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ABSTRACT 

The study of the parameter space of chaotic systems is complicated by its high dimensionality (multi-parametricability). 
Two approaches to the study of chaotic systems are presented: multi-parameter analysis and optimal suppression of 
chaotic dynamics. For non-autonomous chaotic systems, this is the way to compare the effectiveness of various correc-
tion parameters that provide optimal removal of irregular dynamics. For the class of autonomous chaotic systems, this is 
the way to investigate the optimal conditions of super-stable behavior for the chaotic system. 
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1. Introduction 

A rather wide class of dynamic systems that demonstrate 
chaotic behavior is mathematically described by the sys-
tems of non-linear autonomous and non-autonomous 
differential equations [1-3]. As a rule, the dynamics of 
such systems is defined by the values of several parame-
ters simultaneously. 

A clear insight into the mechanisms of chaotic dy-
namics appearance (disappearance) is possible only 
through multi-parameter analysis of the system. It is 
shown in [4] that multi-parameter generalization of clas-
sical stability methods of non-linear systems is efficient. 
This approach is based on the studies of the peculiarities 
of boundaries of stability and instability areas of the sys-
tem’s linearized equations. Therefore it can be only par-
tially used for researching the specific character of cha-
otic systems. Difficulties are caused by the multidimen-
sionality of parametric space, the diversity of crucial 
situations and universal characteristics that arise on the 
boundary of “regular dynamics-chaos” transition [5] and 
high perturbation sensitivity of the systems. The means 
of parametrical analysis of chaotic systems are not de-
veloped enough, that’s why we are often unable to fully 
understand how to make an optimal transition from cha-
otic region to the regular dynamics (stable) area in para-
metrical space by changing available parameters. 

In this paper, we show two approaches to multi-pa- 
rameter analysis of non-autonomous (dissipative nonlin-
ear oscillators) and autonomous (Lorenz-like) chaotic 
systems. The paper is divided into two parts. In Part I we 

show, that Melnikov method [1,6,7] can be applied for 
two-parameter analysis of chaos suppression conditions. 
The connections between the key parameters of the sys-
tem, revealed in the process, let us make an advance in 
the investigation of optimal “chaos-regular dynamics” 
transitions. The solution for the problem of multi-pa- 
rameter optimization which allows considering the pos-
sibility of achieving the state of super-stability by chaotic 
system is presented in Section 2. 

2. Multi-Parametrical Picture of Optimal  
Chaotic Dynamics Suppression in  
Dissipative Nonlinear Oscillators 

In this part, we present the results of a two-parametrical 
analysis of optimal chaotic dynamics suppression in dis-
sipative nonlinear oscillators. As a reference model of 
this class of chaotic systems we chose a double-well 
Duffing oscillator 

 3 cosx x x x f t         .         (1) 

Among other non-autonomous chaos models this os-
cillator is knows as a paradigmatic one, as it clearly dem-
onstrates principal characteristics of a wide class of non- 
linear dissipative oscillators. 

2.1. The Parametric Space Structure of a 
Non-Linear Dissipative Oscillator 

The parametric space of the oscillator (1) is five-dimen- 
sional    , , ,f     and unites two groups of pa- 
rameters that play different roles in dynamics. It contains 
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internal parameters ,  , , and parameters f  0.1,  

  0, , ,C

 that 
characterize the environment of the system. The multi- 
dimentionality of parametric space results in multi-pa- 
rametricability of Melnikov function. Thus the function 
calculation for (1) gives 

   
 

,

, , , s

M M P

A f

 

in      



 
 

where 

 
3 2

1 2 4
π sech ,

32
A f C

π
2

   


    
 

P
  const

. 

If is a set of possible parameter values for oscillator 
(1) then, using the condition of sign change for Melnikov 
function, we can allocate in P: 1) regular dynamics re-
gion R , that corresponds to the values of parame-
ters for which A < C R ; 2) com-
plex dynamics region ere 

P

P 
sign ,M P

CP P , wh A C   
   constC sign ,M P ; 3) the boundary  (ex-

treme values of parameters) between the regions of regu-
lar and complex dynamics (RC boundary), which is de-
fined by the condition 

P

  , 0P 

 


0 0 0, , ,

54,0.095,1.1

P f 

A C M

CP P

 . As a start-
ing point, in this paper we use the configuration of pa-
rameters , 0

 
  

0 0 0

1, 4 0.1

 






 

when oscillator (1) demonstrates typical chaotic behav-
ior. 

Convenient way for visual study of the structure of os-
cillator parametric space (1) is two-parameter analysis of 
the boundary of regular and complex dynamics regions. 

Let’s modify the equality A C  first as 

 
 

2

3
2

0 0

8

3π f


2

0 0π

2
ch


 

         
   

  ,    (2) 

and then as 

 
3
0

0
0

4

3π 2
f


 


1

0

π

2
ch





 
  
 

, ,f

 .       (3) 

These dependencies give us two points of view for the 
study of the system. For fixed values of parameters from 
the group  0 0 0 


 function (2) defines the RC- 

boundary on the plane , 



 of internal parameters of 
the oscillator. Function (3) allows studying the RC- 
boundary at fixed values 0 0 ,   and 0  on the plane 
 ,f   of the parameters of chaotizing perturbation. 

The RC-boundary built with the use of the functions (2) 
and (3) is shown in Figure 1. For better understanding 
there were built two additional versions of the boundary 
(besides the initial configuration of parameters P0) on the 
plane of parameters  , . These versions correspond 

to the changes of frequency values 0    
(Figure 1(а)) and to the values of perturbation ampli-
tudes 0 0f f 0.005f ,    (Figure 1(b)). There are 
also three versions of RC-boundary on the plane of pa-
rameters  , f : for the initial value 0  and two dif-
ferent values 



0 0  , 0 0.5   (Figure 1(c)) and 
for 0  and  0 0 ,   0  (Figure 1(d)). 0.5 

The results shown in Figure 1 demonstrate that two 
basic groups of oscillator parameters are interdependent 
and reveal a special feature of RC-boundary, namely, 
that functions    f and    have their minimums. 
The minimums of  configuration are the points 0P

   min min, 0.329,1.447    

and 

   min min, 0.764,0.055f   

correspondingly, while the region of complex dynamics 
is specified by the conditions min  and minf f . 
In this case variations of parameter values lead to various 
shifts of RC-boundary and change the position of mini-
mum. 

2.2. Optimal Correction of Parameters Based on 
Melnikov Criterion 

Consider the situation when initial values of parameters 

0  and 0  are corrected. Having applied corrective 
amendments hh  and   we will write down the oscil-
lator (1) equation as 

    3
0 0 0 0 01 1 cosx h x h x x f t            . (4) 

 

 
(a)                          (b) 

 
(c)                          (d) 

Figure 1. Two-parametric regular and complex dynamics 
boundary of Duffing-Holmes oscillator. 
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It seems interesting to study the combined influence of 
amendments h  and h  that can provide chaos sup-
pression. As minimal corrective amendments min , 

min , we can use the values that lie on the RC-boundary. 
With them the solution of Equation (4) will be stable 
instead of chaotic. 

h

h

h

hLet’s define the set of accessible values   and   
as 

  1 1 0,P, ,K h h M     

  0 0 0, ,f 

2 2

,
min

h h K
h h

 
  
 

 0 0 1h h

, 

where 

      1 1 1 0 0, , 1 , 1M P M h h         

the Melnikov function of oscillator (4). Then, by formal-
izing the demand of small corrective amendments, nec-
essary for the optimal chaos suppression, we get the op-
timal correction problem: 

.            (5) 

To solve the problem (5) we use statement (2) instead 
of repeating the process of calculating Melnikov function 
M1. By changing  0 0 1 ,      , we 
transform (2) as follows 
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.
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h
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






 
  

 






  
   
  

  

     (6) 

As a dependence  h h h    expression (6) dem-
onstrates the relationship between the values of correc-
tive amendments 



h  and h , that lie on the RC-bound-
ary. Figure 2 shows the dependence  h h h   , the 
region of complex dynamics and the position of the ex-
isting optimal pair . 



 ,h h min min

Actually, each point on the curve  h h h    can 
be a solution (5), but only one of them is the best. For 
example, if we correct parameters 0



  and 0  indi-
vidually, we get the pairs  ,h h  :  and 

, correspondingly. It means that if parameter 

0

 0.723,0
 0, 0.588
  is being corrected, the system achieves stability with 
smaller amendment for this criterion (5) than for 0 . To 
find optimal pair  we should find the 
minimum for the function  
while moving along the RC-boundary. 

 min min,h h 

 Q h   2
h h  2h 

The changes of quality criterion along the RC-bound-
ary are also shown in Figure 2 as function  Q h  
graph. The value  corresponds to the 
minimum . Using (6) we get  

min 0.298h 
0.241

0.39

h

 Q h 
  h min min   . Thus the solution of optimi-

zation problem (5) gives us interrelated values of amend- 
ments  and  which provide optimal transi-  

h h

minh min

 

Figure 2. The boundary of the regions of regular and com-
plex dynamics of the oscillator (6) and the position of the 
pair (hαmin, hβmin), that represents optimal combination of 
corrective amendments which provide chaos suppression. 
 
tion from chaotic to stable region of parametrical space 
for the given configuration of parameters . 0 CP P

3. Super-Stability and Optimal  
Multiparametrical Suppression of Chaotic 
Dynamics in the Lorenz-Like Systems 

3.1. Generalization of Super-Stability Conditions 

A rather wide class of chaotic Lorenz-like systems is 
described as follows: 

       3
0, , 0 , 0x t Ax t f x t x R x x t     ,   (7) 

  3 3
ijwhere A a R   —the matrix of system parame-

ters,  x  3 3:—nonlinear part f f R R  that char-
acterizes nonlinear perturbation. 

While suppressing chaotic dynamics, usually, we set a 
goal and try to find out under what conditions can the 
system (7) achieve stable behavior. However there exists 
a narrow class of systems which demonstrate a special 
type of regular behavior. They are super-stable systems 
(for essential information on super-stability see [8]). A 
super-stable system is always stable, but the opposite 
statement is not necessary true. The analysis of the super- 
stability conditions of the system is of practical impor-
tance as the transition from unstable regime to the state 
of super-stability goes smoothly without an undesirable 
jump rise of solution norm which is possible at the initial 
stage of the transient process. 

It is essential that, unlike stability, the super-stability is 
preserved at nonlinear perturbations. It grounds the pos-
sibility of analysis of super-stability achievement condi-
tions with regard to system (7). 

System (7) can have several states of equilibrium  
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   k k
e ex x 0 , where  k

e



 correspondent to it. Together they define  1,k s

k k

—the number of states of  x

equilibrium. Then Jacobian matrix for k-state of equilib-
rium of the system (7) will be written as 

J A G 
   3 3kG g R  

, 

where —is the matrix with the ele-  k ij

 ments       , , 1, 2,3ij i j
x x

g f x x i j


   
k

e

k . The gener-  

alization of super-stability condition for the systems with 
multiple states of equilibrium (7) leads to the condition 

   
1,

min 0k k
i

i n



 

 

 ,               (8) 

where 
     , 1, 2,3k

ij ijg i 

 k

k k
i ii ii

j i

a g a


     . 

The value   is called the super-stability degree. 
For every k-state of equilibrium the conditions i  
are linear restrictions on Jk matrix coefficients that show 
that negative diagonal dominance should necessarily be 
present. 

0k 

3.2. Problem Statement 

Let initial values of parameters of the system (7) lie in 
the area of parametric space that corresponds to chaotic 
dynamics. Then according to the conditions of dynamics 
chaotization the Jacobian matrix Jk of the system (7) will 
be unstable for every k and condition (8) will not be per-
formed. 

Consider the system stabilization problem in the fol-
lowing form: for the given unstable matrix kJ  should 
be found the closest super-stable matrix kJ . Let’s define 
the closeness as the least value k kJ J  , where  —  

some matrix norm (from here on 
1 2

2
,

, 1

n

i j
i j

M m


 
  
 


k

).  

Then the task will be reduced to finding the optimal cor- 

rective matrix H 


k k k

 that provides super-stability of the 

matrix J J H  
  with condition  

min min
k

k
k H Ck

H H


  3k


  ,             (9) 

where C—the set of corrective matrixes 3
k ijH h R   , 

which allow performing conditions (8) for the coeffi-
cients of the corrected matrix kJ . 

The problem formulated above can be regarded as a 
generalization of the problem of static output stabiliza-
tion of state space MIMO systems. The peculiarity of the 
problem is that we must provide not just stability, but 
super-stability. At the same time optimization criterion (9) 
is built with regard to the possibility of the system having 
several states of equilibrium. Hence the solution of the 
problem is the pair: the 

librium 

Jthe corrected matrix k


k

 which is the super-stable ma-
trix closest to J . 

3.3. The Corrective Matrix Structure and  
Superstability Achievement Conditions 

It may seem that in problem (9) the correction rule of the 
matrix kJ  should be presented as transformation of its 
coefficients 

    k kk k
ij ij ij ij ij ija g d a g h

k
H 

  matrix and state of equi-  

    

kh

, 

where ij —corrective amendments which define ma-
trixes Hk and k k kJ J H  . However, as super-stability 
conditions (8) are strict there arises a question. Is there 
always exist the corrective matrix Hk for the system (7), 
which allows fulfilling super-stability conditions? 

The work [9] describes the cases when the correction 
of the matrix Jk coefficients allows finding the best way 
to change the parameters and modify a chaotic system 
into the super-stable one. The structural analysis of the 
matrix k kJ A G 

a

 substantionally restricts the correc-
tion rule: 1) the matrix A is often sparse (that is some 

ij are equal to zero) and its zero coefficients should not 
be influenced by; 2) the matrix Gk can not be corrected at 
all. These restriction are caused by our attempts to apply 
multiparametrical correction to the system while pre-
serving its properties. If these restrictions are not fulfilled 
the system undergo structural changes (new terms appear 
in the equation). With regard to these restrictions the 
correction rule will be written in the form 

 J , 1,k k kA H G k s   

 

,           (10) 

where Hk—corrective matrix structurally equivalent to A. 
The rule (10) defines only the allowed method of cor-

rection, but does not provide us with any information 
about super-stability accessibility. Let’s write super-sta- 
bility conditions of the corrected system: 

         ,

1, 2,3.

k k k k
ii ii ii ij ij ij

j i

a h g a h g

i



     




    (11) 

Then super-stability accessibility means that there ex-
ists matrix Hk (according to (10)) with coefficients that 
satisfy these equations. It is easy to name the situations 
when super-stability is initially impossible. It happens 
when one of diagonal elements of the matrix Jk is equal 
to zero. Then the existing condition (11) results in an 
unavoidable contradiction. 

If super-stability is accessible (i.e. set C in (9) is not 
empty) the problem (9) can be solved in two steps. At  

step I we should find the matrixes , 1,k k s H  that is to  

solve s quadratic programming problem 
2

minkH    
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 k

exwith restrictions (11). At step II we find 


k

 with ma-  


  correspondent to it. To do this it is necessary  Htrix 

to solve the problem kH min, 1,
k

k s 

0 0 0 0

0 0 0 1

0 1 0

 . Once these  

steps are performed we get the optimal method of para-
metrical correction which provides super-stable dynamic 
behavior of the system. 

Thus super-stability is a unique property peculiar to 
few chaotic systems. It can serve as a foundation for an 
additional classification (super-stabilizable systems). For 
example the optimal multiparametrical correction prob-
lem (9) can easily be solved for the subclass of chaotic 
systems investigated in [8]. 

 
11 12

21 22 1

330 0

a a

x Ax f x a a x x

a

 
     
 
 

 x

 
  
 
 

, 

where  T

1 2 3, ,x x x x 0a a. If 12 21 , 12 210a a    and 
 we get Lorenz, Chen and L u systems, corre-  12 21 0a a  

k
spondingly. The existence of pairs H 

  k

e, x


 for these  

systems means that the character of their dynamics can 
be transformed from chaotic to the stable one through 
parametric correction. So the systems are super-stabi- 
lizable. 

4. Conclusions 

Two results presented in the paper illustrate the effec-
tiveness of implementation of multi-parametrical analysis 
for the peculiarities of chaos dynamics suppression. 

First of all it is shown that Melnikov criterion can be 
used for stating and solving important optimization prob- 
lems which deepen our understanding of chaos suppres-
sion process. While searching the optimal method of 
turning the system into the non-chaotic one we reveal the 
connection between corrective amendments to the pa-
rameters and find their minimal values. 

The second result was achieved during the study of 
two opposite states of autonomous dynamic systems— 
chaos and super-stability. While controlling the chaotic 
system it is normal to study the conditions of bringing 
the system to stable behavior. Still the question whether 
it is possible for the system to achieve super-stability 
remains unanswered. The conditions of achievement of 

the super-stable dynamics were studied for a class of 
Lorenz-like chaotic systems. Based on super-stability 
criteria the optimal multi-parametrical (matrix) correc-
tion problem was formulated and an effective method of 
solution was presented. The offered method allows find-
ing super-stabilizable chaotic systems and transforming 
the chaotic dynamics to the super-stable one using opti-
mal parametric correction. 

Thus the named methods of multi-parametrical analy-
sis are applied to a wide range of chaotic systems. They 
help compare the efficiency of different forms of para-
metrical perturbations and choose the ones which provide 
optimal suppression of chaotic dynamics. 
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