 
Belgian. The Flemish constitutes the overlap between the 
two, that is, entities that exhibit both attributes. 

The mere fact that this is the interpretation that every- 
one expects to be valid if one executes a simple Boolean 
search with any search engine on the Internet already 
sufficiently indicates that it is the extensive interpretation 
that is valid in non-quantitative mathematics or attribute 
mathematics, the type of mathematics that describes ra- 
tional human intelligence. 

If one applies this exact same extensive interpretation 
to “Man is a rational animal”, then there ought to be enti- 
ties that are rational and entities that are animals and man 
constitutes the overlap between the two, that is, entities 
that exhibit both attributes. 

This extensive interpretation can only make sense if 
“animal” is understood to include “man”. This is in fact 
one of the possible meanings of “animal”. However, it is 
not how the word “animal” would normally be understood 
in everyday speech.  

Still, I suspect that, outside of the realm of philosophy, 
the word is as a rule understood in this way in the defini- 
tion “Man is a rational animal”, or also “Human beings 
are the rational animals”. The reason is that it is only 
natural to interpret “Man is a rational animal” in the 
same way as “The Flemish are the Dutch-speaking Bel- 
gians”. This interpretation follows the mathematical laws 
of rational human intelligence. The interpretation there- 
fore imposes itself to anyone not familiar with the history 
of philosophy. 

Then again, that is not how philosophers have typi- 
cally understood the statement “Man is a rational animal”. 
In the case of G. W. Leibniz, this is obvious from two 
facts. First, he uses brutus “stupid” instead of “animal” 
and therefore clearly refers to animals at the exclusion of 
human beings. Second, he subtracts “rational” from 
“man” and therefore by his own reasoning obtains some- 
thing that is devoid of reason and that something cannot 
therefore include human beings. 

2) What is the result of subtracting “rational” from 
“man” in G. Boole’s algebra? 

In the mathematics of rational human intelligence, “ra- 
tional” and “man” denote two sets or classes of entities 
exhibiting the two attributes in question. After all, in 
physical reality, attributes do not exist independently 
from the things or entities to which they are attached. It 
follows naturally that, in subtracting or removing rational 
entities from the set of human beings, one cannot remove 
anything that is not a human being from the human be- 
ings. What is left after removing the rational human be- 
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ings from all the human beings are all the irrational hu- 
man beings, whatever that may be. 

However, if one accepts on the basis of the definition 
“Man is a rational animal” that man is always rational, 
then there are no irrational human beings. Accordingly, 
after subtracting rational human beings from the human 
beings, nothing is left. Likewise, if one subtracts all the 
Dutch-speaking Flemish from the Flemish, one is left 
with nothing. In that regard, it is possible to subtract “ra- 
tional” from “man” in the extensive interpretation. But it 
makes little sense if human beings are all rational. 

G. W. Leibniz subtracts “rational” from “man” and ob- 
tains “animal”, as follows: 

m r a  . 

It follows by his own reasoning that 

m r a  . 

That is, “man” is obtained by adding “rational” to “ani- 
mal”. 

In G. Boole’s algebra, the symbol “+” stands for the 
OR function. The mathematical meaning of the last Equa- 
tion is therefore “Man is either rational or an animal or 
both at the same time”. This meaning is what one ex- 
pects from the OR function in any Internet search. It ap- 
pears again that G. W. Leibniz’s intensive interpretation 
is not that of the non-quantitative mathematics that ex- 
plains rational human intelligence. 

Judging from mere Boolean searches on Internet 
search engines, it would appear evident that the extensive 
interpretation of attributes is the mathematical way. 

The deeper reason of the fact that the extensive inter- 
pretation is valid in mathematical terms and not the in- 
tensive interpretation would appear to be that, as has al- 
ready been noted above, attributes do not exist inde- 
pendently of things or events in physical reality. The 
mathematics of attributes, like any type of mathematics, 
ought to be a tool that describes physical reality as it is. 
In the intensive interpretation of attributes, attributes are 
viewed independently from the things or events to which 
they are attached. Attributes existing independently from 
things or events are not part of physical reality. 

When G. W. Leibniz follows the philosophical tradi- 
tion by subtracting “rational” from “man”, he is in effect 
detaching an attribute from its thing or entity. The result 
is an attribute without an entity, something that does not 
occur in physical reality. 

3) The philosophical approach exemplified above by 
means of the views of G. W. Leibniz is otherwise not 
devoid of purport. But any results deriving from this ap- 
proach are better classified as knowledge rather than as 
intelligence. Intelligence is the tool that serves the func- 
tion of accruing knowledge. Describing the mathematical 
and physical laws to which this tool is subject is the de- 
sign of the present paper and follow-up papers. The phi- 

losophical approach is an application of intelligence as a 
tool, not the tool itself. 

In the philosophical approach in question, intelligence 
is applied to the following evident fact: different things 
and different events exhibit different attributes. Differ- 
ences invite comparison. One interesting result of such 
comparison is the observation that things can have cer- 
tain attributes in common and other attributes not. Espe- 
cially intriguing are instances in which two things or two 
events have most every attribute in common except for 
just a few or even just one. For example, human beings 
and animals have most everything in common, but not 
completely everything. The focus naturally turns to that 
which the two do not have in common. In that regard, it 
appears that animals cannot think. It is tempting to pon- 
der the notion that, if one could just add rationality to 
animals, they would be like human beings, at least if one 
discards certain differences in appearance between the 
two. 

Being aware of the difference between human beings 
and animals is part of knowledge, in the same way that 
knowing the differences between the various flora and 
fauna of a certain nation is part of knowledge. However, 
to ask what it would take in terms of addition or subtrac- 
tion of attributes to make one species exactly into another 
species, or more like another species, is a pure product of 
the imagination. There is no way that one can subtract 
rationality from human beings to make them more like 
animals. There is no way in which one can add wings to 
a pig and make it into a bird. Still, if a pig had wings and 
could fly, it would technically be a bird. 

The conceptual feats involved in the intensive inter- 
pretation of attributes can be accomplished only as pure 
exercises of the intellectual imagination. Such exercises 
consolidate one’s knowledge of the difference between 
the two. It is therefore not totally without a certain use- 
fulness. But it bears no relation to physical reality. It 
cannot, therefore, be the object of a mathematical and 
physical analysis. 

9. “Digital Mathematics” as a Name for  
Attribute Mathematics 

The mathematics of rational human intelligence is non- 
quantitative. Nothing gets bigger or smaller. In fact, in G. 
Boole’s algebra, x × x = x (not x2) and x + x = x (not 2x). 
There is no increase in size. 

The mathematics in question has been called attribute 
mathematics above. But it can also be called digital ma- 
thematics. 

“Digital” is a term that is now ubiquitous. The term is 
short for “binary digital”. “Binary digital” refers to a type 
of numeration using the base 2 and therefore only the 
digits 0 and 1. In binary numeration, the numbers 1, 2, 3, 
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4, and 5 of decimal operation correspond to 1, 10, 11, 
100, and 101.  

By extension, the term “digital” has come to be used to 
denote any system in which there are only two values. 
For example, the transistors of a computer are either On 
or Off. An electrical current does or does not run through 
them. The operations of a computer may therefore be 
called digital.  

The mathematics of rational human intelligence is 
likewise digital. What are the two values in question? 
Attribute mathematics is all about items of mass or things 
or entities exhibiting attributes. It follows that there are 
exactly two options. An entity may or may not exhibit a 
certain attribute. In other words, things can exhibit two 
possible states pertaining to a certain attribute. An attrib- 
ute can be either present or absent. An example of an 
attribute is “green”. An item of mass can be either green 
or not green. Again, in the mathematics of rational hu- 
man intelligence, attributes are properties of things or en- 
tities. 

It may be tempting to assume that the present state is 
more interesting than the absent state. This may well be 
the case when it comes to knowledge. There are so many 
countless attributes that an item of mass may not exhibit. 
It is therefore much more interesting to know which at- 
tributes it does exhibit. 

However, as far as the mathematics and physics of ra- 
tional human intelligence is concerned, the present state 
and the absent state are equally important in the sense 
that both are equally indispensable to the propagation of 
rational human intelligence. 

How present states and absent states interact mathe- 
matically and physically in the propagation of rational 
human intelligence will be described in detail later. It 
will become clear that intelligence has everything to do 
with a loss or deficit or diminution of entropy, to borrow 
a term from thermodynamics, on the part of attributes. A 
deficit of entropy corresponds to a gain in organized be- 
havior. It is this deficit that for the most part makes ra- 
tional human intelligence possible.  

All attribute mathematics is digital mathematics but 
not all digital mathematics is attribute mathematics. The 
mathematics of an electronic circuit board in a computer 
is also digital mathematics. But it is not attribute mathe- 
matics. 

10. The Four Flavors of the Digitality of  
Rational Human Intelligence 

As far as I can see at the present time, there are four 
kinds or manifestations or flavors in the digitality of ra- 
tional human intelligence. They may be called as fol- 
lows: 

1) Selection Digitality (SelDi, Sel.Di, or sel.di); 
2) Nexus Digitality (NexDi, Nex.Di, or nex.di); 

3) Certification Digitality (CerDi, Cer.Di, or cer.di). 
4) Supplement Digitality (SupDi, Sup.Di, or sup.di). 
Each of these flavors of digitality will need to be dis- 

cussed in great detail in future papers. It is anticipated at 
this time that at least one long paper will need to be de- 
voted to each. Each flavor is quite distinct from the other 
and the aim of what is to come is to elucidate their na- 
ture. 

It is only Selection Digitality that the brain presently 
shares with the computer. Selection Digitality revolves 
around the Boolean operators AND, OR, and NOT, per- 
haps best known in everyday life from searches on the 
Internet. All digital functions of the brain as a tool are 
strictly subject to the more general laws of digital ma- 
thematics applicable to rational human intelligence, just 
as the electrical functions of an electric motor are strictly 
subject to the more general laws of physics applicable to 
electricity and magnetism. 

What follows owes an enormous debt to G. Boole. It is 
in large extent a specific kind of extended implementa- 
tion of his thoughts. Much is also owed to the various 
ways in which J. Venn was able to make G. Boole’s 
thoughts more accessible.  

Then again, there are additions and specifications in 
what is to come. As far as I can see, 3) Supplement Digi- 
tality (SupDi) and 4) Certification Digitality (CerDi) can- 
not be derived from G. Boole’s or J. Venn’s writings. 
Some manifestations of Nexus Digitality as part of Se- 
lection Digitality also go beyond what G. Boole and J. 
Venn have had to say. 

The task of logical reasoning is performed by the digi- 
tal functions 1), 2), and 3), and more narrowly by 2) and 
3). G. Boole and J. Venn discuss 1) and 2). But they 
make no mention of 3). Digitality flavor 3) is needed for 
the brain not only to draw inferences but also to act upon 
those inferences.  

From a slightly different perspective, 2) can be subdi- 
vided in the three digital operations Supplementation (S), 
Partition (P), and Abolition (A). If one adds to these 
three the digital operation certification of digitality flavor 
3), then it appears that the core of logical reasoning that 
leads to action consists of four digital operations S, P, A, 
and C, which come in that order. 

Digitality flavor 4) pertains less directly to logical 
reasoning. But it confirms the profoundly digital struc- 
ture of rational language and thought. It completes the 
picture, as it were. 

11. Rational Intelligence and Rational 
Knowledge 

There is more to rationally intelligent human behavior 
than rational human intelligence. For example, it is not 
necessary to know that acceleration is change in velocity 
over time to be endowed with rational human intelli- 
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gence. It is not necessary to know the laws of gravitation 
to be endowed with rational human intelligence. After all, 
how could it be? If that were the case, the vast majority 
of the earth’s population would lack rational human in- 
telligence. And yet, just about all of earth’s population is 
endowed with rational human intelligence. 

Then how does a statement like “Acceleration is 
change in velocity over time” evidence rational human 
intelligence? The statement associates exactly two things 
or entities identified by their attributes with one another, 
not three or more. In that regard, rational human intelli- 
gence is fundamentally binary.  

The statement relates to rational human intelligence 
strictly speaking is as follows. It unambiguously conveys 
that there is neither something that is at the same time 
acceleration and not change in speed over time nor 
something that is at the same time change in speed over 
time and not acceleration. Two things are declared to be 
non-existent in said statement.  

The statement involves two attributes of things. One 
attribute is signified by the noun “acceleration”. The 
other attribute is signified by the noun phrase “change in 
velocity over time”. Each of the two things that are de- 
clared to be non-existent is digitally defined in terms of 
attributes that it does or does not exhibit. One thing ex- 
hibits the attribute “acceleration” but not the attribute 
“change in speed over time”. The other thing exhibits the 
attribute “change in speed over time” but not “accelera- 
tion”. Again, the statement conveys that neither exists. 
That part of the statement is an expression of rational 
human intelligence. 

If the laws of gravity cannot be part of rational human 
intelligence, then what are they part of? They are not part 
of intelligence. Rather, they are part of knowledge.  

The relation between intelligence and knowledge can 
be clarified by analogy with an electric motor. Intelli- 
gence is like the operation of the motor. Knowledge is 
like the tasks performed by the electric motor. 

It follows that all quantitative mathematics, that is, the 
familiar mathematics (or that which everyone would 
usually understand to be mathematics), is part of knowl- 
edge. None of it is part of rational human intelligence. 
Rational human intelligence is in its entirety subject only 
to the laws of non-quantitative, digital mathematics. 

12. The Reflexivity of Rational Human  
Intelligence 

Not all non-quantitative digital mathematics pertains to 
rational human intelligence. In other words, some of it 
does and some of it does not. However, the nature of 
rational human intelligence is such that the part of digital 
mathematics that does relate to rational human intelli- 
gence can also be part of knowledge in addition to being 
part of intelligence. Rational human intelligence as a 

brain function can be applied to all of physical reality. 
And that physical reality includes the functions of the 
brain that relate to rational human intelligence. 

There is only one way for the brain to analyze rational 
human intelligence, and that is by means of rational hu- 
man intelligence itself. The brain is a tool that can ob- 
serve itself functioning and analyze that function. This 
property may be called reflexivity. 

G. Boole evokes this reflexivity in a more general way 
as follows [13]: 

Even in ages the most devoted to material interests, 
some portion of the current of thought has been reflected 
inwards, and the desire to comprehend that by which all 
else is comprehended has only been baffled in order to 
be renewed. 

In this regard, the analogy between the brain as a tool 
and an electric motor as a tool breaks down. The electric 
motor can move itself by being attached to wheels. But 
the energy that it produces cannot be put in the service of 
the very energy that it produces. 

13. Syllogisms as a Component of Digital 
Mathematics 

13.1. Digital Mathematics That Is Part of  
Rational Human Intelligence and Digital 
Mathemathics That Is Not 

It will be good to positively ascertain by means of an 
illustration that there is non-quantitative, digital mathe- 
matics outside of the non-quantitative mathematics that 
explains rational human intelligence. The digital mathe- 
matics that falls outside rational human intelligence is of 
interest in the present context precisely because of its 
affinity with the mathematics that pertains to the opera- 
tion of rational human intelligence. There is in fact a 
certain potential for this other digital mathematics to be 
confused with rational human intelligence by being con- 
sidered part of it, and in fact it has been. It is therefore of 
particular importance to distinguish the digital mathe- 
matics that is part of rational human intelligence from the 
digital mathematics that is not part of rational human 
intelligence. In that regard, it will be useful to assess and 
evaluate the latter to better demarcate and understand the 
former. 

13.2. A Syllogism Proposed by Ch. L. Dodgson 

The focus of what follows will be on an example of a 
matter that requires digital mathematics other than the 
digital mathematics involved in the operation of rational 
human intelligence. The example in question is the fol- 
lowing derivation found in part I of the well-known book 
on symbolic logic by Ch. L. Dodgson. 

Like his literary work, which includes Alice in Won- 
derland, Ch. L. Dodgson published his work on logic 
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under the pseudonym of Lewis Carroll. It is not clear 
what one is to infer from this about his work on logic. As 
is well-known, his literary work is full of logical riddles. 
It has been appreciated by a very large audience for sev- 
eral generations now. But still, this facet of his work is 
unusual and, one might even say, eccentric. I would defi- 
nitely classify his work on logic as very earnest and very 
clever in many ways but also idiosyncratic in some oth- 
ers. One even wonders whether some of it is not tongue 
in cheek. 

In the example in question, it is asked what can be de- 
rived from the following two statements [14]: 

All philosophers are logical; 
An illogical man is always obstinate. 
Ch. L. Dodgson’s conclusion is: 
Some obstinate persons are not philosophers. 
It seems clear that, by “man”, people in general are 

meant. 
The example came to my attention because it is cited 

in a book by Ch. Petzold that explains in exemplary 
fashion how computers are built from scratch. I have not 
found anything quite like it anywhere. 

Like the rational intelligence of the brain, the machine 
intelligence of a computer is digital. However, at this 
time, the digital operations pertaining to rational human 
intelligence are more diverse than those pertaining to 
machine intelligence. Both share the Boolean operators 
AND, OR, and NOT. But rational human intelligence 
exhibits additional digital functions. What sets apart the 
computer from the brain is not complexity or diversity 
but (1) size and (2) speed, which both can be colossal 
when compared to rational human intelligence.  

Ch. Petzold comments as follows on the example 
taken from Ch. L. Dodgson [15]: 

The conclusion isn’t obvious at all. (It’s “Some obsti- 
nate persons are not philosophers”. Notice the unex- 
pected and disturbing appearance of the word “some”.) 

This arrangement in which a conclusion is drawn from 
two premises is evidently the syllogism. Perhaps the best 
known example, also cited by Ch. Petzold, is the follow- 
ing: 

All men are mortal; 
Socrates is a man; 
Hence, Socrates is mortal. 

13.3. Syllogisms as Extraneous to Rational  
Human Intelligence 

The first observation to be made is that the analysis of 
the two syllogisms presented in §13.2 and of any syllo- 
gisms for that matter is not part of rational human intel- 
ligence. Plainly put, it is possible to completely fail to 
understand how conclusions are derived from premises in 
syllogisms and yet to be fully endowed with rational hu- 
man intelligence. Most people know very little or nothing 

about syllogisms and yet exhibit rational human intelli- 
gence. 

Still, a proper understanding of the derivations re- 
quires the same type of mathematics by which rational 
human intelligence operates. Attention to the mathe- 
matical analysis of the derivations may therefore shed an 
indirect light on the nature of rational human intelligence. 
It only adds to the interest of the derivations that they are 
mentioned in a book on machine intelligence, which also 
operates according to digital mathematics. 

13.4. The Dual Nature of G. Boole’s Digital 
Mathematics 

All that follows in the present paper is so squarely based 
on what G. Boole and his principal expositor J. Venn 
teach that one way in which the following account sig- 
nificantly deviates from theirs needs to be pointed out. 

There is no doubt from the organization of his work 
that G. Boole considered all digital mathematics to be of 
one and the same species. And in a sense it is. It is all 
non-quantitative. G. Boole presents a complete account 
of the digital mathematics that pertains to attributivity, 
that is, to the property of things and events to be charac- 
terized by attributes in both their present state and their 
absent state. 

But nowhere does G. Boole intimate that some of the 
digital mathematics pertaining to attributivity pertains to 
rational human intelligence and some of it does not. G. 
Boole therefore does two distinct things in his work on 
digital mathematics. First, he describes in part the ra- 
tional operations of the mind, which are digital. Second, 
he does digital mathematics. 

When doing digital mathematics, G. Boole does noth- 
ing different from doing non-digital mathematics such as 
trigonometry or calculus. No one would state that calcu- 
lus is part of the structure of rational human intelligence. 
It is part of acquired knowledge. Thus, G. Boole’s fun- 
damental formula of Development, 

      1 0 1f x f x f x   , 

is perfectly digital, just like rational human intelligence. 
It can be studied and understood by the digitally thinking 
brain. But there is no way that this formula is part of ra- 
tional human intelligence. If it were part of rational hu- 
man intelligence, then the rational human intelligence of 
anyone who is not aware of this formula would in some 
way be deficient. It is not. 

A main reason that G. Boole conflates—and one might 
perhaps add, confuses—the digital mathematics that ex- 
plains rational human intelligence and the digital mathe- 
matics that lies outside rational human intelligence is that 
both are digital. But there is another important reason 
that makes it very tempting to conflate the two. 

The only way in which the brain becomes consciously 
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aware of the digital mathematics by which its rational 
intelligence operates is by describing it. However, by 
describing it, the brain is actually doing digital mathe- 
matics. To the extent that it is studied by the brain, ra- 
tional human intelligence is not a function of the brain 
anymore. It is something to which the rational intelligent 
function of the brain is applied. Rational human intelli- 
gence is in a sense subjected to itself. In that regard, 
when the brain describes the digital mathematics that 
pertains to rational human intelligence, it is not doing 
anything different than when it describes the digital 
mathematics that does not pertain to rational human in- 
telligence. It is just all digital mathematics. 

This sameness may obscure the distinctness and dis- 
creteness of the digital mathematics that pertains specifi- 
cally to rational human intelligence from the digital 
mathematics that does not. The design of what is to come 
in this and other papers is to delineate precisely the type 
of digital mathematics that pertains specifically to ra- 
tional human intelligence. 

The phenomenon at hand has already been called re- 
flexivity in §12 above. The brain uses the digital mathe- 
matics by which it operates to describe the digital mathe- 
matics by which it operates. 

I have elsewhere described a somewhat similar type of 
reflexivity pertaining to linguistic expression. It is possi- 
ble to speak and at the same time to speak about speaking 
[16]. In the same way, it is possible to reason about ra- 
tional human intelligence while using rational human 
intelligence. An example in which both co-occur would 
be the statement 

“‘Socrates is mortal’ means exactly that nothing is 
both Socrates and not mortal”. 

This statement is about a derivation involving a type of 
digital mathematics that does not define rational human 
intelligence. Then what part of the above statement re- 
flects rational human intelligence? It is the part that con- 
veys that there is no such thing that is the statement 
“Socrates is mortal” and at the same time does not mean 
that nothing is both Socrates and not mortal. But again, 
understanding how the derivation is made is not part of 
the structure of rational human intelligence but rather an 
application of rational human intelligence. 

The above distinction may be subtle. But I believe it to 
be crucial. By not making the distinction, G. Boole may 
well have confused his readers as to what he was trying 
to do. Some have believed that he was trying to explain 
how people think rationally. Others have believed that he 
was doing mathematics. He was in fact doing both in the 
same book without explicitly distinguishing between the 
two. The two endeavors are intimately related because 
the mathematics that explains rational human intelligence 
is digital and the mathematics beyond rational human 
intelligence that G. Boole does in the book is also digital. 

What is more, rational human intelligence needs to be 
explained by means of rational human intelligence itself. 
Nothing is therefore easier than confusing the two. 

Because of the lack of a distinction, it is more than 
tempting to assume that G. Boole somehow considers 
syllogisms of the type described above to be part of ra- 
tional human intelligence. G. Boole does after all analyze 
them in his book entitled “An Investigation of the Laws 
of Thought” [17]. But they are not rational human intel- 
ligence. Still, a full and final understanding of syllogisms 
requires digital mathematics and that is also the mathe- 
matics of rational human intelligence. Syllogisms can 
therefore easily be seen as a kind of extension of rational 
human intelligence that trigonometry or linear algebra are 
not. Furthermore, the mathematics that the brain uses to 
analyze syllogisms is of the same type as the mathemat- 
ics of which rational human intelligence is constituted. 

13.5. Syllogisms as Pure Mathematics 

In order to illustrate the digital mathematics that falls 
outside rational human intelligence, it will be good to 
explicitly analyze the two syllogisms cited above in 
§13.2 in strictly mathematical terms. 

The possibility of a complete mathematical analysis 
serves as testimony to the effectiveness of rational hu- 
man intelligence. The analysis of syllogisms is usually 
considered part of a field called logic. However, I ex- 
pressly refrain from calling the following analysis logical. 
Calling what follows logic is in danger of suggesting that 
what follows is in some sense not 100% mathematical. 
And yet, it is. 

Calling the analysis logical is also in danger of sug- 
gesting that there may be more than one way of analyz- 
ing the syllogism. And yet, there is not. 

Everyone accepts that there is only one mathematics. 
There are no circles in which the ratio between the di- 
ameter and the circumference of a circle is not π. But one 
has the impression from looking at works on logic that 
there is a sense out there that there may be more than one 
way of doing logic. 

There is no doubt whatsoever that logic has been rep- 
resented over the decades in many different formal ex- 
pressions. As far as I am concerned, this is exactly the 
same as representing the same mathematical concepts 
with different symbols. To be sure, there is some of that 
in mathematics too. For example, the derivative of dif- 
ferential calculus is presented symbolically in quite a few 
ways. But in mathematics, there is no doubt that different 
symbolic representations signify exactly the same. 

It was noted above that Ch. Petzold observes that 
Some obstinate persons are not philosophers 

is “not obvious” as a conclusion from the two premises 
All philosophers are logical 
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and 
An illogical man is always obstinate [18]. 
One of the reasons that the conclusion is “not obvious” 

is that it is wrong. Furthermore, being wrong is not the 
only deficiency of the conclusion. The conclusion leaves 
much unsaid about what exactly can and cannot be de- 
rived from the two premises. 

What can exactly be inferred from the two syllogisms? 
On the page following the one on which he mentions the 
two syllogisms, Ch. Petzold prominently refers to G. 
Boole as a founding figure or modern computer science 
(“And then came Boole”) [19]. 

Now it appears that G. Boole had already furnished all 
the tools needed to analyze the two syllogisms mentioned 
on the previous page of Ch. Petzold’s book to full satis- 
faction in strictly mathematical terms. The details are 
presented below. Yet, there is no mention of this facet of 
G. Boole’s work in Ch. Petzold’s book. This may serve 
as an illustration of my belief that, whereas G. Boole’s 
seminal contribution to the digital mathematics of com- 
puter code is fully acknowledged, it seems little realized 
that his contribution to the digital mathematics of rational 
human intelligence may well be of similar importance. 

In fact, Ch. Petzold’s evaluation of what G. Boole has 
to say about rational thought and language is hardly en- 
thusiastic. But it does end on an intriguing statement 
placed between parentheses [20]: 

The title of Boole’s 1854 book suggests an ambitious 
motivation: Because the rational human brain uses logic 
to think, if we were to find a way in which logic can be 
represented by mathematics, we would also have a 
mathematical description of how the brain works. Of 
course, nowadays this view of the mind seems to us quite 
naive. (Either that or it’s way ahead of its time.)  

I personally discern in the final words a whiff of 
clairvoyance. I hope to demonstrate further below the 
option left open by Ch. Petzold, namely that “it’s way 
ahead of its time”, by means of the seamless resolution of 
the two syllogisms mentioned both by Ch. Petzold and 
also in §13.2 above in their broader context and then in 
additional papers by means of presenting a full map of 
rational human intelligence.  

The mathematical analysis of the two syllogisms to be 
presented below is based squarely on G. Boole’s [21]. G. 
Boole calls a derivation of a conclusion from two prem- 
ises a reduction. 

The analysis is strictly speaking not relevant to the 
main line of argument of the present paper and future 
papers, which is the description of rational human intel- 
ligence. It can therefore be skipped. Then again, it would 
have been unsatisfying to just impress on readers that the 
analysis of syllogisms is possible in purely mathematical 
fashion and rely on their good faith to accept that this is 
so. Some explicit illustrations are needed to drive the 

point home. These illustrations offer an opportunity to 
positively and independently verify the strictly mathe- 
matical nature of the derivations. Again, the following 
analysis of syllogisms is not something separate from 
mathematics that requires a distinct name such as logic. 
It is pure mathematics. 

13.6. The Larger Mathematical Problem of 
Which the Syllogism Is Part 

Before proceeding to the mathematical analysis of the 
syllogism, it needs to be noted that the syllogism is just 
one special case of a much larger mathematical problem, 
as G. Boole was the first to observe clearly and in detail. 
To be sure, there is nothing wrong with Aristotle’s syllo- 
gisms. They altogether lead to universally valid conclu- 
sions. But they offer only a very partial view of what 
conclusions can be drawn from two or more propositions. 

When it comes the larger problem, G. Boole was not 
only the first to fully appreciate it. He also solved it more 
or less completely. In that regard, it is interesting to read 
the following evaluation of J. Venn, G. Boole’s principal 
expositor [22]: 

The general solution of this problem was probably 
first conceived, and almost certainly first effected, by 
Boole. As a piece of formal symbolic reasoning there 
seems nothing to be added to it as he left it, and it is a 
striking example of his penetration and power of gener- 
alization. It cannot often be the lot of any one to conceive 
and so completely to carry out such a generalization in 
an old and well-studied subject. 

G. Boole’s work was available when Ch. L. Dodgson 
wrote his book on logic. And Ch. L. Dodgson does seem 
to have followed the work of his contemporaries and his 
antecedents to some degree, including G. Boole’s [23]. 
But he evidently made no use of G. Boole’s analysis. It 
appears to me that G. Boole’s analysis suspends all need 
for Ch. L. Dodgson’s.  

What is the larger mathematical problem of which the 
syllogism is part and how does the smaller mathematical 
problem of the syllogism relate to it? It will be useful to 
take one of the two syllogisms mentioned in §13.2, 
namely Ch. L. Dodgson’s, and see how it can be ex- 
panded into a much larger mathematical problem. 

The properties of the syllogism are rather specific, in 
four regards. 

First, there are two premises and one conclusion, as in 
all syllogisms. 

Second, there are three attributes, as in all syllogisms. 
In this case, the three attributes are “philosopher”, “logi- 
cal”, and “obstinate”. 

Third, as in all syllogisms, the ways in which the at- 
tributes relate to one another in the premises and the 
conclusion are as follows. 
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The first premise, “All philosophers are logical”, re- 
lates the first attribute “philosopher” to the second “logi- 
cal”. The second premise, “An illogical man is always 
obstinate”, relates the second attribute “(il)logical” to the 
third “obstinate”. Accordingly, the second attribute ap- 
pears twice in the premises. Finally, the conclusion is 
designed to establish what can be derived about the rela- 
tion between the first attribute and the third attribute 
from the two premises. 

Fourth, the attributes exhibit certain manifestations of 
their present and absent states. It is characteristic of the 
syllogism under examination that the attribute that ap- 
pears twice, namely the second, appears once in the pre- 
sent state, “logical”, and once in the absent state, “illogi- 
cal”. Such a configuration is not part of the classical Ar- 
istotelian and medieval system of the syllogism. In some 
sense, not everyone would call Ch. L. Dodgson’s deriva- 
tion a syllogism for that reason. 

The full expansion of the syllogism into a larger 
mathematical problem is as follows.  

The first expansion is to any number of premises from 
two premises and to more than one conclusion, as many 
conclusions as are possible. The second expansion is to 
any number of attributes from three attributes. The third 
expansion is to any way of relating attributes to another. 
The fourth expansion is to any configuration of present 
and absent states. 

For example, there might be 12 premises with 14 at- 
tributes and several conclusions. 

There is one characteristic, however, that cannot be 
expanded. Each premise and each conclusion is an equa- 
tion between exactly two items. Rational human intelli- 
gence is profoundly and totally nexal. Nexus is Latin for 
“link”. A nexus links two and exactly two concepts, as in 
x = y. Accordingly, an Equation such as x = y = z cannot 
be comprehended unless it is treated as x = y and y = z. 

Deriving conclusions from premises requires digital 
mathematics. Rational human intelligence is digital. But 
the digital mathematics under discussion presently is not 
itself rational human intelligence. It is something to which 
rational human intelligence is applied. And the object of 
application happens to be just as digital as rational hu- 
man intelligence. As has already been noted above, it is 
easy to confuse the two, as G. Boole in fact did. 

14. The Mathematical Analysis of All  
Philosophers Are Logical, an Illogical 
Man Is Always Obstinate and Therefore: 
Some Obstinate Persons Are Not  
Philosophers 

14.1. Theoretical Foundations 

G. Boole’s definitive mathematical analysis of the syllo- 
gism contains three principal operations: Expansion, 

Elimination, and Reduction. All three operations will be 
applied below. But it will not be possible to present the 
complete theoretical foundations underlying these inter- 
pretations. In that regard, I refer to G. Boole’s founda- 
tional “Investigation of the Laws of Thought” [24] and J. 
Venn’s useful and lucid clarifications of G. Boole’s the- 
ory [25]. 

There are quite a few accounts of G. Boole’s algebra. 
But these accounts as a rule mix G. Boole’s algebra with 
other systems of notation of what is called logic or the 
like and there are many of them. I have personally never 
seen any reason to depart in any significant way from G. 
Boole’s notation. In my opinion, it provides all the power 
and the perfect efficiency that one needs in order to de- 
scribe rational human intelligence to its full extent. I am 
not sure to which extent a certain desire for originality 
has fueled the genesis of new notations. If anything, my 
impression is that alternative notations diminish the po- 
tential for describing rational human intelligence to its 
full extent. 

One reads on occasion that G. Boole tried to describe 
how we think rationally and failed. One of the designs of 
the present paper and follow-up papers is to demonstrate 
that G. Boole took us most of the way towards that goal. 

14.2. The Three Components of a Complete 
Mathematical Analysis 

The properties of the syllogism have already been de- 
tailed above. Quite in general, the purpose of the syllo- 
gism is twofold. The first aim is to reduce or compact 
two premises into one conclusion. The second aim is to 
eliminate an attribute. 

The evaluation of Ch. L. Dodgson’s syllogism will 
involve three tasks. In all three tasks, the evaluation of 
the second syllogism cited in §13.2 above will be used as 
a control mechanism.  

The first task (see §14.4 and §14.5) is to establish that 
the conclusion cannot be derived from the two premises. 
In fact, no conclusion pertaining to the relation between 
the first and the third attribute can be derived from the 
premises.  

The second task (see §14.6) is to establish what Ch. L. 
Dodgson’s conclusion exactly means. It cannot be denied 
that the conclusion does have a purport. But the purport 
in question cannot possibly follow from the premises. 
Nor in fact can it follow from any other possible prem- 
ises. 

The third task (§14.7 and §14.11) is to establish what 
conclusions do follow from the premises. There are in- 
deed some. 

14.3. Mathematical Notation 

The mathematical notation that will be used in the pre- 
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sent analysis of the syllogism and in the description of 
rational human intelligence in this paper and other papers 
to follow will be as much as possible G. Boole’s own. I 
am otherwise aware that there are many systems of nota- 
tion in existence in logic. As I have already intimated 
above, I personally find G. Boole’s to be superior to all. 

G. Boole’s is also as close as possible to the notation 
of classical quantitative mathematics, the familiar ma- 
thematics. The symbols do not necessarily have the same 
signification as in quantitative mathematics. But even 
when they do not, they can be similar in terms of signifi- 
cation.  

I believe with J. Venn that, in taking advantage of the 
similarity and avoiding an entirely new set of symbols, 
the benefits decisively outweigh the drawbacks. I will 
return to this point further below.  

Hence, let p be “philosopher”. Let l be “logical”. And 
let o be “obstinate”.  

Accordingly, 1 l  denotes “non-logical, illogical”, 
that is, the universe of thought (G. Boole’s “1”), or all 
that one could possibly think about, minus anything that 
is l. G. Boole often abbreviated 1 l  to l , as did J. 
Venn in his footsteps. This convention will be followed 
off and on below. 

The two premises of the syllogism at hand can now be 
formulated as follows: 

p pl  “All philosophers are logical”,      (1) 

or also p p l  ; 

 1 1l l o    

“An illogical man is always obstinate”,      (2) 
or also  1 1l l o     

and l l o  . 

As the symbolic equivalent of “All philosophers are 
logical”, the notation p = pl will be used in the present 
paper and future papers on the nature of rational human 
intelligence. It is also the notation preferred by J. Venn. 
However, G. Boole himself normally does not use it. It is 
one of the few ways in which my notation will differ 
from G. Boole’s. Then again, J. Venn points out that, 
while the notation in question is “not primarily employed 
by Boole”, it “is constantly presenting itself in the course 
of [G. Boole’s] analytical processes” [26]. 

Remarkably, as J. Venn notes, G. W. Leibniz already 
used a variation of this notation. J. Venn quotes the fol- 
lowing from G. W. Leibniz’s essay entitled “Difficultates 
Quaedam Logicae” (“Certain Difficulties in Logic”) 
[27,28]: 

Omne A est B; i.e. aequivalent AB et A (“All A is B; 
that is, AB and A are equal”). 

In the same essay, G. W. Leibniz also describes the 
same relation as follows [29]: 

Omne A est B, i.e. AB aequivalet ipsi A (“All A is B; 

that is, AB is equal to A”). 
And a little further, he writes [30]: 
Omnis ridens est homo i.e. ridens et ridens homo 

aequivalent (“All laughers are human; that is, laughers 
and laughing human beings are equal”). 

In this connection, there has been much discussion 
about G. W. Leibniz’s place in the history of mathemati- 
cal logic. There is no doubt that his works on logic are 
full of interesting insights and J. Venn, who was an out- 
standing student of the history of logic, points out many 
of these insights in his own work. It would also appear 
that G. W. Leibniz and even considerably more the now 
completely neglected J. H. Lambert [31] were the two 
most astute students of mathematical logic before G. 
Boole. 

About J. H. Lambert, J. Venn goes as far as stating the 
following [32]: 

[I]f [G. Boole] had knowingly built upon the founda- 
tion laid by his predecessor [J. H. Lambert], instead of 
beginning anew for himself, it would be hard to say 
which of the two had actually done the most. 

However, it is not possible to find in the works of ei- 
ther G. W. Leibniz or J. H. Lambert anything close to the 
comprehensive theory of digital mathematics that is evi- 
dent in G. Boole’s works. 

This is otherwise not the place to discuss the respec- 
tive merits of the various forms of notation. Still, the one 
preferred here, p = pl, offers distinct advantages. One 
advantage is the manner in which it conveys in transpar- 
ent fashion the purport of the statement that it represents 
symbolically. 

The purport of the notation is easily enough put into 
words. The Equation clearly signifies that the set of phi- 
losophers (p) is the same as the set of anything that is 
both a philosopher and logical (p × l or pl). This means 
that the set of the philosophers is a subset of that which is 
logical. Indeed, if the philosophers are all logical, then 
thinking of all the philosophers is the same as thinking of 
all the logical philosophers because they are all logical. 

Even more convenient is a geometric representation. 
The set of the philosophers may be represented by a 
smaller circle inhabiting a larger circle representing the 
set of all that is logical. Evidently, the smaller circle of 
the philosophers belongs to the larger circle of what is 
logical and therefore contains all that is both a philoso- 
pher and logical. On the other hand, there can be logical 
entities outside the set of the philosophers. 

From Equation (1), it follows that 

0p pl  , 

which can also be written as 

 1 0p l  .               (3) 

Equation (3) can be put into words as 
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“Nothing (0) is (=) both a philosopher (p) and not 
logical  1 l ”. 

That  1p l  equals (=) nothing (0) means that it 
does not exist. Likewise, it can be inferred from the sec- 
ond premise, Equation (2), that 

   1 1 0l l o     

which can evidently be rewritten as 

  1 1 0l o                 (4) 

and be put into words as 
“There is no such thing as something that is both il- 

logical and not obstinate”. 
There appears to be more than one way to accomplish 

mathematical derivations in G. Boole’s algebra. “It is, 
however, satisfactory”, writes G. Boole, “to possess dif- 
ferent modes, serving for mutual verification, of arriving 
at the same conclusion” [33]. 

14.4. Task One: Establishing That the  
Conclusion Does Not Follow from the 
Premises 

Do the two premises lead to the conclusion in the syllo- 
gism at hand? It appears they do not. In fact, they afford 
no conclusion whatsoever about the relation between 
“obstinate” (o) and “philosopher” (p). The procedure that 
G. Boole would follow is as follows [34]. 

First, Equations (3) and (4) are combined and reduced 
to a single Equation, as follows: 

     1 1 1 0p l l o               (5) 

Since the Equations (3) and (4) both involve a term 
that is equated with 0, their sum in (5) will also be equal 
to 0. 

Second, in order to eliminate l to leave only p and o 
and thus establish how p and o relate to one another, G. 
Boole’s mathematically proven procedure contains the 
following three steps: 1) equating l in the left term of 
Equation (5) first with 1 and then with 0; 2) multiplying 
the two results; and 3) equating the product with 0 [35]. 
Equating l in the left term of (5) with 1 gives 

    1 1 1 1 1

0 0 (1 0)

0 0

0

p o

p

   

    
 


             (6) 

Equating l in the left term of Equation (5) with 0 gives 

    
 

 

1 0 1 0 1

1 1 1

1 0

p o

p o

p

   

    

  

            (7) 

The result of multiplying (6) and (7) and equating the 

product with 0 is 

 0 1 0 0p       

And therefore also 

0 0.  

This expression is completely inconclusive. It follows 
that there is nothing to be learned from the two premises 
about the relation between p and o. QED. 

It will be useful to verify this conclusion by applying 
the same procedure to the other syllogism cited in §13.2. 
In the case of this well-known syllogism, there is no one 
who doubts that the conclusion follows from the two 
premises. It will therefore be interesting to see how this 
other syllogism fares when it is subjected to the exact 
same procedure as Ch. L. Dodgson’s syllogism. 

The two premises are as follows: 
All men are mortal; 
Socrates is a man. 
If “men” is h (that is, “human”), “mortal” is m, and 

“Socrates” is s, then the two premises can be represented 
in complete analogy with the two premises of Ch. L. 
Dodgson’s syllogism as follows: 

;h hm  

.s sh  
It follows that 

0h hm   or  1 0h m   and 

0s sh   or  1 0s h  . 

Adding the left terms of the two Equations and equat- 
ing them with 0, as was done in Equation (5), produces 

   1 1 0.h m s h               (8) 

The common term, in this case h “human”, can be 
eliminated in the same way that it has been above in Ch. 
L. Dodgson’s syllogism. In this case, the common term is 
h “human”. Its elimination makes it possible to establish 
what the relation is between s and m. 

The attribute h in the left term of the Equation is first 
equated with 1 and then with 0. The two results are mul- 
tiplied with one another, and the product is equated with 
0. 

Equating h in the left term of (8) with 1 gives 

   1 1 1 1 1m s m      .          (9) 

Equating l in the left term of (8) with 0 gives 

   0 1 1 0m s s               (10) 

The result of multiplying (9) and (10) and equating it 
with 0 is 

 1 0s m  . 

This can also be written as 
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0s sm  . 

And therefore also as 

s sm . 

This last Equation can be put into words as “Socrates 
is mortal”. Indeed, according to this Equation, conceiv- 
ing of Socrates (s) is exactly the same as conceiving of 
all that is both Socrates and mortal (sm). The same enti- 
ties are selected. In other words, there is nothing that is 
Socrates beyond what is mortal. Conversely, conceiving 
of mortals (m) is not the same as conceiving of all that is 
both Socrates and mortal (ms). There are more of the 
former than of the latter. There are mortals outside of So- 
crates, but no Socrates outside of mortals. In sum, Socrates 
belongs to the mortals. 

It appears, then, that the premises of the second syllo- 
gism, as contrasted with those of Ch. L. Dodgson’s syl- 
logism, do afford a conclusion. 

Ch. L. Dodgson’s syllogism is not the only type that 
offers no mathematical conclusion. So, for example, does 
the following type: 

No a is b. 
No b is c. 
It is not possible to draw a conclusion from these two 

premises about the relation between a and c: a may be 1) 
none of c or 2) some of c or 3) all of c (and perhaps then 
some). One example of each is as follows: 

1) Brazilians are not French. 
French are not Germans. 
2) Brazilians are not French. 
French are not South Americans. 
3) Brazilians are not French. 
French are not citizens of Rio de Janeiro. 

In the case of 1), it is otherwise known that a (“Brazil- 
ians”) are none of c (“Germans”); in the case of 2), that a 
is some of c (“South Americans”); and in the case of 3), 
that a is all of c (“citizens of Rio de Janeiro”) and then 
some. 

14.5. Interlude: The Real Life Purport of the  
Inconclusiveness of Ch. L. Dodgson’s  
Two Premises 

It was noted above that the mathematical conclusion de- 
rived from Ch. L. Dodgson’s two premises regarding the 
relation between the two attributes p “philosophers” and 
o “obstinate people” in both their present and absent 
states can be expressed as 

0 0.  

In other words, the two premises yield no conclusion 
regarding the relation between p and o. Nothing can be 
known about the relation between the two on the basis of 
the two premises. 

The mathematical conclusion may seem a little ab- 

stract and may therefore fail to convince. It will therefore 
be useful to give some real life perspective to the ma- 
thematical conclusion by means of concrete examples. 

A number of relations are possible between p and o. 
This is not the place for a detailed account. A complete 
discussion of all the possible relations between two at- 
tributes in their present and absent states needs to be 
postponed to the detailed treatment of nexus digitality 
(NexDi). 

But in brief, the main types of relations between p and 
o may be expressed as follows: 

1) “All p is o”; 
2) “All o is p”; 
3) “All p is all o”, which is the same as “All o is all p”, 

implying both “All p is o” and “All o is p”; and 
4) “No p is o”, which is the same as “No o is p”. 
Instead of discussing all the possible relations between 

p and o, it will be advisable to instead take Ch. L. Dodg- 
son’s conclusion as a point of departure and determine 
how it compares to the strictly digital mathematical con- 
clusion. 

According to Ch. L. Dodgson’s conclusion, some ob- 
stinate people are not philosophers. It may be assumed 
that, by “some”, Ch. L. Dodgson means at the same time 
both “not all” and “not none”. In his definition of “some” 
as “one or more” [36], “more” might perhaps be inter- 
preted as including “all” because “all” is after all “more 
than one”. However, he also classifies “some”, “none”, 
and “all” as being all three distinct from one another [37]. 
Furthermore, he classifies “some” as part of a “particu- 
lar” proposition and “all” as part of a “universal” propo- 
sition [38], as is the rule in Aristotelian and scholastic 
logic. In other words, if “some” included “all”, “some” 
could be on occasion be part of a universal proposition, 
which according to Ch. L. Dodgson is never the case. 

In order to disprove Ch. L. Dodgson’s conclusion in a 
concrete way, it needs to be demonstrated by means of 
clear real life examples that the two conclusions “All 
obstinate persons are non-philosophers” and “No obsti- 
nate persons are non-philosophers” are altogether possi- 
ble. 

It may be argued that the fact that these two other con- 
clusions are also possible does not make Ch. L. Dodg- 
son’s conclusion false, only incomplete. However, at 
issue is mathematics. A mathematical conclusion needs 
to seamlessly account for all possible cases and describe 
the exact extent both of what is known and what is not 
known. When it comes to mathematics, an incomplete 
answer is a false answer. 

Moreover, even though “some” is not quite contra- 
dicted by “all”, it definitely is by “none”. 

First, “all” in addition to “some”. There seems to be no 
reason why one of the possible conclusions could not be 
that all the obstinate people are non-philosophers, and 
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not just some as Ch. L. Dodgson concludes, in other 
words that no obstinate people are philosophers. Ch. L. 
Dodgson’s conclusion “Some obstinate persons are not 
philosophers” seems to imply that some obstinate persons 
are philosophers. But this implication, while possible, is 
not binding. Again, mathematically speaking, the possi- 
bility cannot be excluded that no obstinate persons are 
philosophers. 

Even if “some” did mean “at least some” and hence 
did include “all” according to Ch. L. Dodgson, which I 
believe it does not (see above), the expression “some” 
would be mathematically imprecise. 

The matter can be clarified and visualized by means of 
circles representing sets or classes. It may be useful for 
the reader to actually draw these circles. If a circle P in- 
habits a circle L, signifying that philosophers (P) are 
members of the class of logical persons (L) in accordance 
with Ch. L. Dodgson’s first premise, then illogical per- 
sons are represented by the entire area that falls outside 
the larger circle L. 

According to Ch. L. Dodgson’s second premise, what 
is outside circle L is part of what is obstinate. Now 
imagine a circle O signifying what is obstinate and en- 
veloping all that is outside L. According to Ch. L. Dodg- 
son’s conclusion, circle O also seems to envelop part of 
P. In other words, some obstinate persons are philoso- 
phers. 

It seems clear that, for circle O to envelop all that is 
outside L, it does not necessarily in addition need to en- 
compass anything inside circle L or anything inside the 
circle P that is inside circle L. If it does neither, then all 
obstinate persons are both at the same time illogical and 
non-philosophers. It then also follows that O and what is 
outside L fully overlap. In other words, all obstinate per- 
sons are non-philosophers and all non-philosophers are 
obstinate persons. The two are the same. 

One might argue that it is somehow more plausible 
that some philosophers are obstinate and some are not, as 
Ch. L. Dodgson’s conclusion implies, rather than that all 
obstinate persons are non-philosophers, a possibility that 
cannot be excluded according to a strictly mathematical 
analysis. There is no denying that Ch. L. Dodgson’s con- 
clusion seems somehow more plausible. But the simple 
point is this. This plausibility is derived from what else is 
known about philosophers and obstinate persons. It 
cannot be derived from the mathematical structure of the 
two premises. 

In this regard, it will be useful to consider examples of 
pairs of premises that exhibit the exact same structure as 
Ch. L. Dodgson’s pair, but in which the conclusion “All z 
is not x” seems more plausible than Ch. L. Dodgson’s 
conclusion “Some z is not x”. His pair is juxtaposed to 
the new pairs to reveal the identity in structure.  

First premise: 

All philosophers are logical. 
All French people are human beings. 
Second premise: 
An illogical man is always obstinate. 
A non-human being is always devoid of rationality. 
Conclusion: 
Some obstinate persons are not philosophers. 
Some devoid of rationality are not French persons. 
The conclusion leaves open the possibility that some 

devoid of rationality are French persons. It is desirable 
and tempting, to say the least, to assume instead that all 
those devoid of rationality are not French persons, or that 
no one devoid of rationality is French. 

In the case of “obstinate” in Ch. L. Dodgson’s syllo- 
gism, the possibility that some philosophers are obstinate 
is not far-fetched. It is not all that difficult to imagine 
obstinate philosophers. But it does not come so easy to 
imagine French people devoid of all rationality. If an 
attribute is undesirable, like being devoid of rationality, it 
is much easier to assume or want to assume that no 
member of a certain class or set exhibits it. This assump- 
tion also comes easy in the case of the following two 
premises. 

According to Ch. L. Dodgson’s pattern, the two prem- 
ises 

All brilliant scientists are human beings. 
A non-human being is always devoid of rationality. 

lead to the following conclusion: 
Some devoid of rationality are not brilliant scientists. 
Surely, all of them are not brilliant scientists, that is, 

none of them are brilliant scientists. 
It cannot quite be said that the conclusions regarding 

those devoid of rationality are false. But they are incom- 
plete in leaving out a distinct possibility. In that regard, 
they are not mathematical. Once the possibility left out is 
included, the two premises become less conclusive than 
Ch. L. Dodgson makes them out to be. 

There are some pairs of premises modeled after Ch. L. 
Dodgson’s pair of premises in which the conclusion 
would seem to require “all” at the exclusion of “some”. 
That would in a sense in its own right be a rejection of 
“some” as Ch. L. Dodgson’s conclusion. While assuming 
“all or some” instead of just “some” just makes Ch. L. 
Dodgson’s conclusion incomplete, just “all” would con- 
tradict it.   

Consider in this regard the following two premises and 
a conclusion modeled after Ch. L. Dodgson’s syllogism: 

Belgian cyclists are drug free. 
A doper (someone non-drug-free) is always banned. 
Therefore, some banned persons are not Belgian cy- 

clists. 
It would seem as if the conclusion that all banned per- 

sons are not Belgian cyclists, in other words that no 
banned persons are Belgian cyclists, imposes itself. After 



L. DEPUYDT 

Copyright © 2013 SciRes.                                                                                 APM 

512 

all, they are all drug free. Why ban them? 
However, the premises only state that dopers are 

banned. They do not reveal whether drug free cyclists are 
banned or not. The assumption that they are not banned 
is not derived from the premises but from what else is 
known outside the premises. Considering all else that is 
known about cyclists, it is indeed difficult to think of a 
reason why drug free cyclists would be banned. But in 
drawing this conclusion, one relies on what else one 
knows besides the premises. Theoretically speaking, it is 
easy to think of a possible world in which cyclists, in- 
cluding drug free ones, can be banned for various types 
of behavior besides doping. It is not possible to exclude 
this possibility. 

This much for “all”. But what about “none”? So far, 
“all” has been added to Ch. L. Dodgson’s “some” as a 
possible conclusion to show that what can be inferred 
from the premises is less conclusive than Ch. L. Dodgson 
assumes. But since “all” in a sense automatically implies 
“(at least) some” whereas “some” does not automatically 
imply “all”, it is possible to argue that Ch. L. Dodgson’s 
conclusion is not positively falsified but only exposed as 
incomplete and therefore mathematically imprecise.  

In order to expose the two premises as fully inconclu- 
sive and at the same time positively false, it needs to be 
established whether “none” is also a possible conclusion, 
in this case that “None of the obstinate persons are not 
philosophers”, or in other words that “All the obstinate 
persons are philosophers”. 

The implications of this possible conclusion are as 
follows. According to the first premise, all the philoso- 
phers are logical. If one in addition assumes, as was just 
done on the basis of “None of the obstinate persons are 
not philosophers”, that all the obstinate persons are phi- 
losophers, then by the first premise the obstinate persons 
are also all logical. 

However, according to the second premise, an illogical 
person is always obstinate. Accordingly, one is forced to 
contemplate the notion of illogical persons that are ob- 
stinate. However, it has also been assumed that all obsti- 
nate persons are logical. How can the two be reconciled? 

The obvious conclusion must be that there are no il- 
logical persons. For if there were, they would have to be 
obstinate by the second premise. However, the prior as- 
sumption is that all the obstinate persons are philoso- 
phers and therefore logical. In other words, by said as- 
sumption, obstinate persons cannot be illogical. There- 
fore, the second premise can only apply if there are no 
illogical persons. 

This conclusion may seem awkward. But it will be 
useful to demonstrate its veracity by means of a different 
example and afterwards return to the example just dis- 
cussed.  

The following two premises along with a conclusion 

are modeled after Ch. L. Dodgson’s syllogism and con- 
cern all the students of a certain high school and an invi- 
tation to the students to participate in a 3 k run to benefit 
a certain cause. In G. Boole’s terms, the “universe of 
thought”, or all that one could think about, is limited to 
these students. A more detailed analysis of the universe 
of thought will be presented later. The syllogism is as 
follows:  

All runners will receive a certificate. 
Those not receiving a certificate will be disappointed. 
Therefore, some disappointed persons will not be run- 

ners. 
If this type of syllogism is as mathematically incon- 

clusive as it has been claimed to be above, then it ought 
to be possible that “None of the disappointed persons 
will not be runners”. In other words, “The disappointed 
persons will all be runners”. The notion of disappointed 
runners arises. However, by the first premise formulated 
above, all the runners will receive a certificate. Therefore, 
no runners can possibly be disappointed. How can this 
be?  

The solution is obviously in this case that everyone ran. 
This possibility is easy to imagine. Why would not eve- 
ryone want to run? That way everyone gets a certificate 
and no one is disappointed. The conclusion “None of the 
disappointed persons will not be runners” is therefore not 
contradicted because there are no disappointed persons.  

It remains a fact that the statement “None of the dis- 
appointed persons will not be runners” is awkward. How- 
ever, the statement was only postulated as a conclusion 
in an attempt to invalidate Ch. L. Dodgson’s “some”. In 
the end, no conclusion is possible from the two prem- 
ises. Any postulated conclusion is therefore bound to be 
in some sense awkward.  

One might also wonder what the point is of making a 
statement such as “The disappointed persons will all be 
runners” if it is possible for there to be no disappointed 
persons.  

There have been two great tendencies in logic. Some 
have assumed that, if one makes a statement, the entities 
mentioned in the statement need to exist. Others have 
assumed that it does not matter whether they exist or not. 
I believe that the latter view is the correct one. However, 
it may be better to describe the latter view as follows: 
one does not focus at all on any possible existence on the 
part of any entities. What matters is the mathematical 
relation between the entities. 

The hard core of logic is digital mathematics. In quan- 
titative mathematics, the focus is often purely on a rela- 
tion. Consider the Equation  

2 ,y x  

which is also a function. Both x and y could be any 
number. The Equation does not focus on any specific 
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number. The focus is on the relation.  
In a similar way, the focus of the Equation of digital 

mathematics is on a relation. What better way to demon- 
strate this focus than by means of an example in which 
an entity does not exist and yet a true statement is made 
about it. The statement is as follows: 

Any human being who can lift two tons above his head 
is stronger than an elephant. 

This statement is undeniably true. But there exist no 
such human beings. Another example of a true syllogism 
is as follows. 

Premise 1: All horses with ten legs can fly. 
Premise 2: Paris is a horse with ten legs. 
Conclusion: Paris can fly. 
Finally, it may be useful to return to the original ex- 

ample and consider what it means that “None of the ob- 
stinate persons are not philosophers”, in other words, that 
“All the obstinate persons are philosophers”. By the sec- 
ond of Ch. L. Dodgson’s premises, all illogical persons 
are obstinate. If “All the obstinate persons are philoso- 
phers”, then it follows that all illogical persons are phi- 
losophers. But by the first premise, philosophers are all 
illogical. How can this be? 

The solution is that there are no illogical philosophers. 
Indeed, some might argue in favor of the view that hu- 
man beings all have their philosophical moments and are 
in that regard all philosophers in a way. That also means 
by the first premise that they are all logical to an extent. 
In that sense, there are not really any illogical persons. 
One may chose to disagree with this view. But what 
matters is that it is logically possible to hold the view and 
think that one is making sense. Digital mathematics al- 
together allows for the possibility. 

14.6. Task Two: Identifying the Meaning of 
“Some Obstinate Persons Are Not  
Philosophers” 

The fact that the premises do not lead to the proposed 
conclusion in the first syllogism does not mean that there 
is nothing to be said about the conclusion or that no con- 
clusions can be derived from the two premises. The con- 
clusions are discussed in the next section. The present 
section is concerned with what the conclusion does 
mean. 

The conclusion 
Some obstinate persons are not philosophers. 

is best characterized by noting how it differs radically in 
nature from the conclusion 

Socrates is mortal. 
The difference is simply this. The former conclusion 

does not declare anything to be non-existent. It implies 
that there are obstinate philosophers, non-obstinate phi- 
losophers, obstinate non-philosophers, and non-obstinate 

non-philosophers. By contrast, the second conclusion de- 
clares the class of what is both Socrates and not mortal to 
be non-existent. The three classes containing what is 
Socrates and mortal, not Socrates but mortal, and neither 
Socrates nor mortal do otherwise exist. 

To be appreciated in full, the difference between the 
two modes of declaration needs to be placed in the con- 
text of rational human intelligence in its entirety. The 
matter will be discussed in a follow-up paper. It will be 
eminently useful to introduce the concept of entropy to 
the study of rational human intelligence. 

Entropy is a crucial component of the Second Law of 
Thermodynamics. It will appear that, in examining ra- 
tional human intelligence, an essential structural princi- 
ple can be adopted with great profit from the Second 
Law of Thermodynamics to the extent that it can be used 
to demonstrate how rational human intelligence is at all 
possible. Evidently, all this does not mean that the pro- 
pagation of rational human intelligence has anything to 
do with the propagation of heat.  

14.7. Task Three: Conclusions That Do Derive 
from the Two Premises “All Philosophers 
Are Logical” and “An Illogical Man Is  
Always Obstinate” 

The conclusion that Ch. L. Dodgson derives from the two 
premises at hand is “Some obstinate persons are not phi- 
losophers”. This conclusion conveys something that can 
presumably be known about obstinate people.  

But it has been shown above in strictly mathematical 
terms that this specific knowledge cannot be derived 
from the premises in question.  

In order to gain a better understanding of the premises 
in question, it will be useful to provide some more con- 
text by considering what does appear possible in terms of 
conclusions derived from the two premises. 

In a rigorous mathematical system, it is necessary to 
determine the exact degree, not only of our knowledge, 
but also of our ignorance. Accordingly, a complete ma- 
thematical map of Ch. L. Dodgson’s premises must be 
possible. 

But before taking a look in §14.11 at the mathematical 
map in question, some remarks are in order about the 
values of two symbols of G. Boole’s digital mathematics. 
The first symbol is “+”. It corresponds to the Boolean 
operator OR. It is discussed in §14.8. The second symbol  

is 
0

0
. It is discussed in §14.9 and §14.10. 

In what follows, I will try to be fairly explicit about 
methodological principles for the sake of clarity. But it is 
difficult to see how a full understanding of the entire 
theoretical background is possible without revisiting the 
original works on digital mathematics by G. Boole and J. 
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Venn.  
The present elaborate analysis of Ch. L. Dodgson’s 

syllogism may seem cumbersome or perhaps even over- 
bearing. But I believe that full explicitness is necessary 
to impress upon the reader the total veracity, absolute 
finality, and consummate rigor of attributivity mathe- 
matics. 

Some considerable claims have been made about the 
universality of attributivity mathematics, not in the least 
by G. Boole himself. Then again, so many lofty claims 
are being made all the time about all kinds of matters. 
The need is for positive indications of the validity of a 
certain method. Much of what follows in future papers 
regarding the structure of rational human intelligence 
will be built on the foundations of digital mathematics. It 
will therefore be useful to describe these foundations in 
more detail before proceeding to apply them to a com- 
prehensive analysis of rational human intelligence. 

14.8. The Symbol “+” in G. Boole’s Algebra 

In Equation (5), namely 

    1 1 1 0p l l o     , 

the term to the left of the Equation mark has two compo- 
nents, namely “illogical philosophers” and   1 1l o   
“illogical people that are not obstinate”. Both compo- 
nents are said to not exist or be equal to zero  0 . 

It will be desirable to recast Equation (5) in terms of 
all three attributes p, l, and o. Accordingly, it can be re- 
written as follows: 

     
      

1 1 1

1 1 1 1 1

0.

p l o p l o

p l o p l o

     
        


   (11) 

Equation (11) conveys above and beyond Equation (5) 
that illogical philosophers consist of both those that are 
obstinate (o) and of those that are not obstinate  1 o  
and that illogical obstinate people consist of both those 
that are philosophers (p) and those that are not philoso- 
phers  1 p . 

There are four terms in Equation (11). Each of the four 
components is formulated in terms of all three attributes. 
Together, the four terms denote all the non-existing 
 0  combinations of these three attributes in both their 
present and absent states. They will therefore be referred 
to in what follows as combination sets or classes.  

Equation (11) may also be represented with all four 
terms on the same hierarchical level after elimination of 
the square brackets, as follows:  

    
        

1 1 1

1 1 1 1 1

0.

p l o p l o

p l o p l o

   

      



     (12) 

The most striking characteristic of Equation (12) is 
that the second component and the third component of 
the long term to the left of the Equation sign are one and 
the same, namely   1 1p l o  . 

It is at this juncture that, I believe, it is necessary to 
take a step that G. Boole did not himself always tend to 
take, for the simple reason that he did not always sys- 
tematically formulate every component in terms of every 
attribute. 

To some extent, the fact that he does not take this step 
affects the way in which he applies the comprehensive 
method that he himself for the first time so fully formu- 
lated. As a consequence, the application of his approach 
to examples does not always appear to me as smooth as it 
could be and certain problems even arise, as will be il- 
lustrated below.  

No one considered the following fundamental axiom 
of digital mathematics to be as preeminent as G. Boole 
did, and rightly so:  

x x x  , 

which can also be written as 

xx x  [39], 

which is the notation that G. Boole prefers. 
The real life purport of this axiom is as follows. If one 

takes, say, all the entities that exhibit the following two 
attributes, namely f “French” and f “French”, what one 
obtains is still only what is French. In symbolic language,  

f f f  . 

This much for the symbol “  ”, the Boolean operator 
AND, and a fundamental axiom that pertains to it.  

But similar reasoning is possible about the symbol “+”, 
the Boolean operator OR. By the same appeal to real life 
purport, if one takes all the entities that are French and 
then, in a second act of selection, takes again all the enti- 
ties that are French, what one obtains is still only what is 
French: 

f f f  . 

However, I cannot readily locate anywhere in G. 
Boole’s writings, nor in J. Venn’s for that matter, any 
equivalent of the expression  

x x x  . 

In fact, Th. Hailperin points to a letter by G. Boole to 
S. Jevons in which G. Boole categorically denies [40] 
that 

x x x  . 

The correspondence between G. Boole and S. Jevons 
was first brought to light by Ph. E. B. Jourdain [41] as 
part of a series of useful articles on the history of ma- 
thematical logic [42,43]. 

Instead, in the letter in question, G. Boole proposes 
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that [44,45] 

0x x   

and furthermore that 0x x   is equivalent to 

0x  . 

What did G. Boole mean by 0x x  ? He does not 
specify. 

The purport of 0x x   can be inferred, however, 
from how he understood the symbol “+”. He interprets it 
as being exclusive. In other words, “x y ” signifies that 
no x is y and no y is x. 

Therefore, in the expression x x , the alternative to 
the first x following + ought to be something that is not x. 
But it happens to be x. What is both x and not x at the 
same time must equal 0 by the fundamental law of 
thought. 

And the same reasoning applies to the second x in its 
relation to the first x. Another way of looking at this is as 
follows: If x equals 0 in its second occurrence, then why 
would it not also in its first occurrence? 

Equivalents of x x x   seem quite easy to find from 
the time onward when Boolean algebra came to be ap- 
plied to the relay and switching circuits of electrical en- 
gineering, that is, from the late 1930s onward, in forms 
such as the following: 

1 1 1  . 

If there is a current in both of two parallel wires, there 
will evidently be a current in their joint output. 

The symbol “+” denotes two electrical wires con- 
structed next to one another in parallel. In electrical en- 
gineering, “1” can represent an On-current and “0” an 
Off-current. 

But somewhat awkwardly, the opposite convention 
also exists. I have not quite appreciated this fact in my 
own earlier writings. According to this convention, “0” 
represents on On-current. “0” is understood as “zero re- 
sistance to an electric current” and hence as an On-cur- 
rent. Likewise, “1” is understood as “full resistance to an 
electric current” and hence as an Off-current. C. E. Shan- 
non, who first applied G. Boole’s algebra to electrical 
switching circuits in the late 1930s used this convention 
and possibly first introduced it. 

In any event, I prefer the convention according to 
which “1” denotes an “On-current” and “0” and Off- 
current. 

It seems more than obvious to me—as it has by now to 
most everyone involved—that G. Boole’s exclusive inter- 
pretation cannot possibly stand. The elimination of this 
interpretation otherwise causes no detriment to G. 
Boole’s general theory. J. Venn also advocated for the 
non-exclusive interpretation of “+”. And in fact, a mere 
search on the Internet for f f  “that which is French 
OR that which is French” yields that which is French and 

not 0. 
The exclusive interpretation of “+” seems to contradict 

the very internal coherence of G. Boole’s theory. It re- 
sults in untenable contradictions. For example, if one 
interprets the expression x y  according to G. Boole’s 
very own fundamental theorem of Development, men- 
tioned above, one obtains the inclusive interpretation of 
the expression. The theorem is discussed below. 

Then again, G. Boole perhaps unwittingly somehow 
comes close to x x x   when he discusses what is 
sometimes called the rule of absorption [46]. Thus, if f is 
“French” and d is “doctors”, then 

f fd f  . 

The real life purport of this Equation is evident. If one 
adds to what is French all the French doctors, one still 
only obtains what is French. In general, adding to some- 
thing anything that belongs to that something still only 
produces that something. 

The sum x x  is only a special case of this general 
rule because the second x belongs entirely to the first, 
and vice versa. By the mere rule of absorption, x x x  . 
Elsewhere, G. Boole equates 1 w  with 1 [47]. 1 is the 
symbol for everything. It is clear that everything smaller 
than everything itself belongs to 1 or everything. All that 
is not everything, which includes w, belongs to 1 and is 
absorbed by it, as it were. 

It can also be noted that, in equating 0x x   with 
0x  , G. Boole himself in some sense equates x x  

with x. G. Boole recognizes that, in his exclusive inter- 
pretation of “+”, 0x x   can only be true if 0x  . 

If one accepts that x x x   and that 1 1 1  , then 
the Development of x x  also yields x. The design of 
developing x x  is to establish what part of x and what 
part of non-x is taken in x x . 

In sum, it seems imperative to reduce   1 1p l o   
  1 1p l o   in Equation (12) to just   1 1p l o  . 

I can see no need to take the same class twice. 
Then again, it is true that, if one promises $100 to all 

the French and to all the doctors, the typical understand- 
ing will be that French doctors get $200. 

If “French” is f and “doctors” are d, then G. Boole 
would represent the class encompassing all that is French 
and all the doctors as f d  and assume that the two 
components of the class do not overlap.  

But in the inclusive interpretation adopted here, the 
French encompass both the French non-doctors  fd  
and the French doctors  fd  and the doctors encompass 
both the French doctors  fd  and the non-French doc- 
tors  fd , and the French doctors are therefore in fact 
conceived of twice.  

And indeed, if one develops the expression f d  
according to G. Boole’s own formula of Development, 
one obtains inevitably fd fd fd fd   , or what G. 



L. DEPUYDT 

Copyright © 2013 SciRes.                                                                                 APM 

516 

Boole and J. Venn would also write as 2fd fd fd  . 
This expression appears to contradict the axiom just 
stated that x x x  . Electrical engineers know that, in 
digital design, 1 1 1   and not 2. Why does the axiom 
somehow not seem to apply in the present case? 

In this case, x is “French doctors”. Why are the French 
doctors counted twice and not reduced to just one count 
in accordance with the axiom x x x   or fd fd fd  ? 
The apparent contradiction is not addressed to full satis- 
faction or in full detail, I believe, in G. Boole’s or J. 
Venn’s writings. It will therefore be desirable to digress 
and propose an answer regarding the matter. 

The reason for the apparent contradiction is the nature 
of the expression f d . It is mathematically incomplete. 
The expression f d  is something that G. Boole would 
altogether not hesitate to write. But there is something 
unsatisfying about it from the mathematical point of view. 
What is the origin of the expression? 

The expression f d  is a literal mathematical sym- 
bolic equivalent of the linguistic expression “French and 
doctors”. There is no denying that “French and doctors” 
is a bona fide linguistic expression. Uttering the expres- 
sion “the French and the doctors” is a bona fide linguistic 
act. The mind first conceives of the French, who encom- 
pass both French who are doctors and French who are 
not doctors, and it then conceives of the doctors, who 
encompass both the doctors who are French and the doc- 
tors who are not French. 

The way in which the mind works through linguistic 
expression in real time inevitably involves the double 
contemplation of “French doctors”. It is the separation in 
time between the utterance of the first instance and the 
utterance of the second instance that prevents the dual 
occurrence of “French doctors” to merge into just one, as 
digital mathematics would normally require on a strictly 
mathematical level. “French doctors” is clearly being 
contemplated twice.  

There are cases in which there is no overlap between 
two terms of the expression x y , as in the expression 
“squares and triangles”. However, someone who does not 
know anything about squares or triangles would be enti- 
tled to assume that things that are both squares and train- 
gles could also be signified by the expression. The 
knowledge that there are no such things is extraneous to 
the expression itself. 

The symbolic expression f d  in a sense mimics 
the linguistic expression “French and doctors”. But in 
mathematical terms, the expression is an abbreviation of 
fd fd fd fd   . Because of the abbreviation, both 

instances of fd are prevented from merging into one, as it 
were. 

In the end, I personally believe that, while the abbre- 
viation is not entirely without its usefulness, it comes 
with a loss of mathematical precision. Full mathematical 

precision is always securely accomplished by spelling 
out all attributes in terms of all other attributes that are 
part of the expression in both their present and their ab- 
sent states. Fully spelling out would in fact be necessary 
if the expressions in question were programmed for a 
computer. 

A linguistic expression that represents French doctors 
only once is “all the French and all the non-French doc- 
tors”. It is mimicked symbolically in abbreviation by 

 1f f d  . The complete mathematical representation is 

   1 1fd f d f d    . 

Then there is the expression “all the French except the 
doctors and all the doctors except the French”, which 
positively excludes French doctors. The complete ma- 
thematical representation is    1 1f d f d   . 

I believe that there is every reason to reduce as G. 
Boole would apparently not have (and in regard to which 
J. Venn nowhere expresses a definite opinion as far as I 
know) Equation (12) to 

         1 1 1 1 1 1 0.p l o p l o p l o          (13) 

There are eight possible combinations of p, l, and o in 
both their present and absent states. It appears from 
Equation (13) that three do not exist. It follows that the 
following five do exist: plo , plo , plo , plo , and 
plo . 

Incidentally, a notation such as l  does offer the ad- 
vantage of succinctness over  1 l . Five symbols— 
namely “(”, “1”, “—”, “l”, and “)”—are replaced with what 
is in effect just one symbol surmounted by a diacritic 
mark. However, for the purposes of the present investi- 
gation, it will very often be desirable to retain the longer, 
more transparent, notation. The transparency offered by 
the longer notation will serve the cause of clarity. 

14.9. G. Boole’s Symbol for “Indefinite Amount” 

In Equation (5), no two symbols are more characteristic, 
some might say idiosyncratic, of G. Boole’s algebra than  
0

0
 and 

1

0
. The symbol 

0

0
 describes a class or set of 

which an indefinite amount is taken, that is, none, some, 

or all. The symbol 
1

0
 describes a class or set that does  

not exist. The precise manner in which these symbols are 
generated by mathematical procedures will be described  

further below. The focus of the present section is on 
0

0
. 

It is no exaggeration to state that both symbols have 
mystified many, have been rejected by most, and have 
even been experienced as repulsive by some. 

In his admirable biography of G. Boole, D. MacHale 
notes that G. Boole’s “use of the ‘indeterminate’ symbol 
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0/0 caused a great deal of difficulty” [48]. It sounds like 
a complete dismissal of the validity of the symbol. I have 
the impression that the author of the biography, being a 
mathematician, had a much better understanding of G. 
Boole’s work in quantitative mathematics than of his 
work in digital mathematics. 

There is otherwise no doubt in my own mind of the 
total meaningfulness and absolute mathematical veracity  

of both 
0

0
 and 

1

0
. 

Remarkably, G. Boole himself thought of them as be- 
ing strictly mathematical and says little or nothing about 
their logical or “real world” significance. But J. Venn did 
much to show that they make perfect sense in terms of 
real life purport [49]. 

The mathematical significance of 
0

0
 will be further  

elucidated below. Suffice it in this section to clarify the 
mathematical precision of “none, some, or all” by means 
of a simple example. If Paris is French, then what can be 
derived from this premise about French in terms of Paris? 

It is clear that French includes all of Paris and none, 
some, or all of what is not Paris. J. Venn calls “none, 
some, or all of what is not Paris” a “surplus indefinite 
term” yielded by logical division, which is so character- 
istic of Boole’s treatment. Probably no logician before 
Boole (with the very doubtful exception of H. Grass- 
mann...) ever conceived a hint of this” [50]. And 
hardly anyone except J. Venn has put it to use since G. 
Boole. Yet, it is an essential component of digital ma- 
thematics. 

The limit values “none” and “all” cannot be excluded 
if one knows absolutely nothing else about Paris or 
France. 

For example, if the original Equation were instead that 
the square is a figure with four equal sides and four 90 
degree angles, then figures with four equal sides and four 
90 degree angles include all squares and none, some, or 
all what is not a square. In this case, the value “none” 
applies. There are no such figures outside squares. 

If the original Equation were instead that, as regards 
the members of a soccer team, Jack is someone who likes 
a beer, then those who like beer on the team are Jack and 
none, some, or all of the others. In this case, the value 
“all” is altogether possible.  

The first of the two premises of Ch. L. Dodgson’s syl- 
logism discussed above is that all philosophers are logi- 
cal. On the basis of this statement, what can be said about 
logical persons? It can be said that they include all the 
philosophers and none, some, or all of the non-philoso- 
phers. “None” is the answer if one thinks of all human 
beings as in some way philosophical and therefore phi- 
losophers. “All” is the answer if one believes that there 
are really no logical persons and therefore also no phi- 

losophers. It is a view to which many will not want to 
subscribe. But the view can be held up and made sense of 
in a strictly mathematical sense. 

The question “What is 
0

0
?” can be formulated as fol- 

lows: 

0
?

0
 . 

It follows from this Equation that 

? 0 0  . 

In other words, as J. Venn observed, what is being 
sought (“?”) is something that, when multiplied by 0, 
yields 0. What is sought could therefore be nothing, 
something, or everything, which all yield 0 when multi- 
plied by 0. 

Likewise, it follows from 

1
?

0
  

that 

? 0 1  . 

Evidently, that which yields 1 when multiplied by 0 
does not exist. 

It is not self-evident to think of none, some, or all as a 
concept of pure mathematics. It seems to go against the 
grain of mathematics, in which everything is supposed to 
be absolutely exact. And yet, as an item of knowledge, 
none, some, or all exhibits perfect mathematical exacti- 
tude. 

14.10. E. Schröder on G. Boole’s “Indefinite 
Amount” and His Use of “Division”  
in Digital Mathematics 

E. Schröder, like just everyone else except J. Venn it 

seems, rejects the symbol 
0

0
 and the use of the division 

symbol in digital mathematics in general. 

He seems to fully understand the purport of 
0

0
 and of  

the division symbol in general. Yet he rejects it for 
something else that seems related to it. But in doing so, 
he abandons mathematical precision while presumably 
somehow believing that he has gained it by getting rid of 
the vaguely defined “none, some, or all”.  

It should be noted right away that the division symbol 
does not have quite the same function as it has in quanti- 
tative mathematics. Everyone would therefore agree, it 
seems, E. Schröder foremost among them, that a name 
other than “division” would be suitable. Still, it remains a 
fact that, just as in quantitative mathematics, the division 
symbol signifies the inverse of what is commonly repre- 
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sent in Boolean algebra as “×”, as J. Venn first and 
foremost made clear. 

It should also be added that, obviously, what I and 
others call multiplication in digital mathematics is not the 
same as multiplication in quantitative mathematics. I use 
the term in reference to the Boolean operator AND. 

In a biographical sketch of E. Schröder, J. Lüroth 
characterizes E. Schröder’s abolition of the concept of 
division as a significant modification of G. Boole’s sys- 
tem [51]. To sanction what he perceives as a departure 
from G. Boole’s system, E. Schröder proposes an official 
designation for his own system. Writing in German, he 
even suggests to the reader what one should call it in 
English: “Boole’s method as modified by me [that is, E. 
Schröder] (die von mir modifizirte Boole’sche Methode)” 
[52]. 

I will return in §21 below to E. Schröder’s approach 
when discussing examples as illustrations of the mathe- 
matical character of digital mathematics. Two prelimi- 
nary observations are in order already here in the present 
section. 

First of all, I cannot see in which way E. Schröder 
adds anything to G. Boole’s system. I know of no prob- 
lem that could be solved by E. Schröder’s system and not 
by G. Boole’s. It is true that the name “division” is not 
adequate. But the concept that it describes seems to me 
real, as will be illustrated with simple examples further 
below. 

One might be tempted to consider the possibility that E. 
Schröder thought of his system as just a more convenient 
formulation or conceptualization of what is essentially 
the same thing. But he is rather adamant about the im- 
portance of “eradicating (ausmerzen) division” from G. 
Boole’s system [53]. One has the impression that he be- 
lieves to have obtained a different mathematical outcome. 
Evidently, it is not possible to obtain two different results 
from the same operations. One must be wrong and the 
other right. 

Second, I clearly see shortcomings in E. Schröder’s 
approach. It will be useful to look at some simple state- 
ments further below in §21 and ascertain that the result 
obtained for it according to G. Boole’s and J. Venn’s 
method is correct and also that the result obtained for it 
according to E. Schröder’s method abandons a critical 
degree of absolute mathematical precision. 

It is of some concern that someone like E. Schröder, 
who was an eminent mathematician and knew G. Boole’s 
ideas so well and accepted them for the most part, could 
depart from them in some crucial respects. Such diver- 
gence can only undermine confidence in the whole en- 
terprise of digital mathematics. 

Everyone has a certain expectation of what mathemat- 
ics is like. One is not supposed to be able to fudge mat- 
ters in mathematics. Digital mathematics cannot be a 

matter of opinion or individual choice if it is to be truly 
mathematics. Digital mathematics is not as widely prac- 
ticed as simple arithmetic. In simple arithmetic, everyone 
can readily agree that 2 plus 2 is not 5. But it takes a little 
more careful attention to ascertain that the same applies, 
mutatis mutandis, to digital mathematics. The design of 
examples adduced further below in §21 is to demonstrate 
that E. Schröder did something like declaring 5 to be the 
sum of 2 plus 2. 

Some general characteristics of E. Schröder’s ap- 
proach are in order already in this section, lest my rejec- 
tion of his approach to what is represented by G. Boole 
symbolically as division give a wrong impression of my 
appreciation of E. Schröder’s work as a whole. 

First, E. Schröder was by all accounts a highly com- 
petent mathematician who at some point served as direc- 
tor of the Technische Hochschule in Karlsruhe. 

Second, with the sole exception of J. Venn, no one else 
beside him understood, absorbed, and assimilated G. 
Boole’s ideas as completely as far as I know. Simply put: 
J. Venn and E. Schröder fully understood G. Boole, and 
relatively few others ever did.  

Third, E. Schröder’s disquisitions are as a rule accu- 
rate and very exhaustive even if, on a more subjective 
note, I have the impression that his lines of argument can 
on occasion be so belabored that a certain degree of ele- 
gance is lost. 

I should add that this observation is limited to the first 
of the three books of his “Vorlesungen über die Algebra 
der Logik”. I am less acquainted with the second and 
third books [54]. In the latter two books, E. Schröder 
moves on to something entirely different, something be- 
yond what is addressed by G. Boole’s system. What E. 
Schröder writes in them is strongly influenced by the 
writings of Ch. S. Peirce. Many, if not all, find Ch. S. 
Pierce’s writings to be often obscure, and E. Schröder is 
no exception [55]. 

There is a sharp contrast between book one, on the one 
hand, and books two and three, on the other hand. It is 
generally possible to give real life interpretations of the 
digital mathematics of book one, just as one can of G. 
Boole’s system, often with not a little help from J. Venn. 
By contrast, books two and three seem much more ab- 
stract. 

At the beginning of book two, E. Schröder describes 
the works that have inspired him to write the book as 
presenting on occasion “hieroglyphic” systems (“Hiero- 
glyphen”systeme) [56]. And it is not meant as a com- 
plement. Books two and three will in fact play no role in 
the present effort to describe rational human intelligence. 

The ideas of books two and three remind one of the 
intellectual movement that lasted from 1870 to 1940, and 
beyond, to find the roots of mathematics. I. Grattan- 
Guinness has described the evolution of this movement 
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in the greatest detail [57]. The many valiant attempts that 
he records deserve commendation. And so are his own 
efforts to get deep inside the many tentacles of the 
movement. But in the end, to me, the description of much 
of this movement reads like a record of failure. After all, 
after a 690-page book entitled “The Search for Mathe- 
matical Roots”, one might feel tempted to find at the end 
an answer to the simple question: So what are the roots 
of mathematics? However, there is no declaration to the 
effect of “In sum, the roots of mathematics are: ...” 

Fourth, one cannot help to note that E. Schröder’s 
work is somewhat underappreciated, even if this obser- 
vation cannot be extended to I. Grattan-Guiness’s afore- 
mentioned book, which treats his work in detail. I. Grat- 
tan-Guinness was also struck by the small impact of E. 
Schröder’s work [58]. From the papers of C. Ladd- 
Franklin kept at Columbia University, I. Grattan-Guin- 
ness retrieved the following quote about E. Schröder’s 
three-volume “Vorlesungen” by J. N. Keyes, the father of 
the much better known J. M. Keynes, the economist, who 
was himself no mean student of logic and who prede- 
ceased his father. According to the quote, the work “is 
rather full of stupidities, but the core is sound”, which I. 
Grattan-Guinness characterizes as “typical Cambridge 
snobbery”. 

What explains this neglect? Two facts may have con- 
tributed to it. 

First, the three tomes of E. Schröder’s “Vorlesungen 
über die Algebra der Logik” are dense and weighty, at 
721, 606, and 649 pages respectively, for a total of 1976 
pages. Second, the percentage of academics competent in 
German has declined over the decades. 

One facet of E. Schröder’s work that has had little or 
no impact is his opposition to G. Frege’s much cele- 
brated Begriffsschrift [59]. G. Frege has now become 
something of a cult hero in certain quarters. The degree 
of enthusiasm for G. Frege is such that anyone who 
wishes to voice opposition may want to think twice. Yet, 
after some reflection, I personally cannot share the en- 
thusiasm. I provisionally believe that it will be possible 
to program a computer to mimic rational human intelli- 
gence based on G. Boole’s ideas and this and future pa- 
pers are designed to describe some of the basic tools. In 
fact, all that computers can do so far is based on those 
ideas. I cannot see any need for G. Frege’s ideas in such 
an endeavor. 

14.11. The Mathematical Map of the Two  
Premises in Ch. L. Dodgson’s Syllogism 

The two premises of Ch. L. Dodgson’s afore-mentioned 
syllogism do not yield the conclusion that he thinks that 
they do. Then again, there are conclusions that are possi- 
ble. In fact, since those conclusions are obtained by 
purely mathematical methods, a complete mathematical 

map of them should be possible. This map should detail 
with absolute rigor the exact measure of what is known 
and what is not known. 

Suffice it here to take note of some characteristics of 
the map by means of a couple of examples. 

Ch. L. Dodgson’s false conclusion defines obstinate 
persons (o). It is therefore natural to ponder what kind of 
conclusions can be inferred mathematically from the two 
premises about o, and also about the complement of o, 
namely non-o or 1 o  or o .  

Considering that 

   1 1p l o    

is the same as 

   1 1 1p l p l o           , 

or also 

   1 1p l p l o   , 

and that 

    1 1 1p l o     

is the same as 

     1 1 1 1 1p l p l o             , 

or also 

      1 1 1 1p l p l o     , 

Equation (13) above can be rewritten as follows: 

     
     
1 1 1

1 1 1 1

0.

p l o p l p l o

p l p l o

    

     



       (14) 

From (14), it follows that 

      
     

1 1 1 1

1 1 1

p l o p l o p l o

p l p l

     

     
    (15) 

And since 

   1 1 0p l o p l o    , 

Equation (15) can be rewritten as 

        1 1 1 1 1p l o p l p l         , 

and hence as 

     
  

1 1 1

1 1

p l p l
o

p l

    


  
, 

and therefore also as 

    
   

1 1 1

1 1

p l p l
o

p l

   


 
.         (16) 

The next step is to “develop” the right-hand term in 
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(16). 
As has already been noted above, Development is a 

term introduced by G. Boole to denote one of what are, 
as he describes it, the three main operations of digital 
mathematics: Development, Elimination, and Reduction.  

The aim of Development is to convert a digital ma- 
thematical expression in terms of the sum of all the pos- 
sible products of the attributes in their present and absent 
states. In Equation (16), the attributes are p and l. The 
sum of the products of these two attributes in their pre- 
sent and absent states is therefore as follows:  

      1 1 1 1pl p l p l p l       . 

If one develops the right-hand size of Equation (16), 
one obtains as a result what o is in relation to the four 
classes “logical philosophers”, “non-logical philoso- 
phers”, “logical non-philosophers”, “non-logical non- 
philosophers”. In other words, what needs to be taken 
from these four sets or classes in order to obtain o and 
exactly o? Or, what part exactly of these four sets or 
classes is o? 

G. Boole obtains this result by means of his universal 
formula of development, which is a theorem of which he 
presents a mathematical proof [60].  

In its most general formulation, the formula is as fol- 
lows: 

      1 0 1f x f x f x   . 

By means of this formula, any digital mathematical 
expression containing the attribute x can be recast into an 
equivalent that states what part of x and what part of 
non-x needs to be taken in order to obtain the expression. 
The result may also be called an expansion of the expres- 
sion containing the attribute x. 

When a digital mathematical expression containing 
two attributes x and y needs to be expanded in terms of 
both attributes, the formula is rather as follows:  

       
  
   

, 1,1 1,0 1

0,1 1

0,0 1 1

f x y f xy f x y

f x y

f x y

  

 

  

 

The right-hand term in Equation (16) involves two at- 
tributes, namely p and l. Accordingly, 

      
  

1 1 1
,

1 1

p l p l
f p l

p l

   


 
. 

The development of the right-hand term can be rewrit- 
ten as follows: 

       
  
   

, 1,1 1,0 1

0,1 1

0,0 1 1 .

f p l f pl f p l

f p l

f p l

  

 

  

     (17) 

In the expressions  1,1f ,  1,0f ,  0,1f , and 
 0,0f , the first digit of the two digits in each term per- 

tains to p and the second digit pertains to l. The digits 
signify the value that p and l assume in the development 
or expansion of the right-hand term in Equation (16). 
Accordingly, 

       
  

1 1 1 1 1 1 1
1,1

1 1 1 1

1 0 0 0 0 0 0
.

0 0 0 0

f
   


 

   
  



 

By this same procedure, it is possible to reformulate 
Equation (17) as follows, substituting p and l by 1 or 0 in 
accordance with the formula of Development:  

      
  

    
  
    

    

    
     

1 1 1
,

1 1

1 1 1 1 1 1 1

1 1 1 1

0 1 1 1 0 1 1
 1

1 0 1 1

0 1 0 1 0 1 0
1 1 .

1 0 1 0

p l p l
o f p l

p l

pl

p l

p l

   
 

 

   
 

 

   
  

 

   
   

 

  (18) 

The four components of the right-hand term of Equa- 
tion (18) can be simplified as follows: 

 

    

1 0 0 0 1 1 0 1
1

0 0 0 1
0 0 1 0 0 1 1 1

1 1 1 .
1 0 1 1

o pl p l

p l p l

     
    

 
     

      
 

 

And hence further as follows: 

   

  

0 1 1
1 1

0 0 0
1

1 1 .
1

o pl p l p l

p l

       

   
 

And finally, with additional simplification and also a 
reordering of the components, as follows: 

     

 

0 0
1 1 1  ;

0 0
with  1 0.

o p l pl p l

p l

     

 
 

Or, with abbreviated notation, also as follows: 

0 0
; with 0

0 0
o pl pl pl pl    .      (19) 

According to (19), obstinate persons consist of the 
following three sets or classes: all illogical non-phi- 
losophers; none, some, or all of the logical philoso- 
phers; and none, some, or all of the logical non-phi- 
losophers. 
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In other words, obstinate persons include all the il- 
logical non-philosophers and for the rest are part of the 
logical persons, whether as philosophers or not. 

Further shortening is possible. As regards the first of 
the three components of the right-hand term in (19), it 
follows from the first premise of Ch. L. Dodgson’s syl- 
logism that 

0pl   “Illogical philosophers do not exist”. 

Therefore, 

p l l .                (20) 

The purport of Equation (20) is that “Illogical non- 
philosophers are the same as the totality of non-phi- 
losophers”, which is the same as stating that all illogical 
persons are non-philosophers (but not the other way 
around). 

As regards the second and third components of Equa- 
tion (19), it can be said that 

pl pl l  .             (21) 

Putting (21) into words, the illogical philosophers and 
the illogical non-philosophers together naturally make up 
all the illogical persons. 

Accordingly, Equation (19) can be shortened to 

0

0
o l l  .              (22) 

According to (22), obstinate persons include all the 
illogical persons and for the rest are part of the logical 
persons, that is, are the same as none, some, or all of the 
logical persons. 

Equation (22) defines the relation between o and just l 
in both its present and absent states and not, as in (19), 
the relation between o and both p and l in their present 
and absent states. 

Equation (19) can also be simplified so that it is de- 
termined what o is in relation to only p in both its present 
and absent states. 

If one considers, (1), that 

0 0

0 0
pl pl p  , 

that is, that all the illogical non-philosophers and none, 
some, or all of the logical non-philosophers are the same 
as none, some, or all of the non-philosophers, and (2), 
that 

0 0

0 0
pl p , 

that is, that none, some, or all of the logical philosophers 
are at the same time none, some, or all of the philoso- 
phers, then Equation (19) can be rewritten as 

0 0

0 0
o p p  .              (23) 

This means that obstinate persons are none, some, or 
all of the philosophers and none, some, or all of the 
non-philosophers. This is completely undefined. Obsti- 
nate persons could be all of the former or all of the latter 
or also none of either the former or the latter. 

Equation (23) confirms the result obtained above, 
namely that the relation between o and p is completely 
undefined according to Ch. L. Dodgson’s two premises. 

How does Equation (19) differ from Ch. L. Dodgson’s 
result, according to which some obstinate persons are not 
philosophers?  

It appears that two of the three classes in Equation (19) 
that make up the obstinate persons contain non-philoso- 
phers. One might conclude that Ch. L. Dodgson’s con- 
clusion that some obstinate persons are non-philosophers 
is confirmed. It is not. 

The matter has been discussed at length above. But the 
gist of this discussion may be briefly recalled here. It 
cannot be excluded that everyone is considered philoso- 
phical in some sense and therefore qualifies in a way as a 
philosopher and hence also as a logical person. One may 
disagree with this view. But it cannot be denied that the 
view can be held. The obstinate persons would then all 
be logical philosophers  pl  and none would be non- 
philosophers, contrary to Ch. L. Dodgson’s conclusion. 

Then again, someone may be inclined to assume that 
there are no philosophers, either in general or in the 
group of persons to which Equation (19) is applied. In 
that case, all the obstinate persons would be non-phi- 
losophers, also contradicting Ch. L. Dodgson’s conclu- 
sion. 

So far, it has been established what o is in terms of 
both p and l or either just p or just l in their present and 
absent states.  

By the same procedure, it is possible to establish what 
non-o is in relation to p and l, what p and non-p are in 
terms of l and o, and what l and non-l are in terms of p 
and o.  

The mathematical derivations cannot be laid out all in 
detail here according to the rules described above. The 
results will need to suffice for the most part. But it will 
be useful to detail the steps for o . The result for o  is 
as follows: 

0 0
; with 0;

0 0

and taking none of .

o pl pl pl

pl

  
        (24) 

“Non-obstinate persons consist of none, some, or all of 
the logical persons, whether they are philosophers or not. 
There are no illogical philosophers. And none of the il- 
logical non-philosophers are included if there are any”. 

The component “persons” in “obstinate persons” is in- 
ferred because obstinate is not typically associated with 
things. It is assumed that it is clear from the context that 
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one is talking of people only. 
The above result contains an example of the coeffi- 

cient 0, which accompanies the class of illogical non- 
philosophers. The coefficient 0 does not signify that the 
class that it accompanies does not exist. It may or it may 
not. But if it does, 0 signifies that none of it is included 
among the non-obstinate. 

Another way of putting (24) into words is as follows: 
Non-obstinate persons are all logical, whether they 

are philosophers or not. 
Equation (24) can be reformulated in terms of just l as 

follows:  
0

0
o l . 

“Non-obstinate persons are all logical”. 
Equation (24) can be reformulated in terms of just p as 

follows: 
0 0

0 0
o p p  .              (25) 

“Non-obstinate persons are or are not philosophers”. 
Equation (25) is entirely inconclusive. Indeed, it can 

be reformulated as follows: 

 0

0
o p p  .              (26) 

And since 
1p p  . 

“Everything (1) is either a philosopher or not a phi- 
losopher”, 

Equation (26) is the same as 

0

0
o  .                 (27) 

This means that o  is completely undefined. Equation 
(27) can be reformulated as 

0 0o   . 

It appears that, if nothing is taken of  0o  , the result 
is nothing (0). In other words, o  could be anything. 

The steps by which (24) is derived from Equation (13) 
above are as follows. Note especially the expression 
1 o  below. 

From 

    
   
1 1 1

1 1 1 0

p l o p l o

p l o

   

    
          (13) 

it follows that 

     
   
1 1 1 1

1 1 1 0.

p l o p l o

p l o

    

    
       (28) 

Note that o has been replaced by 1 o , which is the 
same as  1 1 o  , or also as 1 1 o  , and therefore as 
just o. 

Since 

  1 1p l o   

is the same as 

   1 1p l p l o   , 

and therefore also as 

    1 1 1 0p l p l    , 

Equation (28) can be rewritten as 

       
    
1 1 1 1 1

1 1 1 0,

p l p l o p l o

p l o

      

    
 

which simplifies to 

     1 1 1 1 0p l p l o      .      (29) 

Bringing all terms except 1 o  over to the other side 
of the Equation gives 

 
  

1
1

1 1

p l
o

p l

 
 

 
.            (30) 

This expression seems puzzling at first sight. It looks 
like a class is being subtracted from something that is not 
there. It needs to be remembered, however, that digital 
mathematics is concerned. Equation (30) derives from 
Equation (29), in which a sum of two terms is declared 
equal to 0. In digital mathematics, this means that either 
term is also 0. Adding 0 is the same as subtracting 0. 
Nothing changes. In that regard,  1p l  and  1p l   
relate to one another as  0  does to  0 . Equation (30) 
is therefore equivalent to 

 
  

1
1

1 1

p l
o

p l


 

 
.             (31) 

Another approach is more purely mathematical, name- 
ly squaring the right-hand side of Equation (30). In digi- 
tal mathematics, x xx . Accordingly,   x x   would 
be equal to  x . 

G. Boole seems to have had no difficulty with turning 
a product of two negated terms into a positive term as is 
done in quantitative mathematics, in the sense that 
  1 1 1     [61]. The procedure appears to be suc- 
cessful. But a more detailed investigation of this concept 
seems desirable. 

For the time being, certain tests of the system’s co- 
herence seem feasible. According to (31), 1 o  would 
need to be something that yields  1p l  if it is multi- 
plied by   1 1p l  . From Equation (31), it follows 
that 

     1 1 1 1o p l p l     .        (32) 

According to Equation (24), 

0 0

0 0
o pl pl  . 
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Inserting Equation (24) into Equation (32) yields the 
following result: 

    0 0
1 1 1

0 0
pl pl p l p l       

 
.    (33) 

Equation (33) features to the left of the Equation sign 
the multiplication of l “logical” with  1 l  “non-logi- 
cal”. According to the fundamental axiom of thought, 
which holds that something cannot be something and not 
be something at the same time, something that is both 
something and not something equals 0. In mathematical 
notation, 

 1 0l l  . 

It follows that the term to the left of the Equation sign 
in (33) equals 0, or 

 0 1p l  .              (34) 

Equation (34) yields no contradiction, as Equation (5) 
has already revealed that  1p l  equals 0. 

Developing the right-hand term of 

   
  

1
1 ,

1 1

p l
o f p l

p l


  

 
      (31) 

yields 

 
  

 
     

 
      

      

1 1 1 1 1 0
1

1 1 1 1 1 1 1 0

0 1 1 0 1 0
1 1 1 ,

1 0 1 1 1 0 1 0

pl p l

p l p l

 
   

   

 
      

   

 

and therefore also 

   

  

1 0 1 1 0 0
1 1

0 0 0 1 1 0
0 1

1 1 .
1 1

pl p l p l

p l

  
   

  


  


 

The final result, already mentioned as Equation (24) 
above, is as follows: 

0 0

0 0
o pl pl  ; 0pl  ; taking none of pl . (24) 

This still leaves p “philosophers”, p  “non-philoso- 
phers”, l “logical persons”, and l  “illogical persons” to 
be defined. The definitions in question, along with a few 
comments about some peculiar characteristics, are as fol- 
lows. 

As regards p: 

0 0

0 0
p lo lo  ; 0l o  ; taking none of lo . (35) 

“Philosophers consist of none, some, or all of the 
logical persons whether they are obstinate or not. There 
are no non-obstinate illogical persons. None of the il- 
logical persons are included”. 

The main Equation in (35) can be rephrased as follows:  
Philosophers are logical, whether they are obstinate 

or not. 
At first, it may seem as if Equation (35) does not yield 

much more information than the first of Ch. L. Dodg- 
son’s two premises, namely “Philosophers are logical”. 
Still, it is interesting to know that philosophers can be 
either obstinate or not obstinate. After all, there is the 
possibility that either of these two options might be ex- 
cluded. All depends on what the second premise holds, in 
which the attribute “obstinate” is mentioned.  

The attribute “philosopher” is linked to the attribute 
“logical” in the first premise. The attribute “logical” is 
linked in its absent state “illogical” to the attribute “ob- 
stinate” in the second premise. Accordingly, there is the 
possibility that, through the attribute “(il)logical”, the 
attribute “obstinate” may somehow impose some kind of 
a restriction on the attribute “philosopher”. 

However, the mention of “obstinate” in the second 
premise does not lead to the conclusion that philosophers 
cannot be obstinate or that they cannot be non-obstinate. 
They could be either. 

The second component of Equation (35) indicates that 
there are no illogical persons that are not obstinate. That 
follows directly from the second premise. The second 
premise does otherwise not exclude the possibility that 
there are illogical persons that are obstinate. It states that 
illogical persons are all obstinate. Therefore, if there are 
any illogical persons, they are definitely obstinate. 

As regards p : 

0 0
; 0

0 0
p lo lo lo l o    .        (36) 

“Non-philosophers consist of all illogical obstinate 
persons and none, some, or all of the logical persons 
whether they are obstinate or not. There are no illogical 
persons that are not obstinate”. 

It appears that the definition of non-philosophers is 
rather wide-ranging. 

In relation to the two attributes “logical” or “obstinate”, 
they can be obstinate only or logical only or both obsti- 
nate and logical at the same time. 

But they cannot be illogical and not obstinate at the 
same time. The simple reason is that, by the second 
premise, illogical persons that are not obstinate do not 
exist.  

Non-philosophers include all those that are illogical 
and obstinate because it follows from the first premise 
that all philosophers are logical that all illogical persons 
are non-philosophers.  

As regards l and l : 
0

0
l po po po po     

“Everyone is logical except none, some, or all of the 
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obstinate non-philosophers”;  
0

0
l po ; none taken from po, po , po , which all 

exist 
“Illogical people are all obstinate non-philosophers”. 
The result for l is interesting because all four possible 

classes are included, three of them completely. By con- 
trast, l  consists of only one class and then possibly 
only some or even none of it. 

Naturally, l and l  ought to add up to everything (that 
is, “1” in G. Boole’s algebra). One is either logical or one 
is not. In mathematical notation:  

1l l  . 

Indeed, if one adds up the results for l and l  detailed 
above, the sum is all four possible combinations of the 
attributes “philosopher” and “obstinate” in their present 
and absent states: three combinations belong entirely to 
the result for l and one combination, po  “obstinate 
non-philosophers”, belongs either entirely to l or l  or 
in an unknown distribution to both at the same time. 

There is much more detail that can be specified in re- 
lation to the mathematical map of Ch. L. Dodgson’s two 
premises. One facet of this map is as follows. Each of the 
three attributes p, l, and o in both their present and absent 
states has been defined above in relation to the two other 
attributes. The result is six definitions. The question 
arises: Is it possible to derive from any of these six defi- 
nitions the five other definitions? It appears that it is. 

Naturally, there are 30 (6 × 5) different cases to be dis- 
tinguished. However, only one case will be considered 
for the sake of brevity. May it suffice to illustrate how 
the definition of logical persons  l  can be derived 
from the definition of the non-philosophers  p . 

Deriving one definition from another poses special 
problems. Considered by themselves, the Equations that 
are part of the definitions exhibit a certain loss of infor- 
mation when compared to the original premises. This 
loss of information shows up when one tries to derive 
one definition from one another. The present example is 
meant to illustrate this. 

From the first Equation in (36), namely 

0 0

0 0
p lo lo lo   ,             (36) 

the following Equations follow in sequence in deriva- 
tional fashion: 

p lo plo plo   ; 

 1p l o plo plo    ; 

p o lo plo plo    ; 

p o lo plo plo     ; 

p o plo plo lo    ; 

 p o l po po o    ; 

 
    

1

1 1 1

p o
l

p o p o o

 


    
. 

Developing the right-hand side produces 

 
    

 
    

 
    

 
    

1 1 1

1 1 1 1 1 1 1 1

1 1 0

1 1 0 1 1 1 0 0

1 0 1

1 0 1 1 0 1 1 1

1 0 0
.

1 0 0 1 0 1 0 0

l po

po

po

po

 
 

    

 
 

    

 
 

    

 
 

    

 

And hence 

0 0
1 1

0 0
l po po po po        . 

Or also 

0 0

0 0
l po po po po    . 

But the result obtained above for l is 

0

0
l po po po po    . 

Why is the result obtained here less precise, yielding 
an indefinite amount of po  (which could be none, 
some, or all of it) and not exactly all of it? 

The reason is that the definition of l has been derived 
from the first of the two Equations in (36). In the deriva- 
tion of Equation (36) from two premises, the information 
obtained is distributed over two Equations. Therefore, 
when the definition of l is derived from the first Equation 
only in (36), the result is less precise because it has been 
derived from incomplete informations.  

Additional information is provided in Equation (36) 
through the second of the two Equations, namely  

0l o  . 

This additional information makes it possible to shar- 
pen  

0 0

0 0
l po po po po     

into 
0

0
l po po po po    , 

as follows. 
The Equation 

0lo   

can be rewritten as 
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 1 0l o  , 

and hence as 

0o lo   

and as 

o lo  

or 

o ol . 

According to this last Equation, all non-obstinate peo- 
ple are logical. This must include both the non-obstinate 
persons that are philosophers and those that are not phi- 
losophers. Non-obstinate philosophers, or po , are there- 
fore all logical.  

However, 

0 0

0 0
l po po po po     

states that an indefinite amount of them is logical. The “in-
definite amount” needs to be changed into “all”. The result is 

0

0
l po po po po    . 

It would be desirable to study the loss of information 
at hand. But that needs to be reserved for a future paper. 

One more simple example involving loss of informa- 
tion but only a single original Equation and not two may 
suffice at present. 

Consider the Equation 

f db  

“The Flemish are the Dutch-speaking Belgians”. 
If one first derives from this Equation what Belgians 

are in terms of the Flemings and the Dutch speakers and 
then derives from the resulting definition of the Belgians 
what the Flemings are, the final resulting definition of 
the Flemings will be less precise than the original defini- 
tion that served as point of departure. 

The definition of the Belgians is as follows: 

0

0
b fd f d  ; with 0fd  . 

“The Belgians include all the Flemish, who are 
Dutch speakers, as well as none, some or all of 
those that are neither Flemish nor Dutch speakers. 
Furthermore, there are no Flemings that do not 
speak Dutch”. 
The definition of the Flemings derived from the defi- 

nition of the Belgians is as follows: 

0

0
f db d b   

“The Flemish include all the Dutch-speaking Belgians, 
as well as none, some, or all of those that are neither 

Dutch-speaking nor Belgians”. 
The loss of information can be precisely defined. One 

expects no less than this kind of precision from mathe- 
matical operations. 

In the original definition of the Flemings, four combi- 
nation classes are equal to 0. In the final definition, only 
three are. The loss concerns the combination class fd b  
“Flemings that are neither Dutch-speaking nor Belgians”. 
The fact that this class is equal to 0 is essential to the 
original definition of the Flemish. But it is no longer 
relevant when a definition of the Belgians is derived 
from the original definition of the Flemish.  

Once this information is lost, it cannot be retrieved 
when a definition of the Flemings needs to be derived 
from the definition of the Belgians.  

The information can be retrieved from the second 
Equation that results, namely  

0f d  . 

“There are no Flemings that do not speak Dutch”. 
When this information is added to the definition 

0

0
f db d b   

“The Flemish include all the Dutch-speaking Belgians, 
as well as none, some, or all of those that are neither 
Dutch-speaking nor Belgians”,  

the second term of the expression to the right of the Equa- 
tion mark is affected. The set or class in question cannot 
contain Flemings because it consists of non-Dutch speakers. 

This much for the phenomenon of loss of information. 
Three additional remarks concerning certain peculiarities 
of the mathematical map of Ch. L. Dodgson’s syllogism 
are in order. 

First, the numerator of an expression may be 0, as in 
the following expression, which plays a role in obtaining 
the definition of l : 

    
0

1 1 1po p o p o    
. 

In quantitative mathematics, this entire expression 
equals 0, but not in non-quantitative, digital mathematics. 
Developing this expression yields the definition for l  
provided above.  

Second, Venn diagrams are generally helpful in grasp- 
ing the real life purport of all the definitions formulated 
above.  

Then again, Venn diagrams involve a loss of informa- 
tion. For example, the two propositions “Philosophers are 
all logical” and “Illogical people are all non-philoso- 
phers” are both represented by the same Venn diagram. 
The diagram consists of two overlapping circles, one 
representing the philosophers and the other the logical 
persons. The section of the circle representing the phi- 
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losophers that does not overlap with the circle represent- 
ing to logical persons is empty. 

The two propositions are therefore what may be called 
logically equivalent. There is no way in which Venn dia- 
grams can represent the two statements differently.  

Third, according to Equation (22), 

0

0
o l l  . 

From Equation (36), namely 

0 0

0 0
p lo lo lo   ,           (37) 

it follows that 

0

0
p l l  . 

Equations (22) and (37) at first sight may make it seem 
as if o and p  are one and the same or fully overlap 
because they are defined in the same way. However, they 
only partially overlap. 

There are eight combination sets or classes involving 
the three attributes p, l, and o in their present and absent 
states. Three are empty, to wit plo , pl o , and pl o , 
and five are occupied, to wit plo, plo , plo , plo , and 
plo . It follows that both o and p  consist of one or 

more of these five combination sets or classes. 
A detailed analysis shows that each encompasses three 

of the classes with two overlapping, as follows. 
Both o and p  encompass all the illogical persons. In 

this case, that means plo . 
As regards the remaining four combination sets or 

classes, it is clear that neither o nor p  can encompass 
plo , which is neither of the two.  

That leaves the three combination sets or classes plo, 
plo , and plo . It is easy to see that o and p  each en- 

compass two of the three classes, but not a third. 
Clearly, both include plo . What is more, p  encom- 

passes plo , but o does not. And o encompasses plo, but 
plo  does not. 

15. Generalization of the Syllogism by 
Means of a Computer Algorithm 

In the syllogisms discussed above, there are three attrib- 
utes and two premises. But the method should apply 
equally well to any number of attributes in their present 
and absent states and any number of premises. 

G. Boole proposes certain simplifications with the aim 
of handling larger numbers of attributes and premises. 
But in some ways, these simplifications may make the 
method less perfect. A discussion follows further below.  

In any event, what matters here is that, in the end, no 
type of conceivable simplification can avoid elaborate 
computations.  

Consider the case in which each of the 26 letters of the 
alphabet stands for an attribute characterizing a class of 
things. Then let there be 26 premises, alternatively af- 
firmative and negated, as follows: a belongs to b; b does 
not belong to c; c belongs to d; d does not belong e; and 
so on, ending with z does not belong to a.  

Then one might seek to establish, for example, what 
exactly m is in relation to a, c, e, v, x, and z. Working this 
out is just about humanly impossible.  

There is nothing that G. Boole could have done to 
avoid laborious computations in this case. The solution is 
obviously a computer algorithm. It is interesting to note 
that the solution, namely the computer, owes so much to 
G. Boole’s own algebra. Thus, in the end, his writings 
did contain the germ of the solution to a problem of 
which he must have been very much aware. I otherwise 
do not know whether G. Boole ever considered it possi- 
ble that a machine might be the answer.  

The computer algorithm that is needed should not be 
all that complex for experienced programmers. But it has 
never even been attempted. That has much to do with the 
fact that G. Boole’s fundamental formula of Develop- 
ment, namely,      1 0f x f x f  (1 x ), has gen- 
erally fallen by the wayside, with the notable exception 
of the writings of J. Venn. 

All the critical steps of the algorithm can be inferred 
from the mathematical map of Ch. L. Dodgson’s two 
premises discussed in §14.11.  

First, all Equations are redefined in terms of what they 
deny. Thus, all a belongs to b becomes 0ab  . 

Second, all the denials are summed up and equated to 
0, which they in fact together are.  

Third, in a step that G. Boole never took but that is 
much recommended by what one finds in J. Venn, each 
term is defined in relation to all the other attributes. In 
the example at hand, there are 24 attributes in addition to 
a and b. That means that the original term ab  is ex- 
panded into 224 terms, or 16,777,216 terms, that are all 
equal to 0. 

In the example at hand, there are 26 original terms, 
that is, each can be expanded into 224 terms. But that 
does not mean that there are 436,207,616 (224 × 26) 
terms in total. In fact, the total number of ways in which 
all 26 terms can be combined in their present and absent 
states is just 226 or 67,108,864. It goes without saying 
that the 26 expansions of the 26 original terms overlap.  

Fourth, in a step that G. Boole did not take either, all 
the terms that appear more than once are reduced to just 
one appearance. After all, in digital mathematics, x + x = 
x. The number of terms that will remain will lie between 
224 and 226. 

Fifth, since the aim is to establish what the one attrib- 
ute m is in relation to the six attributes a, c, e, v, x, and z, 
the 19 other attributes need to be eliminated from the 
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Equation. As before, G. Boole’s method is as follows. 
For example, to eliminate b, one first replaces b by 1 in 
all the remaining terms and retains the result. This means 
in effect that all instances of b  or  1 b  become 0. 
Next, one replaces b by 0 in all the remaining terms and 
retains this result as well. This means in effect that all 
instances of b  or  1 b  become 1. Then one multi- 
plies the two results by multiplying each term of the first 
result with each term of the second result. When a prod- 
uct of two terms contains both the present state and the 
absent state of the same attribute, the result is 0. Accord- 
ing to the fundamental axiom of digital mathematics, a 
thing cannot both have and not have an attribute at the 
same time. Or, 0x x  . These multiplications lead to a 
great diminution in the number of terms. 

All of the new terms contain either m or m . Both can 
be factored out as follows:  

 
  0

abc def ghi m

jkl mno pqr m

  

    

   

   
     (38) 

Sixth, (38) can be rearranged as follows. The various 
elements abc…, etc., are all different products of the 25 
attributes other than m in either their present state or their 
absent state. In representing the sum multiplied by m as A 
and the sum multiplied by m  as B, (38) can be rewritten 
in successive steps as 

 

 
 

0

1 0

0

0

, and

, or also

.

A m B m

A m B B m

A m B B m

A B m B

A B m B

B
m

A B
B

m
B A

   

     

    

   

   









         (39) 

Seventh, (39) has to be developed for all 64 possible 
combinations of a, c, e, v, x, and z in their present and 
absent states. Each of the 64 combinations will be multi- 
plied by one of the following four Boolean coefficients:  

1, 0, 
0

0
, and 

1

0
. Of those accompanied by 1, all are 

included in m. Of those accompanied by 
0

0
, none, some,  

or all are included. Those accompanied by 0 are not 
equated with 0. They may or may not exist. But none are  

taken or included. Those accompanied by 
1

0
 do not 

exist and are therefore to be equated with 0 (= 0). 
By means of a computer algorithm designed to execute 

the above steps, it is possible to do what a human being 

could not, that is, to define any attribute as part of any 
number of premises along with any number of other at- 
tributes in relation to all the other attributes. 

But what about defining two or more attributes in rela- 
tion to all the other attributes? In a variation on the case 
presented above, let us assume that not only m but both 
m and n need to be defined in relation to a, c, e, v, x, and 
z, or both m and n for that matter. 

G. Boole proposes and illustrates a theorem that ap- 
plies to defining two or more attributes in relation to all 
the others in a single statement [62]. It seems possible to 
expand this theorem to more than one statement or 
premise. But I refrain from working out the details here. 
The theorem is discussed again below. 

Meanwhile, the desired result can be obtained by first 
defining m and n separately and then multiplying the 
results if it is necessary to define all that is both m and n 
 m n  or all that is either m or n  m n .  

In defining m separately, n needs to be eliminated. In 
defining n separately, m needs to be eliminated.  

16. Conflation of Two Types of Digital 
Mathematics in G. Boole’s Algebra 

Digital mathematics in general is discussed here in a pa- 
per on rational human intelligence because the rational 
activity of the brain runs on digital mathematics, as it 
were. But there is digital mathematics beyond the digital 
mathematics by which the brain operates rationally. In 
other words, part of digital mathematics belongs to the 
operating system of the rationally functioning brain and 
part of digital mathematics does not. 

Inferring that Socrates is mortal from the two premises 
1) that all men are mortal and 2) that Socrates is a man 
belongs to a type of digital mathematics that is not part of 
rational human intelligence. It is not necessary to be able 
to solve all kinds of syllogisms to be a rationally func- 
tioning human being. Solving syllogisms is a digital ap- 
plication of rational human intelligence. It is not rational 
human intelligence itself. 

Likewise, the simple arithmetic involved in knowing 
that one needs to pay $20 dollars if one wants two copies 
of something that costs $10 is not part of rational human 
intelligence. It is an application of rational human intel- 
ligence. It is not necessary to be able to count to be a 
rationally functioning human being.  

Inferring that Socrates is mortal from the two said 
premises and adding 10 to 10 to obtain 20 are both ap- 
plications of rational human intelligence to mathematical 
problems. However, the digital mathematics of the for- 
mer problem is of the same type as the mathematics on 
which the rational brain runs whereas the quantitative 
mathematics of the latter problem is not. 

For a proper understanding of rational human intelli- 
gence, it is necessary to carefully keep the two types of 
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digital mathematics apart, the type that constitutes ra- 
tional human intelligence and the type that does not.  

It may be difficult to discern where one type ends and 
the other begins. In fact, G. Boole totally conflated the 
two in his “Laws of Thought”, the Magna Charta of the 
Digital Age.  

This means in effect that G. Boole is doing two things 
at the same time in his book while giving every impres- 
sion that he is only doing one. On the one hand, he is 
trying to describe how we think. On the other hand, he is 
trying to describe digital mathematics in general, part of 
which accounts for how we think. 

It is easy to see how this conflation has confused those 
coming later who have endeavored to interpret G. Boole. 
G. Boole makes it seem as if he is trying to do one single 
thing. This fact has encouraged others coming later to try 
to establish what that one single thing might well be. 

As regards what that one single thing might be, there 
are two candidates: 1) describing how we think and 2) 
pure mathematics. G. Boole is in fact trying to do both. 
But precisely because he gives every impression of only 
doing one thing, there has been a tendency to assume that 
G. Boole was under the erroneous impression that he did 
one thing, namely describing how we think, whereas he 
was in fact doing the other thing, describing digital ma- 
thematics.  

I rather believe that the search for the single one thing 
that G. Boole is doing is not necessary. I believe that he 
is in fact doing both afore-mentioned things. Only, he 
presents them as one. 

17. Mathematics as Something the Brain 
Does 

Rational human intelligence is something that the brain 
does. It is an activity of the brain. It is proposed here that 
rational human intelligence is in its entirety a mathe- 
matical structure of the digital kind. If this proposal is 
correct, then it follows that the digital mathematics by 
which the brain operates is an activity of the brain. Digi- 
tal mathematics is something that the brain does. 

But what about the digital mathematics that is not part 
of rational human intelligence and what about quantita- 
tive mathematics? 

Inspired in part by G. Boole’s efforts to describe ra- 
tional human intelligence as a mathematical activity of 
the brain, I have proposed elsewhere that all mathematics 
can be observed only as an activity of the brain [63]. I 
refer to this other study for all matter of detail.  

In other words, mathematics can only be observed as 
an empirical phenomenon as something the brain does. It 
is tempting to think of mathematics as a code inscribed in 
the great book of nature. And maybe it is. But all the 
brain has in the end to dissect mathematics is itself and 
what it empirically does when it does mathematics. 

To discover what mathematics really is, the brain 
needs to rely on itself alone and observe and examine 
itself because itself is all that it has. The totality of the 
human experience is how the brain perceives reality out- 
side itself. And that includes mathematics.  

In the end, the quest for a deeper understanding of 
mathematics, including the mathematics of rational hu- 
man intelligence, is more of a quest to fulfil the famed 
adage “Know Thyself” than a quest to understand what is 
outside oneself.  

18. On G. Boole’s Use of “Squaring” 

G. Boole has a tendency to seek to expand his digital 
mathematics by means of certain theorems. The theorems 
are ingenious and they do validate the overall edifice. 
But one wonders on occasion whether the added com- 
plexity is desirable or needed. 

The tendency in question may have to do with a desire 
to make digital mathematics more like what mathemati- 
cians are used to seeing and hence more palatable to 
them. It is also how G. Boole, as an eminent student of 
quantitative mathematics, was used to proceeding in 
quantitative mathematics. Then why not also do the same 
in digital mathematics?  

I have on occasion noticed that there is a temptation to 
consider what G. Boole does in his “Laws of Thought” to 
be not quite pure mathematics. At some point in the 
nineteenth century, mathematics became greatly con- 
cerned with the axiomatic approach, that is, with the need 
to define all the axioms as precisely as possible. In that 
regard, it was easy to expect resistance to what G. Boole 
was trying to do [64]. 

There are two concerns regarding G. Boole’s afore- 
mentioned theorems. First, they are the result of a desire 
to simplify complex operations. However, their effec- 
tiveness in that regard is limited. In the end, the method 
needs to accommodate any number of attributes and any 
number of premises. As the numbers rise, any simplifica- 
tion is soon without effect. At some point, only a com- 
puter can deal with all the data where a human being 
cannot. 

Second, the theorems can take the operation farther 
away from their real life purport than is desirable. As a 
mathematician, G. Boole was used to dealing in mathe- 
matical proofs with intermediate steps of which the in- 
terpretation in real life terms is not transparent. 

However, J. Venn has done much to show that many 
of G. Boole’s conceptualizations can often be kept much 
closer to real life purport than G. Boole believed them to 
be. J. Venn saw no need to keep something abstract if it 
can be understood in a perfectly commonsensical way. It 
is possible, however, that G. Boole assumed that the ab- 
stract character of the theorems lends the whole edifice 
more credibility because it makes it look more like what 
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mathematicians expect to see. 
What has just been said may be illustrated by one of G. 

Boole’s examples. It involves the following two premises 
derived from elementary geometry [65]:  

1) Similar figures consist of all whose corresponding 
angles are equal and whose corresponding sides are 
proportional. 

2) Triangles whose corresponding angles are equal 
have their corresponding sides proportional, and vice 
versa. 

What is sought is as follows: How can non-similar 
figures be defined? 

This is the culminating example of G. Boole’s treat- 
ment of Reduction, which it is itself the culmination of 
digital mathematics. It is therefore interesting to note that 
it is possible to take issue with the way in which G. 
Boole solves the example.  

G. Boole represents the attributes symbolically as fol- 
lows: 

s = similar; 
t = triangles; 
q = having corresponding angles equal; and 
r = having corresponding sides proportional. 
The two premises may therefore be formulated ma- 

thematically as follows:  

s tr ; 

tq tr . 

Equivalents are as follows: 

0s tr  ;               (40) 

0tq tr  .              (41) 

The solution that G. Boole obtains is as follows: 

      
         

    

1 0 2 1 2 1 1 1

0 1 1 1 1 1

1 1 1 ,

s tqr tq r tr q t q r

t qr t q r t r q

t q r

        

       

   

 

which can be shortened to 

       
       

1 1 1 1 1

1 1 + 1 1 1 ,

s t q r t q r

t r q t q r

      

     
 

and further to 

s tq r tqr trq t q r    . 

This solution is put into words by G. Boole as follows: 
Dissimilar figures consist of all triangles which have 

not their corresponding angles equal and sides propor- 
tional, and of all figures not being triangles which have 
either their angles equal, and sides not proportional, or 
their corresponding sides proportional, and angles not 
equal, or neither their corresponding angles equal nor 
corresponding sides proportional.  

An alternative formulation is as follows: 

Dissimilar figures consist of all triangles with corre- 
sponding angles equal and corresponding sides propor- 
tional and all non-triangles with either corresponding 
angles equal and corresponding sides not proportional 
or with corresponding sides proportional and angles not 
equal or with neither corresponding angles equal nor 
corresponding sides proportional. 

There are two unusual features about G. Boole’s solu- 
tion. First, he squares the left-hand terms in the Equa- 
tions (40) and (41), as follows: 

 2
0s tr  ;               (40) 

 2
0tq tr  .               (41) 

He deems this procedure justified because, in digital 
mathematics,  2xx x x . The results are as follows: 

2 0s tr str   ; 

0tq tr tqr   . 

G. Boole assumes that certain sets of premises need to 
be resolved by squaring and others not. I believe that this 
distinction makes for a needless complication. A single 
method that can be applied to all sets of premises seems 
preferable. 

I refrain from repeating all of G. Boole’s solution here. 
While I believe his approach to Reduction and his solu- 
tions to be completely valid, 100% purely mathematical, 
and fully final, it seems to me that there is still room to 
make it into a more perfect method. 

My two objections to G. Boole’s solution of the exam- 
ple at hand concern two characteristics: 

1) his solution involves solving different sets of prem-
ises in different ways; 

2) the symbol “2” as a coefficient of two of the classes 
in his solution of the above example is defined only as an 
afterthought. 

I therefore propose to solve the same example in a 
manner that exhibits neither characteristic. 

The need is for a single, simple, and universal point of 
departure of a purely mathematical procedure that applies 
to any set of premises containing any number of attrib- 
utes in their present and absent states. The procedure’s 
strictly mathematical character should make it easy to 
program in computer code. In fact, to have any claim to 
veracity the procedure needs to be mathematical in the 
strict sense. 

A universal point of departure is presented in the next 
section. The approach that follows from this point of 
departure owes most to J. Venn’s elucidations of G. 
Boole’s method. 

19. An Alternative to G. Boole’s “Squaring”: 
Multiplication by Supplements 

What one seeks to determine at the outset as soon as pos- 
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sible is all the classes that do not exist according to the 
two Equations (40) and (41), that is, all the non-existing 
combinations of s, t, and r in their present and absent 
states according to the first Equation and all the non- 
existing combinations of t, q, and r in their present and 
absent states according to the second Equation. 

In a universe of thought in which every attribute could 
combine with every other attribute as properties of a sin- 
gle entity, no rational knowledge would be possible. Ex- 
act knowledge is all about which combinations of attrib- 
utes do not exist. 

Equations describe relations between attributes exhib- 
ited by entities, such as the relation between the attribute 
“Paris” and the attribute “the capital of France” in the 
Equation “Paris (p) is the capital of France (c)” or 

p c .                  (42) 

It naturally follows that the combinations of the attrib- 
utes that are being related do exist. In other words, what 
is both Paris and the capital of France does exist. To 
convey such existence is the very essence of the Equa- 
tion. 

If any combinations do not exist, then they must 
somehow involve the supplements, that is, the attributes 
in their other states, in this case what is not Paris and 
what is not the capital of France. The two attributes con- 
cerned are “Paris” and “the capital of France”. The focus 
is therefore on the combination of the attribute of one 
side of the Equation with the supplement of the other 
side of the Equation and the combination of the other 
side of the Equation with the supplement of the one side 
of the Equation, that is, the two combinations of what is 
Paris and not the capital of France or  1p c  and what 
is the capital of France and not Paris  1 p c . 

How can these two combinations be obtained from 
Equation (42)? 

The first combination is obtained by multiplying p by 
 1 c  in the digital mathematical sense. The second 
combination is obtained by multiplying c by  1 p . 

However, because p and c are equated with one an- 
other, both sides of the Equation need to be multiplied by 
the same factor. The result is the following two Equa- 
tions: 

   1 1p c c c   ; 

   1 1p p c p   . 

In strictly digital mathematical terms, it follows that 

 1 0p c   and  0 1c p  , 

and that is because something cannot at the same time 
exhibit and not exhibit a certain characteristic. 

It is always desirable to understand the real life purport 
of a certain result. In that regard, I find J. Venn’s ap- 

proach to G. Boole’s method entirely unobjectionable, 
whereas G. Boole himself and E. Schröder, together with 
J. Venn one of the best two interpreters of G. Boole’s 
method, seemed to avoid interpretations in terms of real 
life purport as much as possible, as if they would make 
the method less mathematical. I believe that they do not 
do so in the least.  

J. Venn (1834-1923) taught logic as a lecturer in moral 
science at Cambridge University. After all, in a sense, the 
study of logic is the study of proper thinking. But it 
would be inappropriate to contrast J. Venn’s approach as 
non-mathematical with G. Boole’s and E. Schröder’ as 
mathematical.  

J. Venn was Sixth Wrangler in 1857 at Cambridge 
University, that is, sixth in rank of the First Class degrees 
in the Mathematical Tripos. It is clear from passing re- 
marks in the footnotes and elsewhere in his “Symbolic 
Logic” that he was aware of the most sophisticated ad- 
vancements in mathematics of his time. There is no 
doubt that he in the end considered symbolic logic to be 
as mathematical as G. Boole and E. Schröder would. 

In terms of real life purport, in the absence of Equation 
(42), one does not know whether Paris is or is not the 
capital of France. “Paris” therefore consists of two parts 
in relation to “the capital of France”: 1) that which is 
Paris and the capital of France and 2) that which is Paris 
and not the capital of France.  

But because Paris is identified as being exactly equated 
with the capital of France in (42), it naturally follows that 
that which is Paris and not the capital of France does not 
exist. And the same reasoning can be applied to that 
which is the capital of France and not Paris. 

The following general digital mathematical method 
can be formulated to obtain all the combination sets or 
classes that constitute rational knowledge, that is, those 
that do not exist or are equal to 0, for any type of Equa- 
tion:  

Multiply all terms of both sides of the Equation with 
all the supplements of one side. Then separately multiply 
all terms of both sides of the Equation with all the sup- 
plements of the other side. The two resulting Equations 
will yield all the non-existent combinations. 

Examples of this procedure are provided in the fol- 
lowing section. 

20. Examples of Multiplication by  
Supplements 

20.1. Equations of the Type 
0 0

0 0
x + y = z + w  in 

General  

This is not the place to evaluate how the rule described in 
the previous section operates in all types of Equations, 
even if a comprehensive exposition would be useful. 
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Suffice it to adduce some examples. G. Boole’s example 
discussed in §18 involves two Equations. Before return- 
ing to this example it will be useful to apply the method 
of multiplication by supplements to a single Equation 
that is more complex than either of the two Equations 
that are part of G. Boole’s syllogism discussed in §18. 
An example of this single type of Equation is presented 
in §20.2. A second type of single Equation is discussed 
in §20.3. 

The first example discussed in the present section 
concerns a type of Equation that is not discussed by G. 
Boole, as far as I know, though it is by J. Venn [66].  

It is interesting to note that J. Venn misinterpreted the 
type in the first edition of his “Symbolic Logic” of 1881 
[67], as E. Schröder pointed out [68], as a result of which 
J. Venn corrected his treatment of the Equation in the 
second edition [69]. The second type is not discussed by 
anyone, as far as I know. It is a variation on the first type 
and closely related to it. 

The first type is as follows: 

0 0

0 0
x y z w   .             (43) 

It may be put into words as follows: 
All x and none, some, or all y are the same as all z and 

none, some, or all w. 
In order to obtain all the non-existent classes, those 

that constitute rational knowledge, one simply applies the 
two-step rule formulated at the end of §19.  

The first step is to multiply all the terms on both sides 
of the Equation with the supplements of the left-hand 
side, namely  1 x  and  1 y . The second step is to 
multiply all the terms on both sides of the Equation with 
the supplements of the right-hand side, namely  1 z  
and  1 w . The mathematical representation of these 
two steps is found in the following two Equations:  

     

     

0
1 1 1 1

0
0

1 1 1 1
0

x x y y x y

z x y w x y

    

     
     (44) 

     

     

0
1 1 1 1

0
0

1 1 1 1
0

x z w y z w

z z w w z w

    

     
     (45) 

Since the four expressions  1x x ,  1y y ,  
 1z z , and  1w w  are all equal to 0, Equations (44) 

and (45) can be rewritten as follows: 

   

     

0
0 1 1 0

0
0

1 1 1 1 ;
0

y x

z x y w x y

    

     
    (44) 

     

   

0
1 1 1 1

0
0

0 1 1 0.
0

x z w y z w

w z

    

     
      (45) 

And therefore also as follows: 

     0
0 1 1 1 1

0
z x y w x y      ;    (44) 

     0
1 1 1 1 0

0
x z w y z w      .    (45) 

A short-hand equivalent is as follows: 

0
0

0
zx y wx y  ;             (44) 

0
0

0
xz w yz w  .             (45) 

The only two of the four expressions that are equal to 
0 are xz w  and zx y . Only an indefinite amount of the 
two other expressions are equal to 0. It can therefore not 
be ascertained whether they are in their entirety equal to 
0. 

Each of the two expressions that are equal to 0 consists 
of two combination sets or classes, for a total of four out 
of 16 possible cases. The four combination sets or classes 
equal to 0 are as follows: x yzw , x yzw , xyz w , and 
xy z w . 

Equations (44) and (45) reveal in addition that none, 
some, or all of x yw  and yz w  are non-existent. The 
four combination sets or classes concerned are x yzw , 
x y zw , xyz w , and xyz w . But two of these four com- 
bination sets or classes have already been declared to be 
equal to 0, namely x yzw  and xyz w . These two com- 
bination sets or classes are therefore once considered in 
their entirety and once in regard to a totally indefinite 
amount. 

First of all, it is clear that “all” overrides “none, some, 
or all”. The latter leaves open the possibility of “all” and 
the former confirms “all”. Therefore, “all” it is. 

Still, the fact that two combination sets or classes are 
described in two different ways in a single mathematical 
expression raises questions. Is there a contradiction? The 
divergence seems somehow unmathematical. One de- 
mands greater exactitude from mathematical expressions. 

The reason for the ambiguity is that an expression such 
as 

0

0
x y                 (46) 

mimics a linguistic expression that is ambiguous, namely 
“all x and some y”. 

An example is “all freshmen and some band members”. 
In this expression, the freshmen that are band members 
are signified twice. But it is obvious that all freshmen 
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who are band members are included in the overall ex- 
pression. In other words, the “all” overrides the “none, 
some, or all”. 

The mathematical expression in (46) can be rendered 
more rigorous by defining each term in the expression in 
relation to all attributes, for example as follows: 

  0

0
x y y xy               (47) 

“All x, whether y or not y, and none, some, or all of y, 
whether it is not x”. 
Two different ways of rendering the expression more 

precise, with two different purports denoting different 
groups of people as the result, are  

 0

0
xy x x y              (48) 

“All x that is not y and none, some, or all of y, 
whether it is x or not” and 

0

0
xy xy                  (49) 

“All x that is not y and all y that is not x”. 
Linguistic expressions corresponding to (47), (48), and 

(49) would be (47) “all the freshmen (whether band 
members or not) and some band members from among 
the others”, (48) “all the freshmen that are not band 
members and some band members whether freshmen or 
not”, and (49) “all freshmen except band members along 
with some band members that are not freshmen”. 

The rigorous equivalent of the intended purport of the 

expressions 
0

0
x y  and 

0

0
z w  in Equation (43) is 

the same as that of (47), not (48) or (49). 

20.2. Equations of the Type 
0 0

0 0
x + y = z + w :  

A Concrete Example 

Equation (43) may seem a little abstract. A concrete ex- 
ample may give it some real life dimension. 

Consider a track-and-field team at a small college or 
university in which the following practice is followed: 
“All 10,000 meter runners (t) and none, some, or all of 
the 3000 meter steeple chase runners (s) are the same as 
all the 5000 meter runners (f) and none, some, or all of 
the marathon runners (m)”. 

In mathematical notation, the desired Equation is as 
follows: 

0 0

0 0
t s f m                (50) 

Applying multiplication by supplements, it is immedi- 
ately obvious that only the following two sets or classes 
are non-existent or equal to 0: 

1) 5000 meter runners who are neither 10,000 meter 
runners nor 3000 meter steeple chase runners; 

2) 10,000 meter runners who are neither 5000 meter 
runners nor marathon runners. 

Both classes consist of two combination classes. Mem- 
bers of the first category may or may not be marathon 
runners. Members of the second category may or may 
not be steeple chase runners.  

This much is certain about 5000 meter runners and 
10,000 meter runners. 

All 5000 meter runners will and must be either 10,000 
meter runners or 3000 meter steeple chase runners. 
Moreover, they may be entirely one or they may be en- 
tirely the other. But whatever is the case, all the 10,000 
meter runners however many there are, maybe none must 
be included. 

All 10,000 meter runners will and must be either 5000 
meter runners or marathon runners. Moreover, they may 
be entirely one or they may be entirely the other. But 
whatever is the case, all the 5000 meter runners however 
many there are, maybe none must be included. 

Whereas 5000 and 10,000 meter runners are strictly 
drawn from two other classes (the former from 3000 me- 
ter steeple chase and 10,000 meter runners and the latter 
from 5000 meter and marathon runners), no such restric- 
tion applies to 3000 meter steeple chase and marathon 
runners. 

While 3000 meter steeple chase runners need to be 
available to run the 5000 meters and marathon runners to 
run the 10,000 meters, even if none are in the end se- 
lected, they are otherwise free to run in any category. 

Whereas it seems less likely that 3000 meter steeple 
chase runners will run in the 10,000 meters or the mara- 
thon and that marathon runners will run in the 3000 me- 
ter steeple chase or the 5000 meters, the rule expressed in 
Equation (50) does not keep them from doing so. And 
they may well wish to run in other races, for example 
3000 meter steeple chase runners in, say, the 1500 meters 
and perhaps even the 800 meters; marathon runners on 
their part in, say, ultramarathons. 

Once it has been established which sets or classes do 
not exist, it is possible to determine how every attribute 
in both its present and absent state relates to every other 
attribute in both its present and absent state. In the pre- 
sent example, this includes defining exactly what 3000 
meter steeple chaser runners, 5000 meter runners, 10,000 
meter runners, and marathon runners are. 

Suffice it to define 5000 meter runners here in terms of 
the three other attributes. 

There are eight possible combination classes involving 
the three other attributes in Equation (50) in their present 
and absent states, the following: tsm , tsm , tsm , tsm , 
t sm , tsm , ts m , and t s m . What parts of these eight 
combination classes make up f?  
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Developing Equation (50) to define f yields the fol- 
lowing result. None of the eight combination classes is 
made equal to 0. All may or may not exist. Of these eight, 
two are entirely included in f. None, some, or all of four 
others is also included. And of the two that remain, 
nothing is included.  

Before discussing the real life purport of this result 
further, it will not be superfluous to detail how the result 
is obtained in mathematical fashion.  

It follows from 

0 0

0 0
t s f m               (50) 

through multiplication by supplements that 

0tf m  ; 

0t sf  . 

And, since either of these sets or classes equated with 
0 consists of two combination classes, it also follows that 

0tsf m  ; 

0ts f m  ; 

0t sfm  ; 

0t sf m  . 

These are all the combination sets or classes, among a 
total of 16, that are equal to 0. Accordingly, their sum is 
also equal to 0, as follows: 

0t sf m t s f m t s fm t sf m    .     (51) 

Equation (51) can be rewritten as 

   1 1 0ts f m ts f m t sfm t sf m      . 

And hence as 

0tsm tsfm ts m tsfm t sfm t sf m      . 

It is now possible to define f, as follows: 

tsm ts m
f

tsm ts m t sm t s m




  
 

Developing the right-hand side produces the following 
result: 

0 0 0

0 0 0
0

0 0 ,
0

f tsm ts m tsm tsm tsm

tsm t sm t s m

    

    
    (52) 

which is naturally the same as 

0 0 0 0

0 0 0 0
f tsm ts m tsm tsm tsm tsm      . 

It will be useful to reflect briefly on the real life pur- 

port of this last Equation. It appears that two combination 
classes are fully included in the 5000 meter runners, 
namely 1) tsm  “10,000 meter runners and 3000 meter 
steeple chase runners who are not marathon runners” and 
2) ts m  “10,000 meter runners who are neither 3000 
meter steeple chase runners nor marathon runners”. 

As regards 1), it follows from the original definition, 
Equation (50), that 5,000 meter runners and an indefinite 
amount of marathon runners are made up of 10,000 me- 
ter runners and an indefinite amount of 3000 meter stee- 
ple chase runners. The members of combination class 1) 
are at the same time 10,000 meter runners and 3000 me- 
ter runners. They therefore absolutely need to be either 
5000 meter or marathon runners. At the same time, they 
are not marathon runners. It follows that they must all be 
5000 meter runners. 

As regards 2), it follows from the original definition, 
Equation (50), that 5000 meter runners and an indefinite 
amount of marathon runners are made up of 10,000 me- 
ter runners and an indefinite amount of 3000 meter stee- 
ple chase runners. The members of combination class 2) 
are 10,000 meter runners but not 3000 meter steeple 
chase runners. Still, they are one of the two groups that 
make up 5000 meter runners and none, some, or all of the 
marathon runners. However, they are also explicitly not 
marathon runners. Therefore, they must all be 5000 me- 
ter runners. 

I refrain from commenting on all the other four com- 
bination classes of which an indefinite amount makes up 
f. Suffice it to discuss one of the four, namely tsm “those 
that are at the same time 10,000 meter runners, 3000 me- 
ter steeple chase runners, and marathon runners”. 

Anyone who is both a 10,000 meter runner and a 3000 
meter steeple chase runner, that is, ts, must be part of 
what makes up all the 5000 meter runners and an indefi- 
nite amount of the marathon runners. 

One, two, or all three of the following three contin- 
gents make up set or class ts: 1) those who are 5000 me-
ter runners and only 5000 meter runners (tsfm); 2) those 
who are marathon runners and only marathon runners 
(tsfm); 3) those who are both 5000 meter runners and 
marathon runners (tsmf). 

Either of 2) or 3) alone or both together can make up 
the class tsm. If 2) alone does, then none of tsm is f. If 3) 
alone does, then all of tsm is f. If both 2) and 3) do, then 
some of tsm is f. In sum, none, some, or all of tsm could 
be f, as Equation (52) states. 

The appearance of the minus-sign in (52) for the 
classes that exist but of which nothing is taken is intrigu- 
ing. I find it systematically showing up in this case. But 
nowhere in G. Boole’s or J. Venn’s works do I find a 
discussion of the minus-sign. The matter requires further 
investigation. In pondering the matter, it may be impor- 
tant to consider that, in digital mathematics, the mi- 
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nus-sign does not signify the subtraction of a certain 
quantity as it does in quantity mathematics. It is the op- 
posite of the Boolean operator OR but should not be 
confused with the NOR function of electrical circuits. 

20.3. The Equation of Type 
0 0

0 0
y = z + w   

(or 
0 0

0 0
z + w = y ) 

Another type of Equation adduced here to illustrate mul- 
tiplication by supplements, with the design of obtaining 
non-existent classes, is discussed neither by G. Boole nor 
by J. Venn, not in fact by anyone as far as I know. 

An example would be as follows: 

0 0

0 0
t f m   

“All the 10,000 meter runners and none, some, or all 
of the 5000 meter runners are marathon runners”. 

In this example, there are three attributes. One way of 
obtaining another example of this type involves four at- 
tributes. It is derived from the example in §20.2. 

There are two attributes on either side of the Equation 
in (50). According to the rule formulated above, both 
sides are multiplied by both supplements of the two 
terms of the other side. But what if one multiplies a given 
side by just one supplement of the two terms of the other 
side? In the following Equation, both sides are multiplied 
only by the supplement of x instead of by the supple- 
ments of both x and y:  

       0 0
1 1 1 1

0 0
x x y x z x w x       . 

Since  1x x  equals 0, this Equation can be rewrit- 
ten as 

     0 0
1 1 1

0 0
y x z x w x     ,      (53) 

and be put into words as follows: 
None, some, or all of y that is not x consists of all z 

that is not x and none, some, or all of w that is not x. 
An equivalent formulation is as follows: 
All z that is not x and none, some or all of w that is not 

x are y that is not x. 
There are four attributes in Equation (50). It is there- 

fore possible to apply four different multiplications by a 
supplement of an attribute. The four results may be illus- 
trated by means of the example involving a track-and- 
field team adduced above. They are as follows: 

     0 0
1 1 1

0 0
s t f t m t     ;       (54) 

     0
1 1 1

0
t s f s m s     ;       (55) 

     0 0
1 1 1

0 0
t f s f m f     ; and    (56) 

     0
1 1 1

0
t m s m m f     .      (57) 

In (50), four combinations class are non-existent, the 
following: 

0tsf m  ; 

0ts f m  ; 

0t sfm  ; 

0t sfm  . 

In each of the four Equations (54)-(57), only two com- 
bination classes are non-existent, t sfm  and t sfm  in 
(54) and (56) and tsf m  and ts f m  in (55) and (57). 

The four Equations (54)-(57) are therefore less infor- 
mative than (50). (54) pairs with (56) and (55) pairs with  

(57) in terms of the location of 
0

0
. 

It is (54) and (56) that resemble (53) in structure. And 
it is the type represented by (53), (54), and (56) that is 
not discussed by G. Boole nor by J. Venn. 

The distinctive characteristic of this type is that a class 

of the type 
0

0
f  stands alone on one side of the Equa- 

tion but not on the other. 
There is more than one way of putting (54)-(57) into 

words. The study of all the variations is a useful mental 
exercise that strengthens one’s appreciation of what it 
means to express oneself with great precision. But let it 
suffice to note only one equivalent for each Equation. 

(54) All the 5000 meter runners that are not 10,000 
meter runners and none, some, or all of the marathon 
runners that are not 10,000 meter runners are 3000 me- 
ter steeple chase runners that are not 10,000 meter run- 
ners. 

(55) The 10,000 meter runners that are not 3000 meter 
steeple runners include all the 5000 meter runners that 
are not 3000 meter steeple chase runners and none, some, 
or all of the marathon runners that are not 3000 meter 
steeple chase runners. 

(56) The 10,000 meter runners that are not 5000 meter 
runners and none, some, or all of the 5000 meter steeple 
chase runners that are not 5000 meter runners are 
marathon runners that are not 5000 meter runners. 

(57) The 10,000 meter runners that are not marathon 
runners include all the marathon runners that are not 
5000 meter runners and none, some, or all of the 3000 
meter steeple chase runners that are not marathon run- 
ners. 

One mode of abbreviation may be illustrated by the 
following equivalent of (54): 
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(54) Of those not running the 10,000 meter, the 5000 
meter runners and none, some, or all of the marathon 
runners are 3000 meter steeple chase runners.  

20.4. Alternative to G. Boole’s Example of 
“Squaring” 

Equations (40) and (41) can now be solved differently 
from how G. Boole does, but with the same result. For 
the sake of brevity, 1 x  will mostly be written as x . 
The need is for determining 1 s . 

1)  1 0s qr  ; 0 sqr  (multiplying both sides 

twice by the supplement of one the two sides)  

 s qr qr qr q r qr    ; 0 sqr  

 1 qr qr qr q r     

 s qr qr q r  ;  0 0sqr qr qr    

sqr sqr sq r  ; 0 sqr  

2)  1 0tq tr  ;  1 0tr tq   (multiplying both 

sides twice by the supplement of one side)  

0tq tqtr  ; 0tr trtq   

0tq tqr  ; 0tr trq   tt t  

 1 0tq r  ;  1 0tr q   

0tqr  ; 0trq   

3) 0sqr sqr sq r sqr tqr tqr       (the sum of 
all that is 0 in 1) and 2) above) 

4) stqr st qr stqr stqr stq r st q r      

0stqr s tqr stqr stqr stqr stqr        

(defining all the terms for all the attributes;  
sqr stqr st qr  , with 1t t  , and so on) 

5) stqr st qr stqr stqr stq r st q r      

0stqr s tqr stqr stqr      

 ;  stqr stqr stqr stqr stqr stqr     

6) stqr st qr stqr stqr stq r st q r      

       1 1 1 1 0s tqr s tqr s tqr s tqr          

(switch to explicit and transparent notation) 

7) stqr st qr stqr stqr stq r st q r tqr       

0stqr tqr s tqr tqr stqr tqr stqr         

8) s tqr t qr tqr tqr tq r t q r tqr       

tqr tqr tqr tqr tqr tqr tqr         

9)  s t qr tqr tq r t q r tqr tqr      

tqr tqr tqr tqr      

 0;  0tqr tqr tqr tqr     

10) 
tqr tqr tqr tqr

s
t qr tqr tq r t q r tqr t qr

   


    
 

11) 
tqr tqr tqr tqr

s
tqr tqr t qr tqr tq r t q r

  


    
 

 
1 1 1 0 1 1 1 1 0 0 1 1

12)
1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0

0 1 1 1 1 1 0 1 0 0 0 1

0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0

1 0 1 0 0 1 1 0 0 1 1 1

1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0

1 1 0 0 1

s tqr

tqr

tqr

          
 

                

          


                

          


                

    0 1 1 1 1 0 0

1 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1

0 0 1 1 0 1 0 0 0 0 1 1

0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0

0 1 0 1 1 0 0 1 1 0 0 0

0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 1

1 0 0 0 0 0 1 0 1 1 1 0

tqr

t qr

tqr

      


                

          


                

          


                

          
1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1

0 0 0 1 0 0 0 0 1 0 1 0

0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1

tq r

t q r


                

          


                
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1 0 0 0

13)
1 0 0 0 0 0

0 1 0 0
 

0 1 0 0 0 0
0 0 0 1

 
0 0 0 0 0 0

0 0 1 0
 

0 0 0 0 0 0
0 0 0 0

 
0 0 1 0 0 0

0 0 0 0
 

0 0 0 1 0 0
0 0 0 0

 
0 0 0 0 1 0

0 0 0 0
 

0 0 0 0 0 1

s tqr

tqr

tqr

tqr

t qr

tqr

tq r

t q r

  
 

    
  

 
    

  
 

    
  

 
    

  
 

    
  

 
    

  
 

    
  

 
    

 

1 1 1 1
14)

1 1 0 0
0 0 0 0

 
0 1 1 1

s tqr tqr tqr tqr

t qr tqr tq r t q r

       

       
  

 

15) 0 0 0 0s tqr tqr t qr tqr tq r t q r      ; 

with 0tqr   and 0tqr   
16) s tqr tqr  ; with 0tqr   and 0tqr   
The subtraction of classes in (o) is again intriguing. 

The classes in question are equal to 0. It does therefore 
not make much difference as to whether one adds or sub- 
stracts them. It should also be noted that 0  is derived,  

with G. Boole, from 
0

1
. It would need to be further  

examined what the minus-sign can be traced back to. The 
matter awaits further investigation. 

G. Boole develops for 1 s , not for s. 1 s can be 
obtained from (k), as follows: 

1 1
tqr tqr tqr tqr

s
tqr tqr t qr tqr tq r t q r

  
  

    
. 

Therefore 

1

.

tqr tqr t qr tqr tq r t q r
s

tqr tqr t qr tqr tq r t q r

tqr tqr tqr tqr

tqr tqr t qr tqr tq r t q r

    
 

    
  


    

 

Or also: 

1

.

s

tqr tqr t qr tqr tq r t q r tqr tqr tqr tqr

tqr tqr t qr tqr tq r t q r


        


    

 

And since 0tqr tqr   and 0tqr tqr  , 

1

.

t qr tqr tq r t q r tqr tqr
s

tqr tqr t qr tqr tq r t q r

t qr tqr tq r t q r tqr tqr

t qr tqr tq r t q r tqr tqr

     
 

    
    


    

 

However, I believe that this step is unnecessary. 1 s  
can instead be derived from (p) as follows: 

 1 1s tqr tqr    ; with 0tqr   and 0tqr  . 

Since there are eight combination classes involving the 
three attributes t, q, and r in their present and absent 
states, 1 represents all eight. Subtracting two leaves six. 
Moreover, two do not exist. The result is four combina- 
tion classes, as follows: 

1 s t qr tqr tq r t q r     . 

There are no instances of sets of classes defined as 
0

0
  

(“none, some, or all”) in the example at hand. If any had 
appeared in the development of s, they would be likewise 
specified in the same way in the development of 1 s . 
That is because they would have been subtracted from all 
of the class, which is part of 1 (“all”). Subtracting none, 
some, or all of a class from all of a class naturally results 
in none, some, or all of a class.  

21. Critique of E. Schröder’s Alternative to 

G. Boole’s 
0

0
 by Means of a Strictly 

Digital Example 

The general aim of the examples discussed in the previ- 
ous section is to illustrate the nature of digital mathemat- 
ics as one type of mathematics. It is the type of mathe- 
matics according to which rational human intelligence 
operates. A proper appreciation of digital mathematics in 
general should therefore serve the cause of analyzing 
rational human intelligence specifically. 

One additional, specific aim of the examples was to 
show that, while G. Boole’s method is essentially com- 
plete, there may be room for additional streamlining.  

The following example, already anticipated in §14.10, 
shares the general aim just stated. But the specific aim is 
different.  

The specific aim is to critique E. Schröder’s analysis 
of that which is represented by the symbol of division in 
G. Boole’s algebra. He saw his approach as a significant 
modification of G. Boole’s method. As far as I can see, 
this approach constitutes no improvement whatsoever. In 
fact, it seems rather a setback.  

It will be good to begin with a simple example that E. 
Schröder himself showcases prominently and see how he 
analyzes it [70].  
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The example revolves around Rappe, which is a Ger- 
man term for a black horse. There is no special word for 
black horses in English. Accordingly, it is possible to 
define Rappe (r) as all that is both black (b) and a horse 
(h) and represent it as follows in G. Boole’s algebra, as E. 
Schröder would readily acknowledge:  

r h b  . 

Or also as follows: 

.r hb                  (58) 

Evidently, in quantitative mathematics, (58) is equiva- 
lent to 

r
h

b
 . 

If this expression has any meaning in digital mathe- 
matics, it ought to describe what horses are in terms of 
both Rappe (black horse) and black things.  

Anyone used to the function of division in quantitative 
mathematics may wonder what it means that horses are 
Rappe (black horse) “divided” by black. In digital ma- 
thematics, it means that horses are defined as the class 
that, if it is multiplied by b, yields r.  

Evidently, the division cannot possibly signify what it 
signifies in quantitative mathematics. In fact, there is 
complete consensus between G. Boole, and following 
him, J. Venn, and indeed also E. Schröder [71], that de- 

veloping 
r

b
 according to G. Boole’s formula of devel-  

opment unequivocally produces the result that will be 
presented below.  

As has already been noted above, the aim of the for- 
mula of development is to determinine what h is in terms 
of all possible combinations of r and b in both their ab- 
sent and present states. 

The formula of Development applied to the two attrib- 
utes r and b is as follows: 

       
        
, 1,1 1,0 1

0,1 1 0,0 1 1 .

h f r b f rb f r b

f r b f r b

     

      
 (59) 

Since 

 ,
r

f r b
b

 , 

 1,1f ,  1,0f ,  0,1f , and  0,0f  correspond to  

 1
1

1
 , 

1

0
,  0

0
1
 , and 

0

0
 respectively. The former  

can therefore be substituted by the latter in Equation (59), 
as follows: 

     

  

1 1 0
, 1 1

1 0 1
0

1 1 .
0

f r b rb r b r b

r b

       

   
 

An abbreviated version is as follows: 

0
; with 0;

0
and taking none of .

h rb r b rb

rb

  
         (60) 

Put into words, (60) states that what can be said about 
horses (h) is that they are what is both Rappe and black 
(rb) and none, some, or all of what is neither  
   1 1r b  . 
E. Schröder knows of the type of Equation represented 

by (60). But he somehow abbreviates (60) into an “un- 
ambiguous (eindeutige)” version as follows [72]: 

h r b  .               (61) 

According to E. Schröder, Equation (61) states that 
horses, as far as one can derive from (58), are “what is 
either a Rappe (black horse) or not black (was entweder 
ein Rappe, oder nicht schwarz ist)”.  

This interpretation is not false. But it is no longer 
mathematically precise. It does not convey exactly what 
is known and what is not known. A comparison with (58) 
and (60) will be useful.  

In considering E. Schröder’s solution in (61), it will be 
necessary to consider three versions. It will appear that E. 
Schröder’s symbolic presentation in (61) differs in 
mathematical terms from the way in which he puts the 
Equation into words. What is more, there is every reason 
to assume that E. Schröder’s conception of how the 
Equation needs to be understood differs from both his 
symbolic interpretation and his interpretation in words.  

In what follows, a distinction will therefore be made 
between  

1) Schröder-by-symbols, 
2) Schröder-by-words, and 
3) Schröder-by-presumed-intent. 
As it happens, what is called here Schröder-by-pre- 

sumed-intent may well be more or less the same in pur- 
port as the desired Equation (60), but somewhat inadver- 
tently so. 

It may seem somewhat fastidious to discuss examples 
in some detail. However, concrete examples seem nec- 
essary to try to impress on readers the fact that digital 
mathematics is truly 100% mathematics. There is every 
reason to believe that there is a widespread perception 
that is not quite so or that it is something related to, say, 
both mathematics and philosophy.  

In order to evaluate the three Schröder versions of the 
relation between r, b, and h mentioned above, the need is 
for knowing exactly which combination classes do not 
exist, that is, are equal to 0, in each version. 

But first, it will be useful to evaluate Equations (58) 
and (60), which are in accordance with G. Boole’s me- 
thod. Equation (58) involves four classes that are 0. 
Equation (60) involves only three. 
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Multiplying both sides of Equation (58) by the sup- 
plement of one side and then by the supplement of the 
other side produces the two Equations  

   1 0 and 1 0.r hb r hb     

According to the second Equation, one class is 
non-existent. 

From the first of the two Equations, it follows that 

  0r hb hb h b   . 

And also that 

0rhb rhb rh b   , 

which can also be written as 

      1 1 1 1 0rh b r h b r h b       . 

According to this first Equation, three classes are non- 
existent, for a total of four in both the first and the second 
Equations, the following four: rhb , rhb , rh b , and 
rhb . 

Equation (60) can also be written as 

  1 1h rh r h b    . 

In this version of the Equation, h is equated in part 

with    1 1r b   instead of with   0
1 1

0
r b  . 

Likewise, if Parisian (p) is the same as what is both 
Parisian and French (pf), then this means that Parisian (p)  

is also none, some, or all of what is French 
0

0
r

 
 
 

. One  

readily imagines “Parisian” as a circle enveloped by 
“French” as a circle. 

The combination classes that are equal to 0 are once 
again obtained in two steps by first multiplying both 
sides by the supplement of one side and then by the sup- 
plement of the other side, as follows: 

      
       

1 1 ; 1 1 1

1 1 1 1 1 .

hh hrb hh r b h rb h r b

rb h r b rb r b

       

       
 

Since nothing can at the same time exhibit and not ex- 
hibit a certain term, as in hh , it follows that 

0 hrb  and 0h hrb hr b   .       (62) 

From the second Equation, it follows that 

 1 0h rb rb   . 

And since 
1 rb rb rb r b    , 

Equation (62) can be rewritten as  

  0h rb rb rb r b rb r b       

and also as 

  0h rb rb   

and as 
0hrb hrb  . 

The classes that are equal to 0 in (60) are therefore 
rhb , rhb , and rhb . That makes three. In (58), there is 
a fourth, rh b . 

What happened? Clearly, there is a loss of information 
in the transition from (58) to (60). To what is this loss of 
information owed? 

A simpler example can perhaps make the loss more 
apparent. The Flemish (f) are all Dutch-speaking (d) Bel- 
gians (b) (as contrasted with Walloons, who are Belgians 
who speak French; there are otherwise Dutch speakers 
that are not Belgians, namely all the inhabitants of The 
Netherlands). This statement can be represented by the 
following Equation:  

.f db                 (63) 

As in the case of (58), four combination classes are 
equal to 0. In (63), they are fdb, fdb , fd b , and f db. 

What can be known about Belgians from (63) is as 
follows: 

0

0
b fd f d  ; with 0fd  .        (64) 

“The Belgians are all the Flemish, who are evidently 
Dutch-speaking, and none, some, or all of those that are 
neither Flemish nor Dutch”. 

The number of combination classes equal to 0 drops to 
three, the following: fdb, fdb , and f db. 

This diminution constitutes a decrease in information. 
The class about which nothing is now no longer known 
with certainty is fd b  “Flemish that are neither Dutch 
nor Belgians”. The status of this class is clear from the 
added specification that 0fd   in (64), but not from 
the Equation itself.  

It is clear from (63) that there is no such thing as 
Flemings who are not Belgians or not Dutch-speaking. 
So how did the non-existence of this fourth combination 
class get lost, as it were, in the transition from (63) to 
(64), just as a fourth combination class is lost in the tran- 
sition from (58) to (60)?  

It needs to be remembered that (64) is a kind of inter- 
pretation of (63). The purpose of Equation (63) is to de- 
fine f as precisely as possible. Equation (63) precisely 
and comprehensively defines f. It is evident that f is pre- 
sent only and everywhere where both b and d are present. 
Non-  1f f  is also fully defined. In a digital system, 
sharpness of definition means that both a class and its 
supplement are precisely defined. It follows from (63), 
that 

1 1f db   . 

And therefore also that 
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1 f db db d b    . 

By contrast, b is defined in (63) to the extent that it is 
combined with d. In other words, less is known about b 
(and non-b) than about f.  

From the point of view of b, Equation (63) states that, 
when it is combined with d, it is equal to f. That means 
that also non-b is defined in relation to d and f. However, 
non-b is not defined in relation to non-d. Accordingly, if 
one considers Equation (63) from the perspective of b, it 
cannot be determined that the class fd b  is equal to 0.  

From the perspective of f, f is always the combination 
of d and b according to Equation (63). That means 
among others that it cannot be combined with both non-d 
and non-b at the same time.  

But from the perspective of b, the fact that b is f when 
b is combined with d means that non-b cannot be com- 
bined with both f and d. But there is no restriction on the 
combination of non-b with f and non-d. It so happens that 
b is defined in relation to d and not in relation to non-d in 
(63).  

In reality, there is no such thing as fd b , Flemings 
that are neither Dutch-speaking nor Belgians. All Flem- 
ings are Belgians and Dutch-speaking, as Equation (63) 
states. But this critical fact is lost in (64).  

The next step is to analyze what was defined above as 
1) Schröder-by-symbols according to Equation (61), 
2) Schröder-by-words, and 
3) Schröder-by-presumed-intent. 
First, Schröder-by-symbols. The complexity instantly 

increases because there are two ways of interpreting 
Equation (61), inclusively and exclusively.  

E. Schröder obviously interprets it exclusively. He 
uses the expression “either... or ... (entweder... oder...)” 
when putting the Equation into words. However, the ex- 
clusive meaning is not conveyed by the Equation itself. It 
needs to be derived from what is extraneous to the Equa- 
tion. 

It is a fact that a Rappe (black horse) is always black. 
However, this information is not part of (61). Equation 
(44) is an abbreviation and hence ambiguous.  

If anything, Equation (61) is more easily interpreted 
inclusively than exclusively. Since r consists of both rb 
and rb  and b  consists of both rb  and r b , a fully 
explicit version of (61) is  

and since

, .

h rb rb rb r b

rb rb rb h rb rb r b

   

    
 

The class h encompasses 1) all that is both r and b, 2) 
all that is r but not b, and 3) all that is neither r nor b. 
The Equation is inclusive because the overlap between r 
and b , namely rb , is included. 

By contrast, the unambiguous mathematically exclu- 
sive equivalent of (61) is as follows: 

h rb r b  . 

Horses are 1) what is r and also b and 2) what is not b 
and also not r. The Equation is exclusive because the 
overlap between r and b , namely rb , is excluded. 

Whether it is understood inclusively or exclusively, 
Equation (61) signifies something that is entirely differ- 
ent from what E. Schröder assumes that it signifies. 
There can be no doubt that (61) states that the horses are 
1) all that is a Rappe (black horse) and 2) all that is not 
black. 

The equivalent to (61) in relation to the afore-men- 
tioned definition of Belgians would be as follows: 

b f d                 (65) 

This Equation states that the Belgians are 1) all the 
Flemings and 2) all those who do not speak Dutch. But 
clearly, the second term following the Equation sign, 
namely d  “those who do not speak Dutch” is wrong. 
There are many people who do not speak Dutch who are 
not Belgians. 

In (65) as in (61), four combination classes are equal 
to 0. The empty combination classes pertaining to (61) 
are fdb , fdb, fd b , and fdb. Those pertaining to (65) 
are fdb , fdb, fd b , and f d b . Equations (61) and (65) 
share only three of these empty combination classes. I 
refrain from commenting on the real world purport of 
these classes. 

It follows from the above that Schröder-by-words, 
namely 

“Horses are what is either a Rappe or not black” 
cannot correspond to Schröder-by-symbols. Instead, Schrö- 
der-by-words corresponds to  

0 0

0 0
h rb r b  .             (66) 

Schröder-by-words poses its own problems. In Schrö- 
der-by-symbols, the second term to the right of the Equa- 
tion sign was the problem. In Schröder-by-words, it is the 
first term. 

According to Schröder-by-words, whose symbolic 
representation is (66), there are Rappes that are not 
horses.  

Likewise, the statement “A Belgian is either a Fleming 
or not a Dutch speaker”, which exhibits the same infor- 
mational structure as (66), does not deny the possibility 
that there are non-Belgian Flemings.  

And yet, there are none, just as there are no Rappes 
that are not horses. In other words, the combination 
classes rhb  and rh b  are equal to 0. 

But Schröder-by-words does not convey this, contrary 
to what he himself believes.  

Equation (66) involves only two classes that are equal 
to 0, namely rhb  and rhb . These two empty classes 
are obtained as follows.  
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From (66), the following can be derived in sequence: 

 h h rb r b  ;  

  0h h rb r b   ; 

 1 0h rb r b     ; 

 1 0h rb r b   ; 

  0h rb rb  ; 

0hrb hrb  ; and 0rhb rhb  . 

One less class is equal to 0 than when h is determined 
according to G. Boole’s method. That constitutes a di- 
minution in knowledge.  

It can be concluded that Schröder-by-words cannot be 
what E. Schröder intended. According to Schröder-by- 
presumed-intent, there are no Rappes that are not horses.  

E. Schröder’s reinterpretation of G. Boole’s method 

involves going to great length to avoid the symbol 
0

0
 

“none, some, or all”. But ironically, what he proposes 

instead in (66) actually adds an instance of 
0

0
 to what 

would be G. Boole’s interpretation. There are now two 

instances of 
0

0
 instead of one. 

If the Flemish are the totality of Dutch-speaking Bel- 
gians, then what are the Belgians? It is clear that all the 
Flemish are Belgians, as is the fact that they all speak 
Dutch. The question therefore arises: What about the 
non-Flemish? Which of them are Belgians, if any? 

Three attributes are at stake, namely “Belgian”, “Fle- 
mish”, and “Dutch-speaking”. Consequently, if the aim is 
to define Belgians in terms of those that are not Flemish, 
then the focus within the narrow confines of the available 
attributes is on two classes, 1) any non-Flemings that 
speak Dutch and 2) any non-Flemings that do not speak 
Dutch. 

From a digital perspective, there is nothing else to be 
considered than these two classes in light of the available 
attributes in both their present and absent states. It is 
clear that there is no information available to deny the 
existence of either class. Then what can be said about 
them in terms of Belgians? 

It is at this juncture that G. Boole’s method offers a  

distinct advantage by distinguishing between 0 and 
0

0
.  

Belgians include none, or 0, of 1) the non-Flemings who 
speak Dutch. But it is not clear about individual members 
of 2) as to whether they can be included or not. 2) can  

therefore be characterized as 
0

0
. 

22. G. Boole’s 
0

0
 

22.1. Three Attemps at Clarification 

Much suspicion has always affected the significance of G. 

Boole’s 
0

0
. E. Schröder tried to do entirely without it. It 

will therefore be useful to give additional definition to 
0

0
, and that in three ways, even if additional study and 

reflection remains desirable. 
First, a problem proposed by A. Macfarlane is treated 

in both digital fashion, including the application of 
0

0
, 

and quantitative fashion in §22.3-5. 
Second, a careful distinction will be made in §23 be- 

tween the two meanings that G. Boole assigns to v, his 
symbol for indefiniteness. G. Boole clearly considers 
them to be equivalent. But they are quite distinct. The 
resulting confusion has often been interpreted as a hand- 
icap of his overall theory of digital mathematics. 

Since G. Boole apparently interprets the symbol 
0

0
  

as being at least in part equivalent to v, the confusion 
pertaining to v is in danger of also affecting the interpre-  

tation of 
0

0
.  

Third, an attempt will be made to add a certain sophis- 

tication to the interpretation of 
0

0
 in §24 by reflecting 

on the interpretation of 
0 0

0 0
 . 

22.2. The Digitality of 
0

0
 

But first, it is necessary to emphasize that 
0

0
 is digital  

alright. Again and again, this symbol has been para- 
phrased above, more or less in the same way as G. Boole 
does, as “none, some, or all”. However, “none”, “some”, 
and “all” by all appearance seem to refer to quantity.  

Does this contradict the notion that 
0

0
 is digital? I be-  

lieve that it does not. Still, the description “none, some, 
or all” is slightly misleading. It will therefore be desir-  

able to specify further how 
0

0
 can be understood digi- 

tally. 

Digital is all about On (1) and Off (0). How does 
0

0
 

relate to digital 1 and 0? Like 1 and 0, 
0

0
 describes a set  
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or class. The symbol “1” describes a set or class of which 
all members are included. Another way of describing 
such a set is as follows. If one contemplates any single 
member of the class, one can be certain that the member 
is included. The symbol “0” describes a set or class of 
which no members are included. If one contemplates any 
single member of the class, one can be certain that the 
member is not included. 

In a strictly digital interpretation, 
0

0
 describes a class  

about whose members it cannot be said whether they are 
included or not. Somewhat provisionally, I prefer to 
imagine this as follows. If one contemplates any member 
of the class, one does not know whether it is included (1) 
or excluded (0). It can be inferred quantitatively that 
none, some, and all are all possible. But this is an infer- 

ence. 
0

0
 itself is digital. 

One might be enclined to argue that 
0

0
 cannot be part  

of a theory of digital mathematics because “none, some, 
or all” represents neither 0 nor 1 but rather something in 
between. If this were the case, then digital mathematics 
would no longer be strictly digital. 

However, it should be emphasized that “none, some, 
or all” is not a description of a third possible state of an 
attribute in addition to its present state or On-state (1) 
and its absent state or Off-state (0). 

Rather, 
0

0
 is a description of our ignorance of which  

part of a certain set or class exhibits a present state of a 
certain attribute and which the absent state. It must be 
either one or the other in a digital system. But it may not 
be known which of the two it is. 

For example, Equation (64) conveys that Belgians in- 
clude not only all the Flemings but also none, some, or 
all of the non-Flemings. That does not mean that some 
Belgians can be both non-Flemish and not non-Flemish 
at the same time. Nor does it mean that non-Flemings can 
be both Belgian and not Belgian at the same time. That 
would be an offense of the fundamental law of digital 
mathematics.  

Clearly, Belgians must be either non-Flemish or not 
non-Flemish and non-Flemings must be either Belgians 
or not Belgians. Nothing can be something and not some- 
thing at the same time.  

Equation (64) conveys instead that it is not known 
which portion of the non-Flemings are Belgians and 
which portion are not Belgians. In other words, in con- 
templating a certain member of the non-Flemings, one 
does not know whether she/he is a Belgian or not. 

In the end, as part of rational human intelligence, 
0

0
  

owes its existence to the fact that rational human intelli- 

gence is not only about things and events but also about  

how the brain engages things and events. 
0

0
 is not a  

property of things or events but of the way in which the 
brain engages things or events, as are in fact in the end 
also 0 and 1. 

22.3. Digital 
0

0
 and Its Corresponding 

Quantitative Counterpart 

E. Schröder does seem to comprehend the value of 
0

0
 in  

G. Boole’s system. But he describes it as the “general” 
value. The value that he proposes instead as the crucial 
value is what he calls the “main” value or “principal” 
value [73]. 

The symbol 
0

0
 is digital. But there can be a quantita-  

tive counterpart. There are a number of mathematical 
problems in which the digital and the quantitative go 
hand in hand like the two sides of a coin, both separate 
and inextricable. These problems are typical in probabil- 
ity theory and I hope to return to them in future install- 
ments. 

A problem in which determining the quantitative coun-  

terpart of 
0

0
 plays a crucial role appears in a work on  

logic by A. Macfarlane. His description of the problem is 
as follows [74]: 

Suppose that of the persons on board a ship which was 
wrecked, the passengers formed two thirds; and those 
that were saved in the wreck three-fourths. How many 
passengers must have been saved, how many lost; how 
many of the crew must have been saved, how many lost?  

A. Macfarlane exhibits a thorough understanding of— 
and great sympathy for—G. Boole’s theories. It will be 
useful to quote his A. Macfarlane’s solution in full before 
proceeding to an alternative. His solution is as follows:  

“Let p denote the passengers; c the crew; s saved; l 
lost.  

Then 1p c  ; or 1c p  . 
Also 1s l  ; or 1l s  . 

And 
2

3
p  ; 

3

4
s  . 

Now 1ps p s   , 

or 
2 3

1
3 4

   , 

or 
5

12
 . 

The passengers saved formed at least five-twelfths. 
Since the limit of   1 1p s   is the same as that 

for ps but with a contrary sign: 
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   5
1 1

12
p s    . 

The crew lost may have been none. 
Again.  1 p s p s    , 

or 
2 3

3 4
   , 

or 
1

12
 . 

The crew saved formed at least one-twelfth. 
Since the limit  1p s is the same as that for 

 1 p s  but taken with the contrary sign, 

  1
1

12
p s   . 

The passengers lost may have been none”. 
The sign ≥ is probably preferable over >. But this is 

not the place to examine A. Macfarlane’s analysis among 
possible analyses. 

An expression such as 
1p s   

represents A. Macfarlane’s approach. It is clear that, if ps, 
that is, the overlap of p and s, is equal to 0, then the  

sum of 
2

3
 and 

3

4
 will overshoot 1 by a certain amount,  

namely p s 1 . The overlap ps needs therefore to be 
at least as large as the overage for p s  to be 1 or 
smaller than 1. 

However, what would be desirable is a single system- 
atic, comprehensive approach. 

In developing such a comprehensive algorithm, it is 

useful to imagine p and s as two circles whose size is 
2

3
 

and 
3

4
 respectively, as follows: 

 

 
 

There are two inextricable facets to the problem, a 
digital side and a quantitative side. The digital side is not 
considered by A. Macfarlane. It will therefore be useful 
to begin with this side. It involves the use of the symbol  
0

0
.  

Suppose that what is sought, that is, x, is the number of 
passengers who have been saved (ps)? The answer is 
represented by the overlap area of the two circles in the 

Venn diagram above. The following Equation applies: 

x ps .                 (67) 

The need is for determining x. It is not possible to de- 
termine x instantly from Equation (67). 

It does follow, however, from (67) that 

x
p

s
  and that              (68) 

x
s

p
 .                  (69) 

The Venn diagram above already offers a certain intui- 
tive grasp of the problem. 

If one tries to determine p, then the difference between 
p, all the passengers, and ps, the saved passengers, will 
be a certain portion of 1 s , that is, of those that are not 
saved, more specifically the non-saved passengers. 

A look at the Venn diagram above makes this fact 
more transparent. It so happens that the sizes of p and  

1 s  are known, namely 
2

3
 and 

3 1
1

4 4
  . 

Alternatively, if one tries to determine s, then the dif- 
ference between s, the saved persons, and ps, the saved 
passengers, will be a certain portion of 1 p , that is, of 
those that are not passengers, more specifically the saved 
non-passengers. 

A look at the Venn diagram presented above makes 
this fact too more transparent. It so happens that the sizes  

of s and 1 p  are known, namely 
3

4
 and 

2 1
1

3 3
  . 

It is a fact that ps, or that which is both p and s, cannot 
be larger than either p or s. In addition, it is a fact that ps 
cannot be larger than the smallest of either p or s, which 
happens to be p. 

The digital solution to the problem can be obtained 
through G. Boole’s formula of development. According 
to this formula, (68) is equal to  

   

  

1 1 0
1 1

1 0 1
0

1 1 ,
0

p xs x s x s

x s

       

   
 

or also to 

  0
1 1

0
p xs x s    ; with  1 0x s  .  (70) 

Equation (70) can be abbreviated because x is part of s 
and 1 s  is part of   1 1x s  , as the Venn diagram 
above illustrates. What is both x and s is therefore the 
same as what is just x and what is both 1 s  and 
  1 1x s   is the same as what is just 1 s . The ab- 
breviation in question is therefore as follows: 

 0
1

0
p x s   .             (71) 
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It follows from (71) that 

 0
1

0
p s x   .             (72) 

As regards the quantitative facet of the problem, it ap- 
pears that the sizes of both p and 1 s  are known. 

Equation (72) can therefore also be presented as 

 2 0 1

3 0 4
x ps    . 

This Equation conveys that, in order to obtain the 
quantity of ps “saved passengers”, one subtracts “none,  

some, or all” 
0

0
 
 
 

 of 
1

4
 from 

2

3
. In other words, one 

can subtract as little as 0 and as much as 
1

4
. 

It would therefore appear that the quantity of saved 

passengers can be as many as 
2

0
3
  or 

2

3
 and as few 

as 
2 1

3 4
  or 

5

12
 of the people on the ship, as well as 

any quantity in between. 
Accordingly, as many as all the passengers may have 

been saved and at least 
5

8
 of them (or 

5 2
:

12 3
) must 

have been, that is, about 62.5%. 
In this case, the minimum of 0 and the maximum of  

1

4
 derived from the digital solution of the problem are  

the actual minimum and the actual maximum. However, 
this is not always the case. The actual minimum may be 
higher and the actual maximum may be lower.  

The interpretation of the quantitative counterpart of 
0

0
 will therefore need to be further refined. This is done 

in §22.4 below. 
E. Schröder’s so-called “unambiguous (eindeutige)” 

version of (71) would be  

 1p x s   ,              (73) 

that is, (71) after removing 
0

0
. 

Accordingly, it would follow from (73) that  
 1p s x   , and therefore that 

2 1 5

3 4 12
x   . 

It is true that no fewer than 
5

12
 of all the people on 

the ship, or at least 
5

8
 of all the passengers, have been 

saved. But the number 
5

8
 serves as a lower limit. It is 

no less likely that, say, 
6

8
 or 

7

8
 of the passengers have 

been saved. These possibilities seem to get lost in E. 
Schröder’s approach. 

E. Schröder seems to view his abbreviation of G. 
Boole’s approach as a gain in precision. But it is rather a 
loss. A single number may seem to be more precise than 
a range of numbers. However, in the present case, it is a 
range that describes the mathematical reality precisely,  

not a single number. It is the function of the symbol 
0

0
 

to denote this range with mathematical precision. 

22.4. Determining the Quantitative  

Counterparts of 
0

0
 

In the case discussed in §22.3, namely determining ps 
“saved passengers”, a range of the quantity correspond-  

ing to 
0

0
 is obtained. The range of ps is 

1

4
, from a 

minimum of 0 to a maximum of 
1

4
. 

But the minimum may be higher and the maximum 
lower and the range hence shorter. There are three possi- 
ble cases: 1) either the maximum is lower; 2) or the 
minimum is higher; 3) or both are the case. 

For example, in determining pl “lost passengers”, both 
the minimum is higher and the maximum is lower. The 
equivalent to Equation (71) above pertaining to the solu- 
tion of ps is as follows:  

 0
1

0
p x l   . 

Along the same lines, the equivalent of Equation (72) 
pertaining to the solution of ps is the following: 

 0
1

0
p l x   .             (74) 

It appears that the sizes of both p and 1 l  are 
known. 

Equation (74) can therefore also be presented as 

 2 0 3

3 0 4
x pl    .            (75) 

At face value, Equation (75) conveys that, in order to 
obtain pl “lost passengers”, one subtracts an indefinite  

amount 
0

0
 
 
 

 of a class with size 
3

4
 from 

2

3
. Natu- 

rally, it is not possible to subtract the entire class. 

The range of 
3

4
 extends from 0 to 

3

4
. However, the 

minimum of 0 is raised to 
5

12
 and the maximum of 

3

4
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is lowered to 
2

3
. Accordingly, the actual range from 

5

12
 

to 
2

3
 is 

1

4
, exactly what it was in the case of deter- 

mining ps.  
The need is for a uniform method to determine the ac- 

tual minimum, whether it is raised or not, and the maxi- 
mum, whether it is lowered or not, of the range of the  

class characterized digitally as 
0

0
. Such a method is de- 

scribed in the next section. 

22.5. Determining Minimum and Maximum of 

Quantities Corresponding to Digital 
0

0
 

In Equation (72), x is defined in terms of p and 1 s . In 
Equation (74), x is defined in terms of p and 1 l . The  

ranges characterized by 
0

0
 are 1 s  and 1 l  respec- 

tively. 
The actual minimum and the actual maximum of the 

ranges in question, whether curtailed or not, can be de- 
rived respectively from the digital sum of p and 1 s  or 
1 l  and the digital product of p and 1 s  or 1 l . 

The minimum is the amount by which the sum is lar- 
ger than 1 or 100%. If the sum is not larger than 1, then 
the actual minimum is 0 and therefore not raised.  

Together, two sets or classes evidently cannot be lar- 
ger than 1 or 100% or everything that exists. Therefore, 
if their sum is larger than 1, then that is because they 
overlap at least by the amount that their sum exceeds 1 or 
100%.  

In Equation (72), the sum of p and 1 s  is  
2 1 11

3 4 12
  . The sum is less than 1. Accordingly, the 

minimum of 0 is not raised. 
In Equation (74), the sum of p and 1 l  is  

2 3 17

3 4 12
  . This sum does exceed 1 by 

5

12
. Accord- 

ingly, the minimum of 
0

0
 is raised from 0 to 

5

12
. 

What is the real life purport of the manner in which the 
minimum is obtained? Consider Equation (72): 

 0
1

0
p s x   .             (72) 

In this Equation, saved passengers (x or ps) are defined 
as that which is left when one subtracts from all the pas-  

sengers (p) an indefinite amount 
0

0
 
 
 

 of those that are  

not saved  1 s . 

Naturally, the non-saved persons  1 s  that are be- 
ing subtracted from the passengers need to be non-saved 
passengers. One cannot subtract non-passengers from 
passengers.  

But the key point is this. If a certain minimum number 
of passengers are not saved, then these non-saved pas- 
sengers will reduce the number of those among the pas- 
sengers who are saved at least by that minimal number.  

That minimum number will also be the lowest limit of  

the quantity of the class characterized digitally as 
0

0
,  

which in this case characterizes those who need to be 
subtracted from the passengers in order to obtain the 
saved passengers.  

There will be a minimal amount of non-saved passen- 
gers to the extent that the passengers and the non-saved 
persons minimally overlap. The overlap evidently is made 
up of the non-saved passengers. 

There will be an overlap if the sum of passengers and 
non-saved persons is more than 100% or all the people. 
That means that some must be both passengers and non- 
saved persons at the same time.  

The amount by which their sum is more than 100% 
constitutes the minimal overlap. The overlap may obvi- 
ously be larger.  

In Equation (72), p is 
2

3
 and 1 s  is 

1

4
. The sum is 

2 1 11

3 4 12
  . There is therefore no necessary minimal  

overlap. Accordingly, p can be reduced by as little as 0 to 
obtain ps. The minimum is therefore 0. 

In Equation (74), p is 
2

3
 and 1 l  is 

3

4
. The sum is 

2 3 17

3 4 12
  . The minimal overlap is therefore 

5

12
. Ac- 

cordingly, p needs to be reduced minimally by that 

amount. The minimum is therefore 
5

12
. 

Next is determining whether the maximum of the 
quantitative range of the class characterized digitally as  
0

0
 needs to be lowered and, if so, by how much. 

0

0
  

characterizes digitally what needs to be substracted in 
Equations (72) and (74). What is subtracted is  1p s  
and  1p l  respectively.  

It is self-evident that what needs to be subtracted can- 
not be more than the maximum size of  1p s  or 
 1p l  respectively. The maximum size of these two 

digital products is the same as the size of the smallest of 
the two sets or classes in each product.  

In other words, if there are 5 doctors (d) and 10 
Frenchmen (f), the maximum number of French doctors 
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(fd) is 5, when the overlap between the two is maximal.  
What is the real life purport of this? It will be useful to 

return once again to Equation (72), namely  

 0
1

0
p s x   .             (72) 

In this Equation, saved passengers (x or ps) are defined 
as that which is left when one subtracts from all the pas-  

sengers (p) an indefinite amount 
0

0
 
 
 

 of those that are 

not saved  1 s . 

The non-saved persons in question ought to be all 
passengers. But there can be no more non-saved passen- 
gers to subtract from the passengers than there are non- 
saved passengers. 

Nor can there be more non-saved passengers to sub- 
tract from the non-saved passengers than there are non- 
saved persons.  

Furthermore, there can be no more non-saved passen- 
gers than those that are both non-saved persons and pas- 
sengers at the same time. 

If the maximum number of non-saved passengers is 
lower than the maximum of the range of the class char-  

acterized digitally as 
0

0
, then the range needs to be low- 

ered accordingly. 

In Equation (72), p is 
2

3
 and 1 s  is 

1

4
. The 

maximum size of the digital product is therefore 
1

4
. This 

is not less than 
1

4
. Accordingly, the maximum does not 

need to be lowered. 

In Equation (74), p is 
2

3
 and 1 l  is 

3

4
. The 

maximum size of the digital product is therefore 
2

3
. This 

is less than the maximum 
3

4
. Accordingly, the maxi- 

mum needs to be reduced from 
3

4
 to 

2

3
. 

Along these lines, a complete digital-quantitative ma- 
thematical map of A. Macfarlane’s example can be de- 
veloped. The need is for determining four categories in 
total, as follows: ps, pl, cs, and cl.  

There are two ways of determining each of the four 
categories, for a total of eight ways. 

In two of the eight ways, neither the maximum nor the 
minimum are changed, namely in 1) and 5) below. In two 
cases, the minimum is raised, namely in 2) and 6) below. 
In two cases, the maximum is lowered, namely in 4) and 
8) below. And in two cases, both the minimum is raised 

and the maximum lowered, namely in 3) and 7) below. 
The eight ways involve the following eight Equations, 

two of which have already been mentioned above, 
namely 1) and 3):  

1)  0
1

0
p s x ps     ; 

2)  0
1

0
s p x ps     ; 

3)  0
1

0
p l x pl     ; 

4)  0
1

0
l p x pl     ; 

5)  0
1

0
c s x cs     ; 

6)  0
1

0
s c x cs     ; 

7)  0
1

0
c l x cl     ; and 

8)  0
1

0
l c x cl     . 

The relevant quantities are as follows: 

1) 
2 0 1

3 0 4
ps   . Range of (class characterized digi- 

tally as) 
0

0
: from 0  to 

1

4
. 

Result: 
5

12
 ≤ ps ≤ 

2

3
. 

2) 
3 0 1

4 0 3
ps   . Range of 

0

0
: from 

1

12
 to 

1

3
. 

Result: 
5

12
 ≤ ps ≤ 

2

3
. 

3) 
2 0 3

3 0 4
pl   . Range of 

0

0
: from 

5

12
 to 

2

3
. 

Result: 0 ≤ pl ≤ 
1

4
. 

4) 
1 0 1

4 0 3
pl   . Range of 

0

0
: from 0  to 

1

4
. 

Result: 0 ≤ pl ≤ 
1

4
. 

5) 
1 0 1

3 0 4
cs   . Range of 

0

0
: from 0  to 

1

4
. 

Result: 
1

12
 ≤ cs ≤ 

1

3
. 

6) 
3 0 2

4 0 3
cs   . Range of 

0

0
: from 

5

12
 to 

2

3
. 

Result: 
1

12
 ≤ cs ≤ 

1

3
. 
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7) 
1 0 3

3 0 4
cl   . Range of 

0

0
: from 

1

12
 to 

1

3
. 

Result: 0 ≤ cl ≤ 
1

4
. 

8) 
1 0 2

4 0 3
cl   . Range of 

0

0
: from 0  to 

1

4
. 

Result: 0 ≤ cl ≤ 
1

4
. 

The actual range of the classes characterized digitally  

by 
0

0
, including any possible raising of the minimum or 

lowering of the maximum, is in all cases 
1

4
. This is the  

size of the smallest possible class, the lost persons. It is 
the smallest wiggle space, as it were, in the relations be- 
tween the classes and their possible overlaps. 

These results are naturally the same as A. Macfarlane’s. 
But they are obtained through a single consistent algo- 
rithm that provides a complete mathematical map of the 
problem and that could easily be converted into a com- 
puter program.  

I delay until a later occasion the transposal of exam- 
ples like this to the realm of probability theory. The re- 
sult would be the introduction of ranges of probability 
into probability theory. 

For example, one might ask the following question: If 
one has an acquaintance on the boat of A. Macfarlane’s 
example who is a passenger, what is the chance that she 
or he has survived? It is between 62.5% and 100%. Sup- 
pose one were offered to receive $1000 if the passenger 
survives. How much should one pay for the privilege of 
entering the bet on fair conditions? The sum is $812.5 
because one has on average a chance of 81.25%, that is, 
halfway between 62.5% and 100%, that the passenger 
has survived. This is the best one can do considering the 
data.  

23. The Confusing Treatment of the  

Indefinite Symbols v and 
0

0
 in G. 

Boole’s Works 

23.1. The Distinct Mathematical Definitions of  

1) v and 2) 
0

0
 

The design of §21 and §22 was to illustrate and clarify 

the full mathematical validity of G. Boole’s 
0

0
 “none, 

some, or all”. 
Those who are familiar with G. Boole’s writings will 

be aware that he very often uses a symbol v and consid- 
ers the function of this symbol to be generally equivalent  

to 
0

0
. 

It is also an undeniable fact that he defines v in two 
distinct and contradictory ways, as follows: 

1) “all, some, or none” [75]; 
2) “some... [or] all” [76]. 

The result is two symbols, namely 1) v and 2) 
0

0
, and 

two definitions. 

It is one thing that the symbol 
0

0
, which looks to the  

quantitative mathematician like a fraction in which the 
numerator and the denominator are both zero, has been 
viewed with great suspicion. 

But it has not helped the cause of 
0

0
 that G. Boole  

viewed it as being equivalent to v, a symbol that he de- 
fines in two different ways. 

G. Boole has been criticized for his use of the symbol  

v to about the same degree as his use of 
0

0
 has been 

considered suspect. 
But there is yet an additional complication, which only 

seems to incrase the confusion. As will be noted in §23.2, 
it is eminently probable that G. Boole’s symbol v origi- 
nates in the use of “some” in the so-called particular 
statements of Aristotelian and scholastic logic. But there 
is a problem. In Aristotelian and scholastic logic, “some” 
excludes both “none” and “all”. This is a definition that 
G. Boole nowhere assigns to v. As was observed above, 
one finds it defined as “some or all”. 

There is no denying that the whole matter is confusing. 
Still, I believe that the confusion does not handicap G. 
Boole’s method and system in any fundamental way.  

What is more, it appears to me definitely possible to 
clear up the confusion and thereby tie up a loose end in G. 
Boole’s method in rigorously mathematical terms.  

This is not the place to treat the matter at length. May 
it suffice to note that one approach that I find acceptable  

would be to eliminate v altogether and to define 
0

0
  

strictly digitally, as has been done above, as a marker of 
classes regarding whose individual members one does 
not know whether they are included (1) or excluded (0). 

If one does want to retain v, then one ought to differ- 

entiate it from 
0

0
, it seems to me. Why simultaneously 

use two symbols with the exact same meaning? 
I see an opportunity to use v as an equivalent of 

“some”, excluding both “none” and “all”, more or less in 
the same meaning in which it is used in so-called par-  

ticular statements. In that regard, 
0

0
 and v would belong 
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to radically different components of rational human in- 

telligence in that 
0

0
 would be digital and v quantitative.  

I hope to present a more detailed treatment of this matter 
elsewhere.  

23.2. The Origin of G. Boole’s v 

Upon closer inspection, it is easily possible to detect the 
origin of G. Boole’s v. It can be traced back to the 
“some” of the so-called particular statements of Aristote- 
lian and scholastic logic. This “some” excludes both 
“none” and “all”. But as has already been noted in the 
previous section, G. Boole nowhere defines v in this way,  

only adding to the confusion characterizing his use of 
0

0
  

and v. One only finds the definition “some or all” in his 
work, in addition to “none, some, or all”. 

Particular statements are of the two types “Some Xs 
are Ys” and “Some Xs are not Ys”. They are traditionally 
signified by the letters I and O respectively.  

Particular statements are opposed to the so-called uni- 
versal statements of the types “All Xs are Ys” and “No 
Xs are Ys”, which are signified by the letters A and I 
respectively.  

The letters A, I, E, and O are taken from the Latin 
words affirmo “I affirm” and nego “I deny”.  

That the particular statements are the origin of G. 
Boole’s v is even more apparent from his earlier “The 
Mathematical Analysis of Logic” of 1847 [77] than from 
his later “An Investigation of the Laws of Thought” of 
1854.  

I hope to lay out in detail in a future paper how the 
particular statements of Aristotelian and scholastic logic 
are an expression of an entirely different component of 
rational human intelligence than the universal statements 
of that same logic. I have been much inspired in reaching 
this conclusion by the writings of J. Venn.  

Accordingly, there is something deeply tortured in Ar- 
istotelian and scholastic logic when it comes to treating 
particular statements together with universal statements 
as members of one and the same species.  

This approach has dominated logic for two and a half 
millennia. It has affected G. Boole’s strictly mathemati- 
cal theory of logic. And it has especially created confu-  

sion in regard to his employment of the two symbols 
0

0
 

and v, and especially of the latter.  
It is time to separate the types A and E from the types I 

and O and treat them as entirely different facets of ra- 
tional human intelligence.  

In the end, one does wonder why G. Boole did not ex- 
tract himself entirely from the Aristotelian and scholastic 
particular statements.  

One can only surmise that the Aristotelian system and 
the particular statements that are part of it appeared even 
to him as too hallowed by history to allow for a complete 
departure.  

But the consequence in the end is what I believe to be 
two shortcomings in G. Boole’s system.  

The first shortcoming concerns the incorporation of 
particular statements into the same system as universal 
statements, into which they do not really fit.  

The second shortcoming is the absence of an apprecia- 
tion of the very specific role that particular statements do 
otherwise play in the totality of rational human intelli- 
gence. This role will be detailed elsewhere.  

24. On the Multiplication of Coefficients 

To articulate the relevance of 
0

0
 and the other coeffi-  

cients, one more illustration of their purport may be con- 
sidered. This illustration concerns the (digital) multipli- 
cation of the coefficients. 

Interpreters have struggled mightily with the interpre-  

tation of 
0

0
. It may therefore seem precocious to con- 

sider the purport of the expression 
0 0

0 0
 . 

G. Boole did not devote any attention to the possibility 
of multiplying coefficients, as far as I know. But there is 
a footnote in J. Venn’s “Symbolic Logic” to the effect 
that 

0 0 0

0 0 0
  , 

and that in the sense that “our ignorance is equally com- 
plete before and after the multiplication” [78]. 

The following discussion of the multiplication of coef- 
ficients is otherwise designed as an extension of G. 
Boole’s and J. Venn’s ideas.  

There are four coefficients in G. Boole’s system, 

namely 0, 1, 
0

0
, and 

1

0
.  

The coefficient 
1

0
 can readily be eliminated from con- 

sideration when it comes to multiplication because it 
accompanies classes that do not exist. That leaves 0, 1,  

and 
0

0
. 

These three coefficients can be multiplied with one 
another in six ways, the following:  

0 0 ; 
0

0
0

 ; 0 1 ; 
0

1
0
 ; 1 1 ; and 

0 0

0 0
 . 

To clarify the purport of multiplied coefficients, a 
problem proposed by G. Boole may be solved in what 
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follows in a manner that differs from the manner in 
which G. Boole solves it.  

What is more, this alternative solution involves the 
multiplication, in the digital sense naturally, of coeffi- 
cients.  

The problem involves the following definition of 
wealth:  

Wealth (w) consists of things transferable (t), limited 
in supply (s), and either productive of pleasure (p) or 
preventive of pain (r). 

This statement can be rendered as follows in G. 
Boole’s algebra:  

 1w st p r p     .           (76) 

In relation to Equation (76), G. Boole proposes to es- 
tablish what the things both transferable (t) and produc- 
tive of pleasure (p), that is, t p  or tp, are in relation to 
the three other attributes w, s, and r.  

In this connection, he proposes a sophisticated method 
in which he equates tp with y in a separate Equation. He 
then brings terms to the same side in both this Equation 
and Equation (76) and squares the terms joined to the 
same side and equates their sum to zero. The details of 
this procedure exceed the scope of the present paper. 

I do wonder, however, whether the alternative proce- 
dure to be proposed in what follows is longer than G. 
Boole’s. 

I instead propose, (1), to eliminate t from (76) and ob- 
tain what p is in relation to w, s, and r and, (2), to elimi- 
nate p from (76) and obtain what t is in relation to w, s, 
and r. 

As was noted before, elimination of p involves equat- 
ing p first with 1 and then with 0 and equating the prod- 
uct of the two with zero; and likewise for eliminating 1. I 
refrain from laying out all the details. The two following 
Equations are obtained: 

wsr wsr wsr ws r
t

wsr wsr wsr

  


 
;         (77) 

wsr wsr ws r
p

wsr

 
 .          (78) 

The next step is to develop the right-hand sides of both 
(77) and (78). The result is as follows:  

1
1 1 0

0
0 0 1 0

;
0 0 0 0

t wsr wsr wsr wsr

wsr wsr ws r ws r

       

      
 

0 1 0
1

0 0 0
0 0 1 0

.
0 0 0 0

p wsr wsr wsr wsr

wsr wsr ws r ws r

       

      
 

The terms marked by 
1

0
 are equal to zero and can 

therefore be eliminated, as follows:  

1 1 0

0 0 0
;

0 0 0

t wsr wsr wsr

wsr wsr ws r

     

    
       (79) 

0 0
1

0 0
0 0 0

.
0 0 0

p wsr wsr wsr

wsr wsr ws r

     

    
       (80) 

It can now be postulated that t × p can be obtained by 
multiplying the right-hand sides both Equations (79) and 
(80).  

This means that each of the six members of one of the 
two sides needs to be multiplied with each of the six 
members of the other of the two sides. The result is 36 
products (that is, 6 × 6). 

However, all but six of the 36 terms can be readily 
eliminated. Only those in which a term in one Equation is 
multiplied with the same term in the other Equation will 
survive. 

For example, 0wsr wsr  . Nothing can be r and 
r  at the same time. The same Equation with zero ap- 
plies to 23 more products. 

The result of the multiplication of (79) and (80) is 
therefore as follows: 

0 0
1 1 1 0

0 0
0 0 0 0 0 0

.
0 0 0 0 0 0

t p wsr wsr wsr

wsr wsr ws r

         

       
 (81) 

It seems obvious that the following possible products 
of coefficients can be resolved as follows: 

0 0 0  ; 
0 0

0
0 0

  ; 0 1 0  ; 

0 0
1

0 0
  ; and 1 1 1  . 

In other words, multiplying 0 by 0 results in 0 and 
multiplying by 1 retains the other member of the product. 
Both these principles apply simultaneously in the product 
0 1 0  .  

The purport of these results is readily understood. One 
example. If t includes everything (1) of wsr and p does 
too, then anything that is both t and p will too.  

Accordingly, Equation (81) can be abbreviated as fol- 
lows: 

0 0 0

0 0 0
0 0 0 0

.
0 0 0 0

t p wsr wsr wsr

wsr ws r

     

    
      (82) 
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Five terms have survived. Three of them remain to be 

interpreted. They are the three terms signified by 
0 0

0 0
 . 

How can 
0 0

0 0
  be resolved into a single coefficient? 

Is the single coefficient 0, 1, or 
0

0
? It would seem 

tempting to declare something like 

0 0 0

0 0 0
   

to be the case. 

However, the interpretation of 
0 0

0 0
  appears to re-  

quire a more sophisticated approach. It will not be possi- 
ble to elucidate all the ramifications of this more sophis- 
ticated approach. Still, some conclusions are possible and 
I believe them to be mathematically precise. 

All depends on the relation between the domains of 
wsr , wsr , and ws r  occupied by t and those occu- 
pied by p. They are different possibilities.  

Two principal possibilities are as follows. Either the 
two domains overlap or they do not overlap. If the do- 
mains do not overlap then the following Equation ap- 
plies: 

0 0 0

0 0 0
  . 

In other words, if p occupies an indefinite amount 
0

0
 
 
 

 of a class and t occupies an indefinite amount 

0

0
 
 
 

 of the same class and the two domains do not 

overlap, then nothing (0) of that class is both t and p. 

As regards the remaining instances of 
0 0

0 0
 , it needs  

to be established that t and p do not both overlap with all 
of a certain class. In such a case, the following Equation 
would apply: 

0 0
1

0 0
  . 

The task at hand is therefore to evaluate the three 
classes wsr , wsr , and ws r  in terms of t and p. It is 
obvious that each of these three classes consists of four 
combination classes, for a total of 12. They are the fol- 
lowing: 

wsrtp , wsrtp , wsrt p , and wsrt p ; 

wsrtp , wsr tp , wsrt p , and wsr t p ; and 

ws rtp , ws r tp , ws rt p , and ws r t p . 

It is evident that all the combination classes that are 
neither t nor p, namely w srt p , wsr t p , and ws r t p  

need to be eliminated. Only combination classes that are 
either t or p can be part of the make-up of a larger class 
that is itself a component of what is both t and p. 

At the same time, wsrt p , wsr t p , and ws r t p  
are not 0 according to (76). It follows that tp cannot in- 
clude “all”  1  of wsr , wsr , and ws r . 

That leaves the following nine components to be 
evaluated:  

wsrtp , wsrtp , and wsrt p ;  

wsrtp , wsr tp , and wsrt p ; and 

ws rtp , ws r tp , and ws rt p . 

The present focus is on establishing whether t and p 
overlap in wsr , wsr , and ws r .  

This comes down to asking whether parts of wsr , 
wsr , and ws r  are both t and p, which is the same as 
asking whether wsrtp , wsrtp , and ws rtp  are not 0 
according to (76). 

It appears that wsrtp  and wsrtp  are not 0, whereas 
ws rtp  is.  

According to Equation (76), all that is at the same time 
s, t, and p must also be w. The combination class wsrtp  
is not w and therefore equals 0 according to (76).  

Since wsrtp  and wsrtp  are not 0 according to (76), 
it does not matter much whether wsrtp , wsrt p , 
ws r tp , and ws r t p  are or are not 0. But it so hap- 
pens that they are not 0 according to (76).  

Equation (82) can now be finalized as follows: 

0 0 0

0 0 0
tp wsr wsr wsr ws r    . 

This is the same result as the one obtained by G. Boole 
by other means [79]. 

It should be noted that, in G. Boole’s version of the 
Equation, the coefficient of both  1 w sr  and  
   1 1w s r   ought to be −0 (minus zero) rather than 
G. Boole’s “+0”. 

The significance of the minus sign is not fully trans- 
parent to me. I too obtain it for classes that are signified 
by the coefficient 0. It somehow seems to indicate that 
the class in question needs to be subtracted from all that 
is being considered. 

25. The Theory of Rational Human  
Intelligence as a Black Box Theory 

25.1. On the Feasibility of a Complete and Final 
Mathematical Theory of Rational Human 
Intelligence 

A fatal obstacle to the construction of a theory of rational 
intelligence might appear to be that the activity of the 
brain pertaining to rational human intelligence and taking 
place on a microscopic scale is for the most part opaque. 
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No one has any idea at this time how exactly the brain 
produces rational thought and language. 

Incidentally, I consider rational thought and language 
to be a single phenomenon that might also be styled as 
rational-thought-and-language.  

Then again, the microscopic activity inside the brain 
pertaining to rational human intelligence is exteriorized 
in empirical and observable ways.  

Rational human intelligence is exteriorized by sound 
waves issuing from the human speech organs or by sym- 
bols written in ink on a page. These sounds and written 
symbols by themselves do not carry any meaning or 
thought. They only produce meaning or thought when 
they are picked up by a hearing or seeing brain that 
knows to which meanings or thoughts the auditory or 
visual imprints inside the brain corresponding to those 
sounds or symbols outside the brain are linked.  

The brain in question must be one that knows the spe- 
cific language of the sounds and symbols. 

Chinese sounds or writing mean nothing to a brain that 
does not know spoken or written Chinese. Sounds pro- 
duce auditory imprints inside the brain. Those auditory 
imprints must be linked somehow to a meaning or 
thought. If they are not, then that means that the brain in 
question does not know the language. 

It is abundantly clear, then, that rational human intel- 
ligence is exteriorized. It is therefore in a way accessible 
to independent observers that know the language in 
which it is expressed.  

It is clear that the biochemical platform in which ra- 
tional human intelligence is stored inside the brain must 
look very different from the sound and written platforms 
in which rational human intelligence is exteriorized in 
sounds. 

Still, there is every reason to believe that both exhibit 
the same structure. And it is proposed here that this 
structure is entirely digital.  

What leads one to believe that the biochemical plat- 
form and the exterior platform must be the same from the 
point of view of structure? There are many indications. 

One indication is as follows. Speakers of the same 
language generally understand one another when they 
speak. A structure originating in one brain is exteriorized 
in sound waves, travels through the air, and is picked up 
by another brain. Little or nothing is lost in the process.  

Also, from listening to their own words and seeing 
their own writing, speakers of a language can verify at 
any time that what they say or write reflects what they 
think inside their head. It is difficult to imagine that one 
would at all times be in danger of saying something that 
is different from what one thinks that one is saying with- 
out even knowing it. Even someone who is lying knows 
what the meaning is of what he is saying.  

In reconstructing a theory of rational human intelli- 

gence, there is a distinction between the general mathe- 
matical principles at work and the specific biochemical 
model. As was noted above, I believe that the general 
mathematical principles can be formulated in their en- 
tirety. No such completeness is necessary about the pre- 
cise biochemical mechanism. 

It might perhaps come as a surprise that anything at all 
can be said about the mechanism. It is like describing an 
electric motor as a mechanism judging only from its out- 
side effect, namely to produce motion. 

Then again, the outside effect of rational human intel- 
ligence is much more variegated than the effect of an 
electric motor. In fact, the electric motor has in the end 
the exact same effect as the steam engine. That is an in- 
dication that one would be able to say almost nothing of 
the constitution of the two mechanisms judging from 
what they do. 

25.2. A Comparison with J. C. Maxwell’s Theory 
of Electrodynamics 

It may defy belief that a complete and final mathematical 
theory of all of rational human intelligence is at all pos- 
sible at this time (as I am convinced that it is) without 
anyone having any idea how the physical brain functions 
when it engages in rational human intelligence. It may 
therefore be encouraging to learn that something quite 
like this has already been done.  

For example, there has been for some time a generally 
accepted mathematical theory of gravity. And yet, no one 
knows what gravity is.  

In any event, the theory of gravity is not complete. A 
closer parallel to the theory that is proposed in follow-up 
papers is J. C. Maxwell’s theory of electrodynamics.  

The electromagnetic force is the only one of the four 
forces known to physics that is completely understood. 
And this complete understanding is owed to James Clerk 
Maxwell (1831-1879), who formulated the theory de- 
scribing the force more than 140 years ago in the ca- 
nonical form that it still has today [80].  

The four forces, arranged in order of size of strength 
from high to low, are as follows: 1) strong; 2) electro- 
magnetic; 3) weak; and 4) gravitational. The fundamental 
laws of electrodynamics are summed up in a handful of 
Equations produced by J. C. Maxwell.  

A comparison of the theory proposed below with J. C. 
Maxwell’s theory may serve to clarify the nature and 
character of the former. There are four characteristics 
that the theory that will be proposed for rational human 
intelligence shares with J. C. Maxwell’s theory and there 
are three characteristics by which it differs.  

But before describing these seven characteristics in 
detail, one similarity between the two theories needs to 
be dismissed as irrelevant.  
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J. C. Maxwell’s theory deals with electromagnetism. 
And rational human intelligence has in the end also to do 
with electromagnetism. It has been said that “it is scarcely 
an exaggeration to say that we live in an electromagnetic 
world—for virtually every force we experience in every- 
day life, with the exception of gravity, is electromagnetic 
in origin” [81].  

The fact that rational human intelligence is apparently 
in the end electromagnetic in nature does not necessarily 
mean anything in relation to J. C. Maxwell’s theory be- 
cause most everything interesting in the human experi- 
ence is electromagnetic, as it were. In fact, J. C. Max- 
well’s theory is all about measuring electromagnetism 
directly in its effects. No such measurements are part of 
the theory of rational human intelligence presented be- 
low.  

Such measurements would be desirable if the aim were 
to determine the power expended in watts of a certain 
amount of effort of rational thinking. There is no doubt 
that energy is expended in thinking.  

For comparison, a laborer working an eight-hour day 
might perhaps expend 75 watts or so. It would therefore 
be of interest to be able to determine exactly the amount 
of power expended in a certain event of rational human 
thinking.  

In fact, to some extent, the energy that the brain con- 
sumes can already be measured somewhat precisely. But 
measuring the tiny amount that it takes to produce, say, a 
single well-constructed sentence is another matter. Pre- 
sumably, some day, it will be possible to measure every- 
thing that happens in the brain precisely.  

In any event, any such measurements are not relevant 
to the present paper’s main argument. The amount of 
rational human thought is a different concern than the 
structure of rational human thought. The concern of the 
present paper is entirely with the latter.  

25.3. J. C. Maxwell’s Theory and the Theory of 
Rational Human Intelligence: Four Shared 
General Characteristics 

The design of the four shared general characteristics 
listed in the present section and the differentiating char- 
acteristics listed in the next section is to classify the the- 
ory of rational human intelligence in a general way. 

First shared characteristic—Quite in general, both J. 
C. Maxwell’s theory and the theory of rational human 
intelligence are theories of physics. They explain a facet 
of physical reality in mathematical terms. The two facets 
in question are the propagation of rational human intelli- 
gence in the brain and the propagation of electromagnetic 
forces. 

Second shared characteristic—Both facets of physical 
reality, electromagnetism and rational human intelligence, 

can be fully explained without any reference to what the 
facets actually are in the flesh, as it were. 

It is like describing something that sits in a black box 
without being able to look inside the box. Naturally, 
since J. C. Maxwell, electromagnetism as a physical real- 
ity has come to be much better understood. But this un- 
derstanding has not in the least changed his theory. 
Likewise, I believe that the theory proposed below will 
essentially not change, even when a better understanding 
is obtained as to what rational human intelligence in fact 
is in the flesh inside the brain.  

It is in the end as unnecessary to J. C. Maxwell’s the- 
ory to know what electromagnetism physically is as it is 
unnecessary to the theory proposed below to know what 
rational human intelligence physically is.  

J. C. Maxwell’s theory was formulated in its definitive 
form even though its author or anyone coming before 
him had no knowledge whatsoever of the existence of the 
electron or of the structure of the atom in general.  

Electrical current is now typically presented in text- 
books of all levels as a flow of electrons that have been 
detached from their atoms.  

J. C. Maxwell had no notion of electrons. He could 
only observe electricity and magnetism in all their exte- 
rior effects without knowing which events produced the 
effects in question. When it comes to the observation of 
the effects of electricity and magnetism, he acknowl- 
edges a profound debt to the vast opus of Michael Fara- 
day (1791-1867).  

M. Faraday’s work only confirms that there are defi- 
nitely cases in which it is possible to learn an enormous 
amount about the nature of a phenomenon by observing 
it only in its external effects.  

Not only did M. Faraday have no notion of what elec- 
tricity or magnetism really is (even if he established for 
the first time much of what it does), his knowledge of 
mathematics apparently also did not extend much beyond 
trigonometry. It was J. C. Maxwell who cast these ob- 
servations in a definitive mathematical form.  

In regard to the theory of rational human intelligence, 
the brain is a little bit like a black box. One knows the 
inputs and the outputs of the box, that is, what goes into 
the box and what comes out of the box. But one does not 
really know the internal mechanism of the box.  

Still, certain well-defined proposals about the internal 
biochemical mechanism of the box will be made in what 
follows. Furthermore, there should be a certain type of 
flawless correlation between what comes out of the box 
and what is inside it. After all, as was noted above, when 
speaking, one has a definite sense that one’s words match 
what one is thinking.  

In the same way, the system of electricity and magnet- 
ism was like a black box to J. C. Maxwell when he for- 
mulated his complete theory of the electromagnetic 



L. DEPUYDT 

Copyright © 2013 SciRes.                                                                                 APM 

552 

force.  
In a recent biography of J. C. Maxwell by B. Mahon, it 

is called exactly that, a “black box—if you knew the in- 
puts and could calculate the outputs without knowledge 
of the internal mechanism”, and the author of the biog- 
raphy quotes J. C. Maxwell’s own “more picturesque” 
description of the black box, which may be repeated here 
[82]:  

In an ordinary belfry, each bell has one rope which 
comes down through a hole in the floor to the bell- 
ringer’s room. But suppose that each rope, instead of 
acting on one bell, contributes to the motion of many 
pieces of machinery, and that the motion of each piece is 
determined not by the motion of one rope alone, but by 
that of several, and suppose, further, that all this ma- 
chinery is silent and utterly unknown to the men at the 
ropes, who can only see as far as the holes above them.  

The author of the biography further comments as fol- 
lows:  

[T]his was exactly what [J. C. Maxwell] needed. Na- 
ture’s detailed mechanism could remain secret, like the 
machinery in the belfry.  

This property of J. C. Maxwell’s theory is adduced 
here in support of the notion that access to an internal 
mechanism is not a necessary obstacle to construct a 
complete and final theory of that mechanism.  

A few additional quotes from the same biography fur- 
ther describe the black box nature of the theory.  

(J. C. Maxwell) therefore chose the second route, 
which was to go beyond geometrical analogy and make 
an imaginary mechanical model of the combined elec- 
tromagnetic field—a mechanism that would behave like 
the real field. If he could devise a suitable model, the 
equations governing its operation would also apply to 
the real field [83]. 

(He) was at pains to point out that this bizarre ar- 
rangement... was merely a model [84]. 

(His theory was) a completely new type of theory, one 
which admits that we may never understand the detailed 
workings of nature [85]. 

Even the most enlightened of his contemporaries 
thought that the next step should be to refine the model, 
to try to find the true mechanism. But perhaps he was 
already sensing that the ultimate mechanisms of nature 
may be beyond our powers of comprehension [86].  

Third shared characteristic—Like J. C. Maxwell’s 
theory, the theory of rational human intelligence is com- 
pletely mathematical. As mathematical theories, both 
account for all possible cases. 

Fourth shared characteristic—Like J. C. Maxwell’s 
theory, the theory proposed of rational human intelli- 
gence is believed to be more or less complete. J. C. 
Maxwell’s theory is more than 140 years old. In that re- 
gard, it is noteworthy that it was already complete when 

it was first formulated. 
As was noted above, the electromagnetic force is the 

only one that is completely understood. As such, the the- 
ory of electromagnetism has served ever since as a model 
for the construction of other theories of physics. 

In the introduction to one college handbook of elec- 
trodynamics, one reads the following [87]:  

The laws of classical electrodynamics were discovered 
in bits and pieces by Franklin, Coulomb, Ampère, Fara- 
day, and others, but the person who completed the job, 
and packaged it all in the compact form it has today, was 
James Clerk Maxwell.  

A little over halfway through the same book, one reads 
in an “Intermission” [88]:  

All of our cards are now on the table, and in a sense 
my job is done. In the first seven chapters, we assembled 
electrodynamics piece by piece, and now, with Maxwell’s 
equations in their final form, the theory is complete. 
There are no more laws to be learned, no further gener- 
alizations to be considered.  

25.4. Three Differentiating General Properties 

First differentiating property—J. C. Maxwell’s theory is 
entirely about quantity. By contrast, quantity plays no 
role in the theory of rational human intelligence. 

The principal tool of measuring quantity in J. C. 
Maxwell’s theory is the partial differential Equation. The 
introduction of partial differential Equations into the de- 
scription of physical reality constitutes something of a 
turning-point in physics. 

A. Einstein has describe the role of the partial differ- 
ential Equation as follows [89]:  

Before Maxwell people thought of physical reality—in 
so far as it represented events in nature—as material 
points, whose changes consist only in motions which are 
subject to total differential equations. After Maxwell they 
thought of physical reality as represented by continuous 
fields, not mechanically explicable, which are subject to 
partial differential equations. This change in the concep- 
tion of reality is the most profound and the most fruitful 
that physics has experienced since Newton.  

Even though the propagation of rational human intel- 
ligence is electrochemical, partial differential Equations 
or quantity in general play no role in the mathematical 
theory of rational human intelligence itself.  

Second differentiating property—J. C. Maxwell’s 
writings contain only few reflections about what electric- 
ity and magnetism physically are. As was noted before, J. 
C. Maxwell did not even know what an electron is.  

The theory proposed below can likewise exist with 
only little reference to what rational human intelligence 
physically is. Still, rational human intelligence must have 
a physical structure. This physical structure will be elu- 
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cidated as the biological structure of the brain comes to 
be better understood. In that regard, some proposals will 
be made below as to what that physical structure actually 
might be. 

Third differentiating property—As distinct from J. C. 
Maxwell’s theory and all other theories of physics, the 
theory of rational human intelligence as a theory of 
physics exhibits a unique property. It is reflexive. This 
reflexivity has already been discussed above. It takes acts 
of rational human intelligence to explain what rational 
human intelligence is. In that regard, rational human in- 
telligence needs to explain itself, a bit like a snake biting 
its own tail. 

25.5. G. Boole and J. C. Maxwell 

J. C. Maxwell’s theory has been adduced above for the 
purpose of providing a better characterization of the the- 
ory of rational human intelligence, which owes so much 
to G. Boole. 

It appears that G. Boole (1815-1864) and J. C. Max- 
well (1831-1879) exhibit a certain striking propinquity in 
relation to the three main coordinates of the human con- 
dition: person, space, and time. 

As regards person, both were scientists endowed with 
exceptional skills in mathematics. And mathematics 
played a dominant role in their lives. Among many 
shared attributes pertaining to their scientific personas, 
both were members of the Royal Society in London. One 
differentiating feature is that G. Boole was entirely auto- 
didact whereas J. C. Maxwell was not. 

As regards time, both flourished around and about the 
middle part of the nineteenth century.  

As regards space, G. Boole grew up in Lincolnshire in 
the east of Middle England and J. C. Maxwell somewhat 
north of that in the Galloway region of southwest Scot- 
land.  

It is otherwise a matter of coincidence that both died at 
about the same age, just short of a half-century lifespan.  

The present focus is on two revolutionary theories, J. 
C. Maxwell’s theory of electromagnetism and waves and 
G. Boole’s theory of digital mathematics. As the result of 
a major revolutionary process in civilization of the last 
hundred years or so, all sorts of devices including satel- 
lites now emit and receive all kinds of information in 
digital format through the medium of radio waves.  

These and many related events constitute in large part 
the combined application of two theories, J. C. Max- 
well’s theory of electromagnetism and G. Boole’s theory 
of digital mathematics.  

It is intriguing that the two theories came about not all 
that far from one another in place and time, more pre- 
cisely in England, Ireland, and Scotland in the two dec- 
ade period lasting from about 1845 to about 1865.  

It is therefore difficult to resist the temptation to search 
for any possible connections between the two theories 
and in a more general sense between the originators of 
the theories.  

First the theories. It may be useful to preface the ex- 
amination of possible relations between J. C. Maxwell’s 
theory and G. Boole’s theory by singling out a character- 
istic that they share.  

This characteristic has in the end nothing to do with 
the contents of the theories. But it has everything to do 
with how the theories have been perceived by many.  

The characteristic in question is that both theories 
were considered as being not quite scientific, that is, as 
mysterious or mystical or the like, by well-established 
scientists. May it suffice to adduce one example for each.  

In his Preface to the re-edition of J. C. Maxwell’s “A 
Dynamic Theory of the Electromagnetic Field”, Th. T. 
Torrance cites a letter kept at the University of Glasgow 
in which the eminent physicist W. Thomson (1824-1907), 
Lord Kelvin, opined that J. C. Maxwell had lapsed into 
“mysticism” with his theory of electromagnetism [90].  

J. Venn, G. Boole’s principal disciple, notes that W. S. 
Jevons (1835-1882), the eminent logician, who was inti- 
mately acquainted with G. Boole’s theory, saw need to 
excise from the theory all that is “obscure”, “anomalous”, 
“mysterious”, or “dark” [91].  

G. Boole’s case was not helped by the fact that his 
wife, Mary Boole, who outlived him by 52 years, dying 
in 1916, by all accounts a most remarkable woman well 
ahead of her time who had raised five remarkable 
daughters, was a prolific author whose work often exhib- 
ited mystical tendencies and incorporated her husband’s 
ideas in unorthodox ways.  

Her Collected Works of 1931 are described in D. 
MacHale’s biography of G. Boole as fifteen hundred 
pages containing an extraordinary mixture of insight, 
common-sense, perception, educational innovation, long- 
winded banality, incoherent confusion between philoso- 
phy and mathematics and, it must be stated, what at 
times appears to be complete nonsense [92].  

I am otherwise not sure what D. MacHale exactly 
means when he calls G. Boole “a mystic genius” on the 
dust jacket of his biography of G. Boole. I assume that 
the term “mystic” here evokes the perplexity involved in 
trying to comprehend the origins of G. Boole’s genius 
rather than any property of G. Boole’s writings.  

There is no doubt that both J. C. Maxwell’s and G. 
Boole’s theories were far off the beaten track. But the 
theories over time shed all appearance of the mystical.  

In the case of J. C. Maxwell, recognition of the sound- 
ness of his theory came more than a century ago in the 
form of such developments as the positive verification of 
electromagnetic waves by H. Hertz and the universally 
accepted notion that his Equations brought physics to the 
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doorstep of the relativity and quantum theories.  
In the case of G. Boole, the same kind of recognition 

came some decades later, namely in the 1930s with the 
advent of the Digital Age in electrical engineering and 
computing.  

It would appear that it has taken a long time for J. C. 
Maxwell to emerge in modern physics as the pivotal fig- 
ure between I. Newton, on the one hand, and A. Einstein 
and M. Planck, on the other hand. And it does not seem 
as if this notion has fully permeated into the common 
public consciousness.  

The author of a recent biography, B. Mahon, finds 
this curious and the title of his autobiography, “The 
Man Who Changed Everything: The Life of James 
Clerk Maxwell”, makes it obvious that he fully in- 
tended to do something about it, characterizing J. C. 
Maxwell as someone who “changed our perception of 
reality” [93]. 

In the case of G. Boole, there is a general awareness of 
his importance in computer science and electrical engi- 
neering. Still, the present paper and its continuation are 
based on the premise that there is every reason to con- 
sider G. Boole’s theory as pivotal in its own domain as J. 
C. Maxwell’s is in modern physics and that G. Boole was 
someone who “changed our perception of” human intel- 
ligence.  

Now back to the relation between J. C. Maxwell’s 
theory and G. Boole’s theory.  

I have not engaged in detailed historical investigations. 
However, it seems safe to conclude that G. Boole almost 
certainly never learned anything at all of J. C. Maxwell’s 
theory of electromagnetism.  

He would in fact hardly have had the opportunity. J. C. 
Maxwell’s began his foundational study of electromag- 
netism around 1860. This study culminated in his “Dy- 
namical Theory” of 1865 [94]. G. Boole died in 1864. 
Furthermore, G. Boole did not do original work in phys- 
ics proper, and even J. C. Maxwell’s colleagues were 
slightly bemused by his work in electromagnetism.  

J. C. Maxwell was always engaged in all kinds of ex- 
periments. He was a laboratory man, in fact the founder 
of Cavendish Laboratory at the University of Cambridge. 
G. Boole never worked in a laboratory. He was a pure 
mathematician. By contrast, J. C. Maxwell only receives 
passing mention in histories of mathematics.  

Then again, G. Boole was hardly disinterested in 
physics and there are even a few references to electricity 
in the index of his biography, partly relating to contacts 
with W. Thomson, Lord Kelvin [95].  

As a teenager and a young man, G. Boole read and 
understood the writings on physics by I. Newton and P. S. 
Laplace and much else of what physics had to offer at the 
time. Like I. Newton, G. Boole was a native son of Lin- 
coln in England. In fact, in 1835, as a young man living 

in Lincoln, G. Boole gave a highly technical and on some 
select points even critical public lecture on the “Genius 
and Discoveries of Sir Isaac Newton” [96].  

It is otherwise tantalizing and even eerie how close G. 
Boole came to J. C. Maxwell’s theory in space, time, and 
general subject matter.  

G. Boole’s final work on mathematics in the 1860s 
concerned differential Equations [97], on which he wrote 
a textbook, including partial differential Equations, which 
play such a crucial role in J. C. Maxwell’s theory.  

In 1860-1865, J. C. Maxwell lived and worked in 
London. It was there that he conceived of his theory of 
electromagnetism [98]. As it happens, G. Boole was in 
London for some weeks from June 1864 onward and 
worked in the libraries of the Royal Society and the Brit- 
ish Museum [99].  

On October 27 of that year, J. C. Maxwell presented 
his essay on the “dynamical theory of the electromag- 
netic field” to the Royal Society [100]. The terms “dy- 
namics” and “(partial) differential Equations” appear in 
the titles of articles by G. Boole dating to the early 1860s 
[101].  

But by October 1864, G. Boole was back in Cork, Ire- 
land, where he was a professor of mathematics of what 
was then called the Queen’s College. On November 24, 
he walked to a lecture in the rain and taught in wet cloths. 
As a result, he fell ill. On December 8, he died of his 
illness [102].  

J. C. Maxwell’s essay appeared in the next year, 
1865. 

When one considers that the marvel of satellites and 
cell phones beaming forth waves carrying digital infor- 
mation can be traced in great part to J. C. Maxwell and G. 
Boole, the fact that they perhaps did not bump into one 
another at the Royal Society or elsewhere in London in 
the summer of 1864 while both thoroughly immersed in 
(partial) differential Equations seems uncanny.  

I do not know whether any sources exist that could 
document an encounter at that time or earlier.  

This much for G. Boole and J. C. Maxwell’s theory. 
Mere circumstances of time and space would in all 
probability have prevented G. Boole from being cogni- 
zant of J. C. Maxwell’s theory even if he had shown in- 
terest.  

But what about J. C. Maxwell and G. Boole’s theory? 
No circumstances of time or space would have prevented 
J. C. Maxwell from knowing about G. Boole’s theory.  

G. Boole’s two books on digital mathematics appeared 
in 1847 and 1854 when J. C. Maxwell (1831-1879) was a 
teenager and a young man. I have in fact been able to 
locate one statement in the works of A. Macfarlane—but 
nothing else so far anywhere else—to the effect that J. C. 
Maxwell, when a student at Edinburgh University in 
1847-1850, became acquainted with G. Boole’s Mathe- 
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matical Analysis of Logic of 1847. But it will appear that 
there is an odd twist to the story. 

A. Macfarlane (1851-1913) was a Scottish mathemati- 
cian and physicist who emigrated to the United States 
and had an academic career at the University of Texas 
and then at Lehigh University.  

A. Macfarlane is uniquely positioned because he was 
intimately acquainted with the works of both G. Boole 
and J. C. Maxwell, that is, with both mathematical logic 
and electricity.  

In regard to G. Boole, he published an early work 
when he was about 28 about mathematical logic, already 
mentioned above, in which G. Boole’s ideas are domi- 
nant [103]. In fact, it is obvious from this work that few 
have ever been as well acquainted with G. Boole’s work 
on mathematical logic and probability theory as A. Mac- 
farlane.  

However, A. Macfarlane’s relation to J. C. Maxwell is 
much closer. In fact, the relation was personal, whereas 
A. Macfarlane could not have known G. Boole in person. 
He wrote and published a dissertation on what exactly 
conditions the production of electric sparks. This work 
drew the attention of J. C. Maxwell, who successfully 
recommended A. Macfarlane for fellowship in the Royal 
Society of Edinburgh.  

In 1901-1904, A. Macfarlane held lectures on British 
physicists and mathematicians at Lehigh University. 
These lectures were discovered in 1916. Ten lectures on 
physicists and ten lectures on mathematicians were 
deemed readily suitable for publication. G. Boole is in- 
cluded among the mathematicians and J. C. Maxwell is 
included among the physicists.  

In the lecture on J. C. Maxwell, one finds the follow- 
ing one sentence statement about his student years at 
Edinburgh University [104]:  

About this time George Boole published his Mathe- 
matical Analysis of Logic which found in Maxwell an 
appreciative reader. 

We learn nothing more about J. C. Maxwell’s interest 
in logic other than the intriguing statement that, as a stu- 
dent at Edinburgh, he “appears to have done most work 
for the class on logic”.  

The odd twist in the story anticipated above is as fol- 
lows. In regard to his exposure to logic, J. C. Maxwell 
was a devoted student of the then famous logician W. 
Hamilton at the University of Edinburgh [105]. As is 
customary, I dutifully note that W. Hamilton needs to be 
distinguished from the contemporary Irish mathematician 
W. R. Hamilton, he of the quaternions, one of the most 
eminent mathematicians of his time.  

The anticipated twist is that W. Hamilton’s ideas on 
logic are very much diametrically opposed to G. Boole’s. 
For example, W. Hamilton was very much opposed to 
the use of mathematics in logic and in fact to mathemat- 

ics in general as an educational discipline.  
W. Hamilton had a well-known and rather intense ex- 

change of ideas with A. De Morgan on the subject of 
logic. 

G. Boole stayed neutral in public even if he clearly 
sided in private with A. De Morgan, who may well have 
been his closest correspondent [106].  

In a letter to A. De Morgan of 1862, he writes the fol- 
lowing about W. Hamilton [107]: 

He and all his followers appear to me to have been tri- 
fling when writing about Logic. The notion that they have 
mapped out the whole kingdom of formed thought is a 
delusion that can only exist through ignorance—a kind of 
ignorance that prevails in no other subject.  

To the extent that J. C. Maxwell ever retained any in- 
terest in logic after his student years, he may well have 
been deeply influenced by W. Hamilton, whose views on 
logic differ radically from G. Boole’s alternative views 
involving digital mathematics. 

Any acquaintance on the part of J. C. Maxwell with G. 
Boole’s digital mathematics would therefore constitute 
an encounter with views that completely subverted what 
he may have retained from what W. Hamilton had taught 
him.  

It seems difficult to imagine that J. C. Maxwell was 
professionally interested in logic. Such interest might 
have brought G. Boole’s digital mathematics to his atten- 
tion. I know of no evidence that he was even aware of it. 

However, I have not engaged in any detailed historical 
investigations. Again, J. C. Maxwell was a man of the 
hands-on physical experiment. He was someone who, 
from a young age, wanted to know how physical con- 
traptions worked. All his considerable mathematical skills 
were used in the service of this aim. 

It may be concluded that G. Boole could hardly have 
known about J. C. Maxwell’s theory but that J. C. Max- 
well’s expressed interested in G. Boole’s. I otherwise 
know at this time of no evidence that the two men ever 
met. But the possibility can of course not be excluded.  

It is significant to note that G. Boole is not mentioned 
in the index of the recent biography of J. C. Maxwell 
[108] and J. C. Maxwell is not mentioned in the index of 
the recent biography of G. Boole [109].  

There exists, however, at least one tenuous connection 
between J. C. Maxwell’s physics and G. Boole’s digital 
mathematics.  

It is obvious that, in his digital mathematics, G. Boole 
uses the “+” symbol, the Boolean operator OR, differ- 
ently from the way in which the sign is understood in 
quantitative mathematics.  

J. Venn, G. Boole’s principal disciple in matters of 
logic, argues in favor of using the symbol with similar 
but at the same time somewhat altered signification as a 
much preferable alternative to using an entirely new 
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symbol.  
The use of the same symbol acknowledges the existing 

similarity. In this regard, J. Venn points out that, even 
within mathematics, the symbol “+” can be used in a 
manner that is different from how it is understood in the 
simple expression “1 + 1 = 2”, namely in the addition of 
vectors [110]. And he specifically refers to J. C. Max- 
well’s “Matter and Motion” as an example of such use 
[111].  

It appears, then, that both G. Boole and J. C. Maxwell 
were comfortable with using the symbol “+” with a 
meaning that differs from what is by far the best known 
meaning that “+” has in arithmetic.  

If J. C. Maxwell could use “+” to add vectors, then 
what is wrong with G. Boole using it for the function 
OR?  

One wished, of course, that a certain symbol would 
always have exactly the same meaning.  

Still, I am personally as convinced as J. Venn was that, 
in taking advantage of the similarity and avoiding an 
entirely new set of symbols, the benefits decisively out- 
weigh the disadvantages. 

One of the advantages is that the similarity conveys 
and evokes the perfect unity of all facets of rational hu- 
man intelligence, including quantitative mathematics, 
digital mathematics, and the specific digital mathematics 
by which rational human intelligence operates. 

I am otherwise also aware that a veritable Tower of 
Babel has been erected in relation to the notation of 
logical relations since G. Boole’s time. It almost seems 
as if every prominent logician has his own notation.  

And yet, I have otherwise never spotted any defects in 
G. Boole’s algebra that would warrant its abandonment. 
It seems eminently felicitous, consistent, and easy to use. 
And using the same notation as other forms of mathe- 
matics and physics suggests the perfect unity of rational 
human intelligence and all its applications.  

Since there are no direct connections, neither between 
the two men nor between their theories, it may be useful 
to look for indirect connections.  

It may seem at first sight as if their theories deal with 
quite different subject matters and that it would seem in 
vain to seek any connections between them.  

But there are certain indirect associations between the 
two theories. There are also indirect connections between 
the two men, in the form of third parties with which they 
were both in communication. Suffice it to adduce here 
what is perhaps the most striking example of both the 
former and the latter. The focus will be on the Turin na- 
tive Joseph-Louis Lagrange (1736-1813) and the Scots- 
man William Thomson (1824-1907), Lord Kelvin. 

It has been written about J.-L. Lagrange that he is 
“generally regarded as the keenest mathematician of the 
eighteenth century” [112].  

The name J.-L. Lagrange is one that appears at critical 
junctures in the lives and works of both G. Boole and J. 
C. Maxwell. May it suffice to point here to the entry 
“Lagrange” in the index at the back of the biographies of 
the two men. 

J. C. Maxwell’s theory of electromagnetism and G. 
Boole’s digital mathematics are remarkably similar in 
sharing two crucial characteristics.  

First, they exhibit an absolute faith in the possibility of 
representing physical reality in purely mathematical 
form.  

Second, they are both black box theories: J. C. Max- 
well described electromagnetism without knowing what 
an electron is; G. Boole described human intelligence 
without knowing what a neuron or nerve cell is.  

Much of J.-L. Lagrange’s applications of differential 
Equations to physical reality exhibits the exact same 
characteristics. I believe that the two theories are in both 
regards deeply indebted to J.-L. Lagrange’s thinking.  

It is otherwise certain that both men were intimately 
acquainted with J.-L. Lagrange’s work. For example, in 
the afore-mentioned summer of 1864, G. Boole traveled 
to London in part to study the original memoirs of J.-L. 
Lagrange, just at the time when J. C. Maxwell was in the 
same city for the first time applying J.-L. Lagrange’s 
partial differential Equations to electromagnetism.  

G. Boole wrote prolifically and with great originality 
on differential Equations. J. C. Maxwell applied them.  

In sum, J.-L. Lagrange deeply influenced the writings 
of both J. C. Maxwell and G. Boole.  

But when it comes specifically to J. C. Maxwell’s the- 
ory of electromagnetism and G. Boole’s digital mathe- 
matics, J.-L. Lagrange’s influence is much more imme- 
diately apparent and direct in J. C. Maxwell’s theory than 
it is in G. Boole’s digital mathematics.  

J.-L. Lagrange’s Mécanique analytique is cited, and 
Equations are directly borrowed from it, at crucial junc- 
tures in J. C. Maxwell’s writings on electromagnetism. 
What J. C. Maxwell did was to “extend Lagrange’s 
method from mechanical to electromagnetic systems” 
and “the keynote of Lagrange’s method was that it 
treated the system being analysed like a ‘black box’, if 
you knew the inputs and could specify the system’s gen- 
eral characteristics you could calculate the outputs with- 
out knowledge of the internal mechanism” [113].  

The following pattern emerges pertaining to the rela- 
tion between J.-L. Lagrange, J. C. Maxwell, and G. 
Boole. 

When it comes to representing physical and mechani- 
cal phenomena by means of pure mathematics, J.-L. La- 
grange directly and deeply influenced J. C. Maxwell’s 
theory of electromagnetism. 

He also directly and deeply influenced G. Boole’s 
work on quantitative mathematics, which was concerned 
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in great part with differential Equations. But his influ- 
ence on G. Boole’s digital mathematics cannot have been 
direct. Differential Equations are a part of quantitative 
mathematics. 

Then again, G. Boole’s ideas on the nature of rational 
thought are a black box theory involving great trust in the 
ability of pure mathematics to describe physical and me- 
chanical phenomena. And so is J.-L. Lagrange’s work on 
differential Equations, G. Boole’s area of expertise in the 
domain of quantitative mathematics. 

It seems reasonable to assume that, in regard to his 
ideas on rational human intelligence, G. Boole was in- 
spired by his expertise in quantitative mathematics to 
trust pure mathematics to describe a physical phenome- 
non such as human intelligence. 

This much for indirect connections between the theo- 
ries. But what about indirect connections between the 
two men themselves? 

I single out the fact that both corresponded extensively 
with W. Thomson, Lord Kelvin.  

As more of a mathematical physicist than a pure 
mathematician, W. Thomson was intellectually much 
closer to J. C. Maxwell than to G. Boole. W. Thomson 
became a kind of dean of British science and communi- 
cated with many scientists.  

Still, he had lifelong special relationships with both G. 
Boole and J. C. Maxwell. He met J. C. Maxwell first as a 
boy in Glasgow. He may have met G. Boole first at a 
meeting of the British Association for the Advancement 
of Science in Cambridge in 1845, perhaps earlier.  

May it suffice to illustrate the special relationships that 
W. Thomson had with both men by one quote each from 
the biographies of the latter two.  

[G. Boole] and Thomson became close friends and 
lifelong correspondents on mathematics and other mat- 
ters. There is no doubt that Thomson stimulated Boole to 
produce more papers... and, perhaps more importantly, 
increased considerably Boole’s new-found confidence in 
himself [114]. 

[W. Thomson] could see at once that the boy had a 
rare gift and the two struck up a friendship which lasted 
throughout Maxwell’s life. Thomson was a man from 
whom ideas flew like sparks. He and Faraday were the 
two people whose work most influenced Maxwell’s own 
[115].  

A preliminary superficial search has not revealed di- 
rect evidence that W. Thomson spoke to G. Boole about 
J. C. Maxwell or to J. C. Maxwell about G. Boole. 

The design of the preceding historical notes has been 
to bring J. C. Maxwell’s and G. Boole’s theories a little 
closer to one another and thereby add to the hope that it 
should be possible to describe the physical phenomenon 
of rational human intelligence entirely in purely mathe- 
matical terms. 
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installment of what is supposed to be several. It is not 
quite certain how additional installments will take shape. 
But the hope is that any such forthcoming will propose a 
more or less complete account of rational human intelli- 
gence. 

While the preceding pages are concerned with intelli- 
gence, I believe—with Georges-Louis Leclerc, Comte de 
Buffon—that, in the end, style is everything and models 
are desirable. In that regard, Giovanni Battista Pergolesi 
has been inspiring. Traveler and author Charles Burney 
described his style as singularly clear, simple, and true, 
in addition to being sweet. Bach seemed like too many 
notes for the occasion. 

The more I do mathematics, the more it seems to me 
as if the search for understanding is a pursuit of the adage 
“Know Thyself”. It was my unexpected confrontation 
with J. C. Maxwell’s work that encouraged me to at least 
try and tackle the topic of rational human intelligence 
comprehensively rather than piecemeal and I owe some 
valuable hints in relation to electrodynamics to Rei Ukita, 
an undergraduate student in engineering at Brown who 
took my ancient Egyptian literature class. This confron- 
tation was a bit of a Proustian moment, less important for 
its contents than for its trigger effect, enhanced by a visit 
to Illiers-Combray in early June 2013, after the cathe- 
drals at Amiens, Beauvais, and Chartres (dutifully lis- 
tening to the sacred music of Pergolesi at each station) 
and before the Loire Valley castles at Chenonceaux, 
Cheverny, and Chambord and elsewhere. Let others 
judge what to make of this attempt to chercher la vérité 
en moi “seeking the truth in myself” when en face de 
quelque chose qui n’est pas encore “facing something 
that is not yet”. If others too give it a try, we will at 
least be able to compare notes.  
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