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ABSTRACT 

We present an approach how to obtain solutions of arbitrary linear operator equation for unknown functions. The par-
ticular solution can be represented by the infinite operator series (Cyclic Operator Decomposition), which acts the gen-
erating function. The method allows us to choose the cyclic operators and corresponding generating function selectively, 
depending on initial problem for analytical or numerical study. Our approach includes, as a particular case, the pertur-
bation theory, but generally does not require inside any small parameters and unperturbed solutions. We demonstrate 
the applicability of the method to the analysis of several differential equations in mathematical physics, namely, classi-
cal oscillator, Schrödinger equation, and wave equation in dispersive medium. 
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1. Introduction 

Various classical and quantum-mechanical problems in 
theoretical physics lead to the necessity of solving the 
linear operator equations for unknown functions and, in 
particular, the differential equations. Exact non-trivial 
analytical solutions of these equations, which include 
finite combinations of elementary operations and special 
functions, are known only for a number of specific cases. 
However, there are many actual and important cases for 
which such exact solutions were not still obtained even 
by using severe approximations for the corresponding 
interaction operators. For the cases when exact solutions 
are unknown, some approximate methods are usually 
used. They can be conventionally divided into two types: 
1) varieties of perturbation theory and 2) numerical cal-
culations (which generally are also based on perturbation 
theory). In spite of significant usefulness and applicabil-
ity, these methods are not free from various limitations 
and disadvantages. The perturbation theory approaches 
may lead to divergent series, they need sometimes suit-
able unperturbed solutions, and, finally, they do not pro-
vide even estimations for precision in most cases (see 
[1,2] and references therein). On the other hand, numeri-
cal schemes, which are from the very beginning ap-
proximate, usually also do not give reliable estimations 
for the precision (some reasonings can be found in [3,4]). 
Moreover, they can hardly give an asymptotic behavior 
of the solutions at infinity. Thus, the development of the  

general method which allows to overcome some of the 
above-mentioned difficulties is the main object of our 
study. 

In this manuscript we develop an approach based on 
the theory of Cyclic Operator Decomposition (COD), 
which gives the opportunities to obtain solutions (exact 
or approximate) of the differential equations with arbi-
trary operators. The particular solution can be repre-
sented by the infinite cyclic operators series, which acts 
the previously determined generating function. The cy-
clic operators and the corresponding generating function 
(COD components) can be specified through the given 
operators in the differential equation. Under the conver-
gence requirement, these COD components can be cho-
sen in different ways depending on the certain problem 
statement. The procedure differs from the using of Born 
series (or corresponding Neumann series) in the pertur-
bation theory [5-8] and S-matrix theory of Heisenberg, 
Feynmann and Dyson [9]. It can be understood easily by 
studying, for example, the difference between the formal 
definition of the generating function and Green’s func-
tion (the last one is derived in some cases by using the 
operator resolvent formalism) [5,7,10-12]. Generally, the 
proposed series does not require any small parameters or 
unperturbed solutions for the convergence. But, as a 
matter of fact, the procedure can be transformed, under 
some certain choice of COD components, to the “stan-
dard” perturbation theory with small parameters. For the  
potentials without strong singularities, with reasonable 

Copyright © 2013 SciRes.                                                                                 APM 



I. GONOSKOV 179

choice of the cyclic operators and generating function, 
the corresponding series usually has uniform conver-
gence. Some additional features and advantages of our 
approach for analytical and numerical solving the differ-
ential equations are demonstrated in sections below. 

2. Theory of Cyclic Operator Decomposition 

Let us start from the general case of operator equation for 
unknown function:  

ˆ 0.D 

D̂

                  (1) 

Here  is an arbitrary given linear operator and   
is an unknown function, which can be a vector or matrix 
of arbitrary dimensionality. This equation can lead in 
particular cases to arbitrary linear differential equations, 
which are considered in examples below.  

Let us consider a pair of operators  and V , which 
are determined by the following condition:  

Ĝ ˆ

ˆˆ ˆ.D G V 

Ĝ
1 1ˆ ˆ ˆ ˆat: ;G GG I  

ˆhat: 0,g gG 

ˆ

                 (2) 

Since the choice of this pair is partly optional, we 
impose additional conditions on the operator :  

, th              (3) 

0, t             (4) 

where I  is the identity operator. Any function g , 
which satisfies Equation (4), will be called generating 
function. Now we can write the following equation:  

 ˆ 1ˆ ˆ .gI G V   

Ĝ

             (5) 

As we can check, under the above-mentioned condi-
tions for  and g , any solution of Equation (5) ful-
fills Equation (1). Equation (5) can be solved in terms of 
the following Cyclic Operator Decomposition:  

 

1 1

1

1

ˆˆ ˆ ˆ

ˆˆ ˆ

1ˆ ˆ ˆ

.

g

n

n

I G V G V

I G V g

G V 



  




1ˆ ˆG V

 






  
   


      (6) 

This is the exact particular solution of Equation (1) 
with corresponding particular COD components deter-
mined by Equations (2) and (3). The solution makes 
sense only if the obtained series is convergent. This can 
be achieved in different cases depending on  and  

g , for example, if we work in Banach space and corre-

sponding operator norm is 1ˆ ˆ 1G V 

ˆ ,D

. The convergence  

of some similar operator series was considered also in 
[5,13]. 

The theory can be easily generalized also to the case of 
the equations with given sources:  

                  (7) 

where an arbitrary given function   describes the arbi-
trary sources. The unknown function   could be found 
naturally if the inverse operator is known: 1D̂ 

1D̂

   1 1

1

ˆ ˆˆ ˆ
n

g
n

I G V G

. 
However, the inverse operator  can not be easily 
found for a number of problems. Then, we can write a 
solution of this equation analogously by using COD:  

.  


 



     


0g

        (8) 

In contrast to the case of Equation (1), now we can  
choose   for some non-trivial particular solutions.  
Then we can obtain the particular solution of Equation 
(7), which corresponds to the following particular deter-
mination of the inverse operator in terms of COD:  

 1 1 1

1

ˆ ˆˆ ˆ .
n

n

D I G V G


 



    


Ĝ

           (9) 

Important feature of the proposed theory is that, while 
the conditions Equations (3) and (4) should be fulfilled 
and the convergence of the series is necessary, we still 
have a great freedom of choosing  and corresponding  

. Generally, it gives us opportunities to obtain all the  g
possible solutions of Equation (1). Sometimes we can  

naturally choose  and Ĝ g  in accordance, for exam- 

ple, with the corresponding initial conditions for Cauchy 
problem or boundary conditions for boundary-value 
problems. 

In some cases, the exact solution Equation (6) can be 
used naturally for obtaining the approximate solution 
with finite number of terms. It can be done, for example, 
when, starting from certain number n, the following con-  

    1
1 1ˆ ˆˆ ˆ

n n

g gG V G V 


  ditions are satisfied: .  

These are the sufficient conditions enabling one to derive 
the approximate solution with the prescribed accuracy. 
Further, the proposed method provides another advantage 
if one performs numerical calculations. According to the 
exact solution Equation (6), we can use recurrent rela-
tions when calculating numerically the approximate solu-
tions. In this case, the calculation of any next term in the 
corresponding series does not require more numerical 
resources than the calculation of the previous one. 

3. Examples 

In this section we apply the proposed theory of Cyclic 
Operator Decomposition for the various cases of differ-
ential equations. Let us first consider the Cauchy prob-
lem for the equation of classical oscillator. Note that this 
equation, if written in other variables, is the stationary 
one-dimensional Schrödinger equation with given energy, 
and it can be transformed also to the Riccati equation by 
using logarithmic substitution.  
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 
 
 

2 0,

,

,

a

b

f t f

a

b

 





 

f t

f t




             (10) 

where f t  2 t is an unknown function,  is an ar-
bitrary time-dependent frequency and a, b are arbitrary 
constants. Here, it is natural to choose the components 
for COD as follows: 

 

 1 2

, ,

ˆ, .

g ab t t

G V t

 

 

 

 

d d

d

a a

a

1

2

2

1 2

dˆ
d

ˆ d d
a b

t

t t

G a
t





 

  

  
       (11) 

If we fix (by our local convention, which we will use 
below) that we write for brevity the same variable upper 
limit of integration as the integration variable and deter-
mine the successive integration (step by step from right 
to left), we can write a simple expression for the solution: 

     

   

2

2 2d d d

a b

a b a b

t t

t t

t t t t

t t t t

f t a b t t t t a

t t t t t a



 

        

 

 

   

b t t t

b t t t

 

    

 2 t


 

(12) 

It is important to note now, that the presented series 
(Equation (12)) has rapid uniform convergence at least in 
any interval, where  is bounded. For example, in 
the limited interval 0, t
 

 the rate of convergence for 
f t

0
 can be estimated in the following way (we assume 

here for simplicity, that a bt t  0b , , and the 
maximum of  2 t  in the corresponding interval is 

):  maxC

   
 

2
max

2 !

n nC t
n a

n
-th term of series .       (13) 

In the same way, the convergence can be demonstrated 
for other different COD’s, when the cyclic operators are 
bounded for the given generating functions in the given 
relevant interval. Moreover, if additionally  t

 2 2  0t 
 is a 

real function,  and , we have a 
decreasing alternating series for the above example, and 
we can estimate the precision of partial sum of the series 
by the value of the last term. 

 t 0 0

Now we focus on some particular cases of  2 t . To 
demonstrate that it is possible to obtain a solution with 
any prescribed precision, we consider a case when  

 2 1
1 sin 0

2
t t

     

 1a  0b 

 

  

and , , . Calculation of the first 
two terms in Equation (12) gives  

0a b t t

 21
1 sin

2
f t t t t .       

0.0273

        (14) 

By calculating the third term in Equation (12), we 
obtain   if we consider t in the interval [0,1]. 

Sometimes we can find also the asymptotic behavior 
of the solution. As an example, we consider the case 

 2 t t 0 and a bt t  1a  0b , , , where      is 
an arbitrary constant, 1  

    

. Using again Equation (12) 
we obtain exact solution in the following form:  

    

2

2 4

1
1 2

1 2 2 3 2 4

t
f t

t





 

   





 
 

  (15) 

 
   



 0t 

    

By analyzing the corresponding series we can obtain a 
simple upper estimate for the solution :  

1
12 22

1 exp ,
1 2 2

t t
f t



  

  
       
  

:t 

 

     (16) 

which gives us the following asymptotic behavior at  
 

1
1

22
exp .

2

t
f t





 
   
  

1

          (17) 

In this case, the same asymptotic can be found also 
from WKB theory (see, for example, quasiclassical ap-
proximation in [14,15]). 

Let us now demonstrate the selective choice of cyclic 
operators. For that we consider stationary one-dimen- 
sional Schrödinger equation (we use below the units 
where  1pm,  ):  

 
2

2

d
2 e 0,

d
xE A x

x
 

 
    

 
         (18) 

 xwhere 

22E m 1

 is an unknown function, which describes 
quantum state with energy E in the continuum; A, β are 
arbitrary real constants. Without loss of generality (one 
can use scale transformations of Equation (18)) we can 
assume ,   . To find the solution of this 
equation, we can choose the components for COD in 
different ways. For example, if one interests in the be-
havior of  x 0x near   and in small values of E,  

he can choose 
2

2

dˆ
d

G
x



1Ĝ

 and use nearly the same tech-  

nique as in Equations (11) and (12). However, this choice 
can be inconvenient for the analysis of the long-range 
behavior. Another variant of choosing the components 
for COD is the following (we use also Equation (9) for 
the particular determination of ):  
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 

 

2
2

2

1 1
0 0 0

1

1 2
0 0

dˆ , e
d

ˆ ˆ ˆ ˆˆ1

ˆ d d ,

g

k

k

x x

G m x C
x

G G V

G x x V




 





 

   

    

  



 

 
1 2

1

e ,

,

ˆ ˆ, e ,

imx imx

x

C

G

m V A







   

  eimx
g x 

 p

    (19) 

where C1 and C2 are arbitrary constants. To obtain the 
general solution, we consider the particular case of gen- 

erating function  and corresponding par-

ticular solution x . Then we derive by using a rule  

of infinite geometric series:  

   
 

 

 

 

 
 

 

1

2

1

2 2

e

1

e

1 1

im x

k
im x

A

im

m A

im









  
 

 

 

1 1
0 0

1

2

1

1

ˆ ˆ ˆˆ ˆ1

1

e
.

1 2

k

g
K

K

im x

G V x G V

im

A

im




 









    

 
   

   












   (20) 

From here we obtain  

 
2

1

2k imk

 

 

 2p p

1 1

e 1 e
n

imx n nx
p

n k

x A


 

  


     (21) 

and the general solution in the following form:  

   1x C x   C x           (22) 

The corresponding series converges at any A and real 
m. 

In a similar way we can obtain solutions for multi- 
dimensional equations. Let us consider the stationary 
Schrödinger equation with potential surface  U r , m - 
dimensional Laplace operator ∆, and energy E:  

ulti

    2 0. r rE U           (23) 

Then we can choose   , 2 E U rˆ ˆG V    , and  

g  is any solution of 0g  . From corresponding  

COD we can obtain a solution:  

  1 11 V V       r 1 0.gV   

1 2 ˆ

    (24) 

The inverse Laplace operator can be written, for ex-
ample, as 1F̂ k F     ˆ, where F  is the Fourier 
transform operator and k is an absolute value of the wave 
vector in this transform. 

Another choice of COD components can be better for 
the finding of the bound states with . We can  0E 

 2U rchoose: , Ĝ E  ˆ2 , V g  is any solution of 

 2 gE    0 , and write the inverse operator 1Ĝ  for  

COD as follows:  

11 1
2

1ˆ ˆ ˆ2 .
2

G E F F
E k

    


      (25) 

In this way, we can calculate in some cases the terms 
in the corresponding COD by evaluating the poles at  

imaginary values 2Pk i E   . 

Now we consider time-dependent three-dimensional 
Schrödinger equation to demonstrate other applications 
of the proposed method. Let us consider propagation of 
charged particle with arbitrary electromagnetic interactions 
(below  , tA r 1q c is the vector potential, and  ):  

      21
, , , 0.

2
i i t U t t

t
       

A r r r   (26) 

Here, we can choose the components for COD in a 
variety of ways depending on peculiar properties of the 
interactions. One special choice is the following:  

 

    
0

0 0

1

2

ˆ , ( , ) ,

ˆ d ,

1ˆ , , ,
2

g

t

t

G i t
t

G i t

V i t U t

  




   



 

   



r r

A r r

V̂

       
0 0 0

2

0
ˆ ˆ ˆ, 1 d d d .

t t t

t t t

t i tV i tV tV 
 

      
  

   r r

P̂

      (27) 

where  corresponds to the time-dependent Hamilto-
nian. It gives the following solution:  

 

(28) 

This solution can be useful for the numerical calcula-
tions, namely, for the finding the propagator , which 
gives:      ˆ, , nt t P t O t    r r

 ˆ , tr

 , t

, see also [4] and 
references therein. If we use additionally internal time- 
ordering, we can transform this expression to Dyson se-
ries (see [9,16]). 

Finally, we consider the wave equation for electro-
magnetic waves in dispersive medium. We assume that 
an arbitrarily given operator   which describes 
electric dispersion does not depend nonlinearly on the 
field, i.e. we still have linear problem. In this case the 
equation for unknown vector potential A r  is the 
following (see for example [17]):  

   2ˆ , , 0,t t
t t

           
r A r

   

      (29) 

with the initial conditions  

 
 0

0

, .t
tt


    
A

A S r R r        (30) 

We can choose the following components for COD:  
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 

 

 

0

1 1

ˆ ˆ

ˆ

ˆ ˆd ,

t

g
t

G t
t t

G t



 

      

  

r

   

0 0

1

2

, ,

d , ,

ˆd ,
t t

t t

t t

t t V



    

S r

r







r R r

 

   

0

1 2, d

d , .

n
t t

t

t t

t t


     





 r

r R r

   

       (31) 

Then, we can find the solution, which follows from the 
corresponding COD series:  
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     (32) 

For this solution the initial magnetic field is equal to  

S r

 R r

 and the initial electric field is equal to  

.  

4. Conclusion 

In summary, we propose the theory of Cyclic Operator 
Decomposition, which allows one to obtain particular 
solutions of linear operator equations for unknown func-
tions. In most cases it is possible to obtain all the possi-
ble solutions, which satisfy the given conditions. We 
demonstrate by some reasonings and particular examples 
that our approach has the following remarkable proper-
ties: 1) there is a freedom in choosing the COD compo-
nents depending on the certain problem; 2) there is a 
rapid uniform convergence for most of the considered 
cases; 3) it is possible to find the asymptotic behavior of 
the solutions; 4) in many cases when one is analyzing the 
approximate solution, it is possible to estimate the accu-
racy; 5) the proposed approach gives good opportunities 
for efficient implementation of numerical calculations 
due to the recurrent relations that can be used in COD. 
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