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Abstract 
In this paper, we research the regression problem of time series data from 
heterogeneous populations on the basis of the finite mixture regression 
model. We propose two finite mixed time-varying regression models to 
solve this. A regularization method for variable selection of the models is 
proposed, which is a mixture of the appropriate penalty functions and 2l  
penalty. A Block-wise minimization maximization (MM) algorithm is used 
for maximum penalized log quasi-likelihood estimation of these models. The 
procedure is illustrated by analyzing simulations and with an application to 
analyze the behavior of urban vehicular traffic of the city of São Paulo in the 
period from 14 to 18 December 2009, which shows that the proposed models 
outperform the FMR models. 
 

Keywords 
Mixture Regression Models, GARCH, Block-Wise MM algorithm, LASSO, 
SCAD 

 

1. Introduction 

The problem of variable selection in FMR models has been widely discussed [1] 
[2] [3]. When a response variable y  with a finite mixture distribution depends 
on covariates x , we obtain a finite mixture of regression (FMR) model. The 
FMR model with K components can be given as follows [3]: 

( ) ( )( )
1

; , ; ,
K

k k k
k

f y f yπ η φ
=

= ∑x xθ                  (1) 

where y  is an independent and identically distributed (IID) response and x  
is a 1p ×  vector of covariates. ( )T

1, , kπ π= π  denotes the mixing propor-
tions satisfying 0 1kπ< < , 1 1K

kk π
=

=∑ . ( )( ); ,k kf y η φx  is the kth mixture 
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component density. ( ) ( )T
k k khη α= +x x β  for 1, ,k K=  , for a given link 

function ( )h ⋅ , and a dispersion parameter kφ . 
However, in some situations, observations were not independent. As pointed 

out in [2], in the analysis of the PD data, observations from each patient over 
time were assumed to be independent to facilitate the analysis and comparison 
with results from the literature. However, the validity of such assumption may 
be questionable. Whereupon, we consider a situation that observations were 
time series. 

The generalised autoregressive conditional heteroskedasticity (GARCH) 
model is widely used in time series analysis. A mixture generalized autoregres-
sive conditional heteroscedastic (MGARCH) model was pointed out in [4]. [5] 
generalized the MixN-GARCH model by relaxing the assumption of constant 
mixing weights. Whereupon, we combine the GARCH model and the FMR 
model to discuss the above problem. 

There has been extensive studies about variable selection methods. A recent 
review of the literature regarding the variable selection problem in FMR models 
can be found in [6]. There are a general family of penalty functions, including 
the least absolute shrinkage and selection operator (LASSO), the minimax con-
cave penalty (MCP) and the smoothly clipped absolute deviation (SCAD) in [2] 
and [7]. 

The method of the maximum penalized log-likelihood (MPL) estimation is 
usually the EM algorithm. [8] proposed a new algorithm (block-wise MM) for 
the MPL estimation of the L-MLR model. It was proved to have some desirable 
features such as coordinate-wise updates of parameters, monotonicity of the pe-
nalized likelihood sequence, and global convergence of the estimates to a statio-
nary point of the penalized loglikelihood function, which are missing in the 
commonly used approximate-EM algorithm presented in [3]. 

The rest of the paper is organized as follows: in Section 2, the definition of fi-
nite mixture of time-varying regression Models and in Section 3, feature selec-
tion methods are discussed. In Section 4, the block-wise MM algorithm for its 
estimation and the BIC for choosing tuning parameters and components are 
presented, and the example of the Gaussian distribution is derived. Simulation 
studies on the performance of the new variable selection methods are then pro-
vided in Section 5. In Section 6, analysis of a real data set illustrates the use of the 
procedure. Finally, conclusions are given in Section 7. 

2. Finite Mixture of Time-Varying Regression Models 
2.1. Finite Mixture of Autoregression Models 

Let { }; 1, ,ty t n=   be a response variable which is a time series. { }; 1, ,t t n=x   
is a p-dimensional vector of covariates, and each of them is a time series. For an 
FM-AR(d) model with K components, the conditional density function for ob-
servation t is given as follows: 

( ) ( )( )
1

; , ; , ,
K

t t k t k t k
k

f y f yπ η φ
=

= ∑x xθ                (2) 
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where 

( ) ( )T T T
1 1 2 ,k t k t k t k t d kdhη α − −= + + + +x x x xβ β β              (3) 

for 1, ,k K=  , for a given link function ( )h ⋅ , and a dispersion parameter 

ktφ . 
The master vector of all parameters is given by ( )TT T T T, , ,=θ π α φ β , with 

11 1

1

,
d

K Kd

 
 =  
 
 



  



β β
β

β β
                      (4) 

where ( )T
1, , p

ki ki kipβ β= ∈ β , 1, ,i d=  . Let ( )T T T
1, , ,t t t t d− −=x x x x
 , and 

( )T
1, ,k kd= β β β , (3) can be rewrote as ( ) ( )k t k thη α= +x x  β . 

2.2. Finite Mixture of GARCH Models 

Let { }; 1, ,ty t n=   be a response variable which is a time series. Let  
{ }; 1, ,t t n=x   is a p-dimensional vector of covariates, and each of them is a 
time series. For some distributions with unequal dispersion parameter kφ , we 
propose the FM-GARCH models. For an FM-GARCH (d,M,S) model with K 
components, the conditional density function for observation t is given as fol-
lows: 

( ) ( )( )
1

; , ; , ,
K

t t k t k t kt
k

f y f yπ η φ
=

= ∑x xθ                  (5) 

where ( ) ( )k t k thη α= +x x  β  for 1, ,k K=  , for a given link function ( )h ⋅ , 
and a conditional heteroscedastic (a dispersion parameter) 

0 , ,
1 1

,
M S

kt k km k t m ks k t s
m s

φ γ γ δ φ− −
= =

= + +∑ ∑                   (6) 

where 0 0kγ > , 0kmγ ≥ , 0ksδ ≥ , and kt kt kteφ= , kte  is an independent and 
identically distributed series with mean zero and variance unity. 

The master vector of all parameters is given by ( )TT T T T T T
0, , , , ,=θ π α γ β γ δ , 

with ( )T
0 01 0, , K= γ γ γ , ( )T

1, , K= γ γ γ , ( )T
1 2, , ,k k k kMγ γ γ= γ , and  

( )T
1, , K= δ δ δ , ( )T

1 2, , ,k k k kSδ δ δ= δ . 

3. Feature Selection Method 

Let ( ){ }, ; 1, ,t ty t n=x   be a sample of observations from the FM-AR or 
FM-GARCH model. The quasi-likelihood function of the parameter θ  is given 
by [9] 

( ) ( ) ( )( )
1 1 1

L ; , ; , .
n n K

n t t k t k t kt
t t k

f y f yπ η φ
= = =

 = =  
 

∏ ∏ ∑x xθ θ           (7) 

The log quasi-likelihood function of the parameter θ  is given by 

( ) ( )( )
1 1
log ; , .

n K

n k t k t kt
t k

f yπ η φ
= =

= ∑ ∑ x θ                 (8) 

When the effect of a component of x  is not significant, the corresponding 
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ordinary maximum quasi-likelihood estimate is often close to 0, but not equal to 
0. Thus this covariate is not excluded from the model. Inspired by an idea of [2], 
we estimate θ  by maximizing the penalized log quasi-likelihood function 
(MPLQ) for the model 

( ) ( ) ( ),n n n= −  θ θ θ                     (9) 

with the mixture penalty (or regularization) function: 

( ) ( ) 2

1 1 1 1 1 1

1; ,
2

p pK d K d

nk k n kij nk k nk kij
k i j k i j

pπ β λ π υ β
= = = = = =

= +∑ ∑∑ ∑ ∑∑ θ           (10) 

for some ridge tuning parameter 0nkυ ≥ , and ( );n kij nkp β λ  is a nonnegative 
penalty function. In the penalty function ( )n θ , the amount of 2l  penalty 
imposed on the componentwise regression coefficients kijβ ’s are chosen pro-
portional to kπ . The functions ( );n kij nkp β λ  are designed to identify the no 
significant coefficients kijβ ’s in the mixture components ( )( ); ,t i t ktf y η φx . 
General regularity conditions about the ( );n kij nkp β λ  is given in [2] [3]. 

We estimate the new method using the following well-known penalty (or re-
gularization) functions: 
 LASSO penalty: ( );n nk nkp β λ λ β= . 

 MCP penalty: ( ) ( );n nk nk nkp nbβ λ λ β
+

′ = − . 

 SCAD penalty:  

( ) ( ) ( ) ( );
1

nk nk
n nk nk nk nk

nk

a n
p I n I n

a
λ β

β λ λ β λ β λ+
−

′ = < + >
−

. 

Here, I is the indicative function. The constant 2nka ≥  and 0nkb ≥  pointed 
in [2], and LASSO tuning parameter 0nkλ ≥ , which controls the amount of pe-
nalty. The asymptotic properties about these penalty functions can be analo-
gously derived in [3] and [2]. We call the penalty function ( )nk θ  in (10) con-
structed from LASSO, MCP, SCAD jointly with the mixed 2L -norm as 
MIXLASSO-ML2, MIXMCP-ML2, MIXSCAD-ML2 penalties. 

4. Numerical Solutions 

A new method for maximizing the penalized log-likelihood function is the 
block-wise Minorization Maximization (MM) algorithm inspired by [8], which 
is also known as block successive lower-bound maximization (BSLM) algorithm 
in the language of [10]. At each iteration of the method, the function is max-
imized with respect to a single block of variables while the rest of the blocks are 
held fixed. We shall now proceed to describe the general framework of the algo-
rithm. 

4.1. Maximization of the Penalized Log-Likelihood Function 

We follow the approach of [8] and minorize the ε -approximate of - ( )n θ  by 

( )( ) ( )
( )( )

2
2

1 1
1 1 1 1 1 1

1 1G ; ; ,
2 2

p pK d K d
r rijk

i n ni i ni ijkr
k j k k j kijk

p C
w
β

π λ π υ β
= = = = = =

 
= − − + 

 
 

∑ ∑∑ ∑ ∑∑θ θ θ   (11) 
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where ( ) ( )2 2r r
ijk ijkw β ε= + , for some 0ε > , and 

( )( ) ( )( ) ( )( )
2

1
1

1 1 1 1 1 1

1; ; .
2 2

p pK d K d
r r r

i n ijk ni i n ijk ni
k j k k j k

C p w p wε π λ π λ−

= = = = = =

= − −∑ ∑∑ ∑ ∑∑θ     (12) 

Moreover, minorize the log quasi-likelihood function ( )n θ  by 

( )( ) ( ) ( ) ( )( )

( )

2
1 1 1 1

( )

1 1

G ; log log ; ,

log ,

K n K n
r r r

kt i kt t i t kt
k t k t

K n
r r

kt kt
k t

f y xτ π τ η φ

τ τ

= = = =

= =

= +

−

∑∑ ∑∑

∑∑

θ θ
       (13) 

where ( ) ( ) ( ) ( ) ( )( ) ( )( ); , ; ,r r r r r
kt i t i t kt t tf y f yτ π η φ= x x θ . 

Note that ( )r
ktτ  and ( )( )2G ; rθ θ  are analogous to the posterior probability 

and the expected complete-data log-likelihood function of the expecta-
tion-maximization algorithm respectively. 

The block-wise MM algorithm maximizes ( )n θ  iteratively in the following 
two steps: 
 Block-wise Minorization-step. Conditioned on the rth iterate ( )rθ , the 

FM-GARCH model can be block-wise minorized in the coordinates of the 
parameter components π , α , 0γ , γ , δ , and β , via the minorizers 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )2 0G ; G , , , , , ; , ,r r r r r r r
n= −π π θ π α γ β γ δ θ π β        (14) 

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )0, 0 2 0G , ; G , , , , , ; ,r r r r r r r
n= −α γ α γ θ π α γ β γ δ θ θ      (15) 

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ), 2 0G , ; G , , , , , ; ,r r r r r r r
n= −γ δ γ δ θ π α γ β γ δ θ θ       (16) 

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 0G ; G , ; G , , , , , ; ,r r r r r r r r r= +β β θ π β θ π α γ β γ δ θ    (17) 

respectively. Similar block-wise minorized can be made for FM-AR model. 
 Block-wise Maximization-step. Upon finding the appropriate set of block-wise 

minorizers of ( )n θ , we can maximize (14) to compute the ( )1r + th iterate 
block-wise update of π . Solving for the appropriate root of the FOC 
(first-order condition) for the Lagrangian, we can compute the ( )1r + th ite-
rate block-wise update 

( )
( )

1 1
* ,
n r

ktr t
k

kz
τ

π
ζ

+ ==
+

∑                        (18) 

for each k, where ( ) 2
1 1 1 1

1;
2

d p d p
k n kij ni ni kiji j i jz p β λ υ β

= = = =
= +∑ ∑ ∑ ∑ , and *ζ  is 

the unique root of 

( )
1

*
1

1 0,
n rK

ktt

k kz
τ

ζ
=

=

− =
+

∑∑                        (19) 

in the interval ( )*,z ∞ , and { }*
1, ,mink K kz z== −


. 

The block-wise updates for α , 0γ , γ , δ , and β  can be obtained by 
solving (15)-(17) via the first-order condition equal to 0. 
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We now present a example of the Gaussian FM-GARCH model to specify the 
procedure described above, and give the following Lemma 1 about a useful mi-
norizer for the MPL estimation of the Gaussian FM-GARCH model, which can 
be found in [11]. 

Lemma 1 if ( )0,Θ = ∞ , then the function 11 q
i ii cθ

=∑  satisfy that 

( )
2

2
11 1

1 .
q

i i
q qii ii i i ii

c
c c

ϕ
θ ϕ θ== =

≤ ∑
∑ ∑

                     (20) 

Example 1 We consider the Gaussian FM-GARCH Model, 

( ) ( )( )2

1
; , ; , ,

K

t t k t k t kt
k

f y N yπ η σ
=

= ∑x xθ                 (21) 

where ( ) ( )k t k thη α= +x x  β , and 2 2 2
0 , ,1 1

M S
kt k km k t m ks k t sm sσ γ γ ε δ σ− −= =
= + +∑ ∑ . 

Here, kt kt kteε σ= , and kte  is an independent and identically distributed series 
with mean zero and variance unity. 

According to [8], and using Lemma 1, we can obtain the further minorizer of 
Gaussian FM-GARCH by 

( )( ) ( ) ( )

( )
( )( ) ( )( )

( )( )

2
2

1 1 1 1

2
T

2
1 1 1

2

1G ; log log
2

1
2

,

K n K n
r r r

kt k kt kt
k t k t

rpdK n
r rt

t k tj kj kj t k
k j t kt

r

y pdx
pd

C

τ π τ σ

τ α β β
σ

= = = =

= = =

= −

− − − − −

+

∑∑ ∑∑

∑∑∑ x







θ θ

β

θ

  (22) 

where ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2T T
1; , ; ,Kr r r r r r r r

kt k t k t k kt k t k t k ktkN y N yτ π α σ π α σ
=

= + +∑x x 

 β β ,  

and 

( )( ) ( ) ( ) ( )
2

1 1
log 2 log .

2

K n
r r r

kt kt
k t

nC τ τ
= =

= − π −∑∑θ  

The block-wise updates of π  from Gaussian FM-GARCH Model come from 
(18), and the block-wise updates for α , γ , and δ , can be obtained from 
(15)-(16) via the first-order condition equal to 0. By doing so, we obtain the 
coordinate-wise updates for α , 0γ  block 

( )
( ) ( )( ) ( )

( ) ( )

2T
11

2
1

,
n r r r

kt t t k kttr
k n r r

kt ktt

yτ σ
α

τ σ
=+

=

−
=
∑

∑
x 

 β
                  (23) 

( )
( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )

2 22 1 2T
011

0 2
01

,
n r r r r r

kt k t k t k kttr
k n r r r

kt k ktt

yτ γ α σ
γ

τ γ σ

+
=+

=

− −
=
∑

∑
x 

 β
          (24) 

for each k. Moreover, the coordinate-wise updates for the γ  and δ  block 

( )
( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )

2 22 1 22 T
,11

22
,1

,
n r r r r r

kt km k t m t k t k kttr
km n r r r

kt km k t m ktt

yτ γ ε α σ
γ

τ γ ε σ

+
−=+

−=

− −
=
∑

∑
x 

 β
        (25) 

( )
( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

2 22 2 1 2T
,11

2 2
,1

,
n r r r r r r

kt ks k t s t k t k kttr
ks n r r r r

kt ks k t s ktt

yτ δ σ α σ
δ

τ δ σ σ

+
−=+

−=

− −
=
∑

∑
x 

 β
        (26) 
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for each k, m, and s. Finally, making the substitute (22) into (17), the coordi-
nate-wise updates for the β  block 

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

2 22 T
1 11

22
1 1

,
G , ;

n nr r r r r r r
kj kt tj kt kt tj t k t k ktt tr

kj nr r r r
kj kt tj ktt

pd x x y

pd x

β τ σ τ α σ
β

β τ σ
= =+

=

+ − −
=

′ +

∑ ∑
∑

x 

 β

π β θ
  (27) 

for each k and 1, ,j pd=  , where ( ) ( )( )1G , ;r r′ π β θ  is the first derivative of (11) 
with respect to β . 

Note that (15)-(17) from Gaussian FM-GARCH Model are concave in the al-
ternative parameterization π , α , 0γ , γ , δ , and β , thus (23)-(27) globally 
maximize (15)-(17) over the parameter space. 

4.2. Selection of Thresholding Parameters and Components 

To implement the methods described in Sections 3 and 4.1, we need to select the 
size of the tuning parameters nkλ  and nkυ , the constant nka  and nkb , for 

1, ,k K=  , and components K. The current theory provides some guidance on 
the order of λ  in [3] and [8] by using generalized cross validation (GCV) and 
Bayesian Information Criterion (BIC), to ensure the sparsity property. Following 
the example of [8], we develop a suitable BIC criterion for the FM-AR and 
FM-GARCH models. Let ( ), , , ,K= a bλ υΨ , and they are chosen one at a time 
by minimizing 

( ) ( )2 1 log ,nBIC p q nΨ = − + + −  θ                (28) 

where p  is the dimensionality of β  (i.e. the total number of non-zero regres-
sion coefficients in these model), and q  equal to 3K (FM-AR models) or 5K 
(for FM-GARCH models). 

The Block-wise MM algorithm is iterated until some convergence criterion is 
met. In this article, we choose to use the absolute convergence criterion, where 
TOL > 0 is a small tolerance constant from [8]. Based on the discussion above, 
we summarise our algorithm in 1. 

5. Simulated Data Analysis 

In this section, we evaluate the performance of the proposed method and algo-
rithm via simulations. We consider the Gaussian FM-AR models and Gaussian 
FM-GARCH models. Following [2] and [8], we used the correctly estimated zero 
coefficients (S1), correctly estimated non-zero coefficients (S2) and the mean es-
timate over all falsely identified non-zero predictors ( NZM ). The selection of 
thresholding parameters and components are solving by using Simulated An-
nealing (SA) algorithm. All simulations were evaluated with varying values of 
dimension p with 100 repetitions done for each. 

5.1. Simulated Data Analysis of Gaussian FM-AR 

The first simulations are based on the Gaussian FM-AR (2) model. Assuming 
that K is known, the model for the simulation was a 2K =  and 2d =  model 
of 
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( ) ( ) ( )T T 2 T T 2
1 11 1 12 1 2 21 1 22 2, 1 , ,t t t tN Nπ α σ π α σ− −+ + + − + +x x x xβ β β β    (29) 

 

 
 
where 300n = , 10,20,100p = , 0.3π = , 1 1α = , 2 5α = , 1 1σ = , and 2 1σ = . 
Columns of x  are drawn from a multivariate normal, with mean 0, variance 1, 
and two correlation structures: ( ), 0.5 i j

ij i jcor x xρ −= = . The regression coeffi-
cients are 

( ) ( )T T
11 121,0,0,3,0, ,0 , 3,0, 1,0,2, ,0 ;= = − − β β  

( ) ( )T T
21 221,2,0,0,3, ,0 , 0,0,3,0, 2, ,0 .= − = − β β  

Table 1 reports the results. We can see that when the dimension p = 100, the 
S2 in com1 of 1tX −  from MIXSCAD-ML2 is 100, however, the S2 in com1 of 

1tX −  from MIXLASSO-ML2 (S2 = 70.7) and MIXMCP-ML2 (S2 = 51.3) model 
are small, which indicates that MIXSCAD-ML2 ensures that non-zero coeffi-
cients can be correctly identified and some non-zero coefficients in the 
MIXLASSO-ML2 and MIXMCP-ML2 model are not estimated. The mean esti-
mate over all falsely identified non-zero predictors ( NZM ) of β  from 
MIXSCAD-ML2 are between 0.001 and 0.01. 

5.2. Simulated Data Analysis of Gaussian FM-GARCH 

The second simulations are based on the Gaussian FM-GARCH(2,1,1) model. 
Also assuming that K is known, the model for the simulation was a 2K = , 

2d = , 1M =  and 1S =  model of 

( ) ( ) ( )T T 2 T T 2
1 11 1 12 1, 2 21 1 22 2,, 1 , ,t t t t t tN Nπ α σ π α σ− −+ + + − + +x x x xβ β β β    (30) 

2 2 2
0 1 , 1 1 , 1,kt k k k t k k tσ γ γ δ σ− −= + +                    (31) 

for 1,2k = , where 300n = , 10,20p = , 0.3π = , 1 2α =  and 2 5α = ,  

01 1γ =  and 02 1γ = , 11 0.5γ =  and 21 0.2γ = , 11 0.4δ =  and 21 0.6δ = . 

kt kt kteσ= , kte  is an independent and identically distributed series with mean 
zero and variance unity. Columns of x  are drawn from a multivariate normal, 
with mean 0, variance 1, and two correlation structures:  

( ), 0.5 i j
ij i jcor x xρ −= = . The regression coefficients are 
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Table 1. Summary of MIXLASSO-ML2, MIXMCP-ML2 and MIXSCAD-ML2-penalized FM-AR (2) model with BIC method form 
the simulated scenario. Average correctly estimated zero coefficients (specificity; S1), average correctly estimated non-zero coeffi-
cients (sensitivity; S1), and the mean β  estimate over all incorrectly estimated non-zero coefficients (MNZ) are also reported. 

Method 
K d p∗ ∗  Com tX  1tX −  

  ( )1 %S  ( )2 %S  NZM  ( )1 %S  ( )2 %S  NZM  

MIXSCAD-ML2 2*2*10 com1 86.0 99.5 0.097 90.0 99.7 −0.012 

 2*2*20  91.2 99.5 0.067 91.6 99.7 −0.003 

 2*2*100  81.7 100.0 0.016 82.6 100.0 0.009 

  com2 94.3 99.3 0.020 95.5 100.0 −0.093 

   94.2 99.3 0.013 96.1 100.0 −0.018 

   90.7 100.0 -0.015 90.5 100.0 0.008 

MIXMCP-ML2 2*2*10 com1 80.1 100.0 0.040 87.6 100.0 0.005 

 2*2*20  91.9 100.0 0.100 92.8 100.0 0.027 

 2*2*100  98.1 81.0 0.304 98.1 51.3 0.205 

  com2 93.0 100.0 0.041 96.5 100.0 −0.015 

   96.8 100.0 0.055 98.4 100.0 0.084 

   97.4 100.0 0.076 97.2 100.0 0.037 

MIXLASSO-ML2 2*2*10 com1 76.1 100.0 0.089 76.3 99.7 −0.019 

 2*2*20  81.6 100.0 0.066 81.4 100.0 −0.011 

 2*2*100  80.5 76.0 0.053 81.1 70.7 0.041 

  com2 85.1 100.0 0.015 88.3 100.0 −0.001 

   91.2 87.3 0.001 90.8 100.0 −0.015 

   79.1 99.3 0.048 87.1 100.0 −0.039 

 

( ) ( )T T
11 121.5,0,2.5,0,0, ,0 , 3.5,0, 1,0,2, ,0 ;= = − − β β  

( ) ( )T T
21 221,2,0,0,3, ,0 , 0,0,3,0, 2, ,0 .= − = − β β  

From Table 2, we can see that in all simulations, the value of S1 in com1 and 
com2 of tX  and 1tX −  from MIXSCAD-ML2 are the biggest, which indicates 
that MIXSCAD-ML2 perform better than MIXLASSO-ML2 and MIXMCP-ML2 
in correctly estimated zero coefficients. The mean estimate over all falsely identi-
fied non-zero predictors ( NZM ) of β  from MIXSCAD-ML2 is smaller than 
which from MIXLASSO-ML2 and MIXMCP-ML2. 

6. Real Data Analysis 

In this section, we evaluate the performance of the proposed method and algo-
rithm via the analysis of the behavior of urban vehicular traffic of the city of São 
Paulo. This data set were collected notable occurrences of traffic in the metro-
politan region of São Paulo in the period from 14 to 18 December 2009. This was 
acquired from the website http://archive.ics.uci.edu/ml/datasets.php. Registered 
from 7:00 to 20:00 every 30 minutes. It contains 135 observations and 18 
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Table 2. Summary of MIXLASSO-ML2, MIXMCP-ML2 and MIXSCAD-ML2-penalized FM-GARCH(1, 1) model with BIC method 
form the simulated scenario. Average correctly estimated zero coefficients (specificity; S1), average correctly estimated non-zero 
coefficients (sensitivity; S1), and the mean β  estimate over all incorrectly estimated non-zero coefficients (MNZ) are also re-
ported. 

Method 
K d p∗ ∗  Com tX  1tX −  

  ( )1 %S  ( )2 %S  NZM  ( )1 %S  ( )2 %S  NZM  

MIXSCAD-ML2 2*2*10 com1 88.8 89.5 0.408 92.4 84.0 −0.048 

 2*2*20  89.9 84.5 0.432 91.5 79.0 0.168 

  com2 94.9 96.3 0.051 97.0 98.0 −0.139 

   96.3 92.0 0.076 95.7 95.0 0.008 

MIXMCP-ML2 2*2*10 com1 80.8 94.0 0.417 87.4 81.3 0.115 

 2*2*20  85.8 78.5 0.540 87.3 68.0 0.031 

  com2 89.4 95.7 0.158 94.0 99.0 0.138 

   93.4 91.0 0.269 95.6 95.5 0.118 

MIXLASSO-ML2 2*2*10 com1 73.9 84.5 0.426 79.9 76.0 −0.015 

 2*2*20  81.3 66.5 0.579 83.5 56.7 −0.117 

  com2 76.7 96.0 0.080 83.6 99.5 0.018 

   88.2 75.0 0.111 93.4 90.5 −0.126 

 
variables as well as one response variable. Covariate acronyms are hour (HO), 
immobilized bus (IB), broken truck (BT), vehicle excess (VE), accident victim 
(AV), running over (RO), fire vehicles (FV), occurrence involving freight (OIF), 
incident involving dangerous freight (IIDF), lack of electricity (LOE), fire (FI), 
point of flooding (POF), manifestations (MA), defect in the network of trolley-
buses (DNT), tree on the road (TRR), semaphore off (SO), intermittent Sema-
phore (IS) and the response is slowness in traffic percent. Consider the effect of 
date on the behavior of traffic, we add a new variable that is day (DA). Figure 1 
shows the heterogeneity of the data set, and the FM-AR or FM-GARCH model is 
applicable. 

The levels of the covariates attributes from FMR, FM-AR (2) and FM-GARCH 
(2,1,1) with 2K =  models are given in Table 3. From Table 4, we can see that 
the MIXSCAD-ML2 penalized FM-GARCH (2,1,1) with 2K =  model had the 
lowest BIC (622.9) across all analyses, the FM-AR (2) with 2K =  model being 
ranked second ( BIC 677.3= ), which is lower than the BIC (682.3) of FMR 
model. The predicted slowness in traffic percent from the FM-GARCH 2K =  
model had a MSE of 1.93 and a regression 2R  of 0.90. The predicted slowness 
in traffic percent from the FM-AR (2) 2K =  model had a MSE of 2.09 and a 
regression 2R  of 0.89. The predicted slowness in traffic percent from the FMR 

2K =  model had a MSE of 2.41 and a regression 2R  of 0.87. These results 
suggest that the FM-GARCH (2,1,1) model had the smallest MSE and explained 
the largest proportion of variance for the slowness in traffic percent data. The 
results of the predicted response from these models are presented in Figure 2. 
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Figure 1. Density of slowness in traffic percent in the metropolitan region of São Paulo in 
the period from 14 to 18 December 2009. 

 
Table 3. Summary of FMR, FM-AR and FM-GARCH model with BIC method and 
MIXLASSO-ML2 penality. 

Covariates 

FMR FM-AR FM-GARCH 

com1 com2 com1 com2 com1 com2 

  tx  1t−x  tx  1t−x  tx  1t−x  tx  1t−x  

Intercept 7.32 −2.31 7.56 - −1.89 - 1.39 - 6.24 - 

π  0.37 0.63 0.34 - 0.66 - 0.47 - 0.53 - 

DA - 1.47 - - - 1.54 - - 0.99 - 

HO 0.13 0.52 0.11 0.36 - 0.13 0.29 0.39 - −0.03 

IB - - - - - - - - - - 

BT - - - - - - - - - - 

VE - - - - - - - - - - 

AV - - - - - - - - - - 

RO - - - - - - - - - - 

FV - - - - - - - - - - 

OIF - - - - - - - - - - 

IIDF - - - - - - - - - - 

LOE - 1.75 - - - 1.88 - - - 1.80 

FI - - - - - - - - - - 

POF - 0.61 - 1.25 - - - 1.41 - - 

MA - - - - - - - - - - 

DNT - - - −0.91 - - - −0.71 - - 

TRR - - - - - - - - - - 

SO - - - - - - - - - - 

IS - - - - - - - - - - 
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Table 4. Summary of the values of BIC, MSE, and adjusted regression (predicted 
response on observed response) 2R  from FMR, FM-AR (2) and FM-GARCH (2,1,1) 
models. 

model K BIC MSE 2R  

FM-GARCH (2,1,1) 2 622.90 1.93 0.90 

FM-AR (2) 2 677.32 2.09 0.8 

FMR 2 682.36 2.41 0.87 

 

 
Figure 2. Summary of predicted and observed slowness in traffic percent in the metro-
politan region of São Paulo in the period from 14 to 18 December 2009. 

7. Discussion 

In this article, we disccused that the modeling of response variable which is 
time series and with a finite mixture distribution depends on covariates, and 
the variable selection problem of them. We propose the FM-AR models and 
FM-GARCH models for modeling data that arise from a heterogeneous pop-
ulation which is time series, and propose a new regularization method 
(MIXLASSO-ML2, MIXMCP-ML2, MIXSCAD-ML2) for the variable selection in 
these model, which composed of the mixture of the 1l  penalty and 2l  penalty 
proportional to mixing proportions. In addition, we estimate the maximum log 
quasi-likelihood estimate for the new penalized FM-AR and FM-GARCH model, 
and derive a general expression for the block-wise minimized maximization 
(MM) algorithm with better features. The simulation results of Gaussian FM-AR 
and Gaussian FM-GARCH models and an actual data set illustrate the capability 
of the methodology and algorithm, and MIXSCAD-ML2 is always superior to 
other penalty methods. 
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Abstract 
Factoring quadratics over   is a staple of introductory algebra and text-
books tend to create the impression that doable factorizations are fairly 
common. To the contrary, if coefficients of a general quadratic are selected 
randomly without restriction, the probability that a factorization exists is ze-
ro. We achieve a specific quantification of the probability of factoring qua-
dratics by taking a new approach that considers the absolute size of coeffi-
cients to be a parameter n. This restriction allows us to make relative likelih-
ood estimates based on finite sample spaces. Our probability estimates are 
then conditioned on the size parameter n and the behavior of the conditional 
estimates may be studied as the parameter is varied. Specifically, we enume-
rate how many formal factored expressions could possibly correspond to a 
quadratic for a given size parameter. The conditional probability of factoriza-
tion as a function of n is just the ratio of this enumeration to the total number 
of possible quadratics consistent with n. This approach is patterned after the 
well-known case where factorizations are carried out over a finite field. We 
review the finite field method as background for our method of dealing with 
[ ]x . The monic case is developed independently of the general case because 

it is simpler and the resulting probability estimating formula is more accu-
rate. We conclude with a comparison of our theoretical probability estimates 
with exact data generated by a computer search for factorable quadratics cor-
responding to various parameter values. 
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1. Introduction 

This paper presents the preliminary results of a broader program to estimate the 
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probabilities of factoring more general polynomials over  . We anticipate that 
subsequent research will develop along the lines suggested by the quadratic case 
investigated here, specifically by using the method of parameterizing the maxi-
mum absolute value of coefficients and correlating the conditional probabilities 
of factorization with the size of the parameter. 

The probability that a given general quadratic [ ]2x x xα β γ+ + ∈  can be 
factored depends heavily on the commensurability of the coefficients [1] [2] [3]. 
Loosely speaking, if the coefficients are all about the same size in absolute value, 
and that size is small, the existence of a factorization is relatively more likely 
than otherwise. Our intention is to quantify this phenomenon. Dealing with the 
infinite number of choices available for coefficients is a problem. We sidestep 
this obstacle by adapting the method used to determine the probability of facto-
rization of quadratics over finite fields. Briefly, we establish a cutoff, or size pa-
rameter n, for the absolute value of any coefficients appearing in any of the qua-
dratics we wish to study. This makes the number of quadratics under considera-
tion finite as well as the number of formal factored expressions that could possi-
bly yield such a quadratic. Then the classical probability is just the ratio of the 
number of admissible factored expressions to the total number of quadratics 
which conform to the cutoff. This probability ( )P n  is, of course, a conditional 
probability given that the coefficients do not exceed n in absolute value. So the 
infinite character of the problem is initially made finitary where calculations can 
be done and then can be recovered by allowing n to approach infinity. 

We consider three cases, the first of which, factoring quadratics over finite 
fields, is well-known [4]. For factoring quadratics over  , we split the discus-
sion into two parts: 1) the monic case, and 2) the general case. For simplicity we 
consider quadratics in [ ]x  that have non-negative roots. 

Figure 1 shows factorization probabilities calculated by the computer search. 
Currently we have no formula that estimates the case [ ]2ax bx c x+ + ∈  with 

0α ≠  other than curve fitting. The trend in the graph in Figure 1 is borne out 
by the following proposition. 

Proposition 0 

If , ,a b c∈  are selected randomly without restriction, then the probability of 
factoring 2ax bx c+ +  over   is zero. 

Proof. Suppose we are given 2ax bx c+ +  with , ,a b c∈  selected at ran-
dom. This quadratic factors over  , hence   by Gauss’ Lemma, if the dis-
criminant 2 4b ac∆ = −  is a perfect square. We ask what is the probability that 
∆  is a perfect square if a and b have been selected and c is provisionally allowed 
to range over [ ],n n−  for some n∈ . Then there are 2 1n +  possible values 
of ∆  spread over an interval of length 8an . The largest possible number of 
perfect squares in such an interval would occur when none of the interval inter-
sected the open left half line and where the arithmetic density of squares was the 
greatest. This would occur if the interval were exactly 0, 8an   . The number of 
squares in this interval does not exceed 8an . The classical probability that 
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Figure 1. ( )P n  is the probability of factoring 2ax bx c+ +  with , ,a b c n≤ . 

 
one of these squares coincides with a value of ∆  is therefore no more than 

8 12
2 1

an
a

n n
<

+
. As the provisional restriction that [ ],c n n∈ −  is relaxed by 

allowing n →∞ , we see 12 0a
n
→ . It follows that the probability that ∆  

is a perfect square, and therefore 2ax bx c+ +  is factorable over  , is zero in 
the limit, which corresponds to no restrictions at all on c. Since this is true for 
any triple ( ), ,a b c , the proposition is established. 

We wish to have a more granular understanding of the way in which factora-
bility depends on commensurability of coefficients. Our approach to this ques-
tion is motivated by solving the factorization probability problem in the context 
of finite fields, which we review below. 

2. Factoring Over ( )nGF p  

Suppose we are given a random monic quadratic over the finite field ( )GF p . 
What is the likelihood that it factors [5]? 

2.1. Proposition 1 

If ( ) 2f x x xα β= + +  and ( ), GF pα β ∈ , then the probability pP  of fac-

toring ( )f x  over ( )GF p  is 
1 1
2 2 p
+ . 

Proof. There are 2p  possible pairs of coefficients, hence 2p  distinct qua-
dratics. On the other hand, if f factors as ( )( )1 2x r x r− − , then there are p facto-
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rizations where 1 2r r=  and 
2
p 

 
 

 distinct factorizations where 1 2r r≠ , allowing 

for interchanging the factors. pP  is the ratio of possible factorizations to possi-

ble quadratics, so 

( )

2

1
1 12
2 2p

p p
p

P
p p

−
+

= = + . 

Now let us generalize to an arbitrary quadratic. 

2.2. Corollary 1-1 

If ( ) 2f x x xλ α β= + +  and ( ) ( )0 , , GF pλ α β≠ ∈ , then the probability pP  

of factoring ( )f x  over ( )GF p  is 
1 1
2 2 p
+ . 

Proof. Evidently there are ( ) 21p p−  possible triples of coefficients, but we 
can mimic the above proof by rewriting  

( ) ( ) ( )2 1 1 2f x x x x xλ λ α λ β λ α β− − ′ ′= + + = + + . Now the possible factoriza-

tions would look like ( )( )1 2x r x rλ − − . Once again, the probability of factoring 
a random quadratic, not necessarily monic, would be  

( )

( )

2

2

1
2 1 1

1 2 2p

p pp
P

p p p

 +
−  

 = = +
−

. 

2.3. Corollary 1-2 

If ( ) 2f x x xλ α β= + +  and ( ) ( )0 , , nGF pλ α β≠ ∈ , then the probability np
P  

of factoring ( )f x  over ( )nGF p  is 
1 1
2 2 np
+ . 

Proof. Following the proof for the preceding, we have ( ) 21n np p−  possible 

triples of coefficients, and ( ) ( ) ( )
21

1 1
2 2

n n n n
n n n

p p p pp p p
 −  +
 − + = −  
    

 

possible factorizations. Hence 
( )

( )

2

2

1
2 1 1

2 21
n

n n
n

nn np

p pp
P

pp p

 +
−  

 = = +
−

. 

2.4. Corollary 1-3 

The limit as p →∞  of the probability np
P  of factoring a quadratic over 

( )nGF p  is 1
2

. 

Proof. This follows immediately from the fact that the limit as p →∞  of the 
expression in Corollary 1-2 is independent of n. 

The situation we see embodied in Proposition 1 and its corollaries is some-
what unexpected (at least the first time it is considered) and in any case very dif-
ferent from factoring over  . It is a mildly entertaining exercise in experimen-
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tal mathematics to choose a large prime p and ask a computer algebra system to 
factor several random quadratics with large coefficients modulo p. Superficially, 
since p is large, it seems that the chances for a factorization would be about the 
same as if the factorization were to be done over  , namely poor. But in the 
long run, about half of the test examples result in factorizations. Although it 
would defeat the whole purpose of our discussion of the enumeration method 
for factorization probabilities in the finite field case, a short proof of Proposition 
1 can be gotten directly from number theory. The quadratic equation  

2 0x xα β+ + =  can be simplified by completing the square, leaving a constant 
on the right hand side. Among the 1p −  non-zero least residues modulo p, 

exactly 1
2

p −  are quadratic residues. The constant needs to be a quadratic re-

sidue so that roots can be found to construct a factorization. Zero is always a 

quadratic residue, so there are 1 11
2 2

p p− +
+ =  quadratic residues in all. On 

the other hand, there are p least residues modulo p, hence the probability that a 

randomly chosen least residue is in fact a quadratic residue is 
1 1 1

2 2 2
p

p p
+

= +  

as above. 

3. Factoring Over  -Monic Case 

We would like to adapt the same argument for factoring over   as we used for 
finite fields, namely counting up the number of possible distinct factorizations 
and dividing by the number of distinct quadratic expressions to get a probability 
of being able to factor. Since   is infinite this plan is immediately hobbled [6]. 
Consider the polynomial 2 1x ax+ + , where α  is random. There are only two 
hopes for factorization: 2α = ± . Yet there are infinitely many choices for α , so 
the probability of factorization is evidently zero. To salvage any insight from this 
state of affairs, we have to content ourselves with a conditional probability based 
on limiting how “random” a random quadratic can be. A reasonable choice is to 
insist that its coefficients be commensurable with its possible zeroes. Clearly 

2 37 1x x+ +  does not have this property, which is informal at the moment, but 
which will soon be made precise. On the other hand, both 2 1x x+ +  and 

2 2 1x x+ +  seem to have it. In one case there is a factorization, in the other not. 
This conditional probability will be based on a relative likelihood calculation 
where the commensurability condition is quantified by a parameter. As the pa-
rameter increases, the commensurability decreases, and the probability of facto-
rization will tend to zero. The point of our approach is to model the detailed be-
havior of this process. To introduce the specifics in a simple context, we first 
consider monic quadratics with the restriction that they have non-negative 
roots. 

Let us define a “window of feasibility” ( )W n  in the plane as the rectangle of 
grid points [ ] [ ] 20, 1 0,n n+ × ⊂  . Suppose we are given a random ( ) [ ]p x x∈  
of the form 2x xα β− +  with , 0α β ≥  and nβ ≤ . If ( )p x  factors as 

https://doi.org/10.4236/apm.2020.103008


T. Beatty, G. von Linden 
 

 

DOI: 10.4236/apm.2020.103008 119 Advances in Pure Mathematics 
 

( )( )1 2x r x r− −  both roots are nonnegative and 1 2r rα = +  and 1 2r rβ = . If 
0β >  these conditions imply that 1nα ≤ + , and in the event 0β =  we im-

pose this condition arbitrarily to ensure that all ( )p x  satisfying these condi-
tions can be mapped in the obvious way to ( ) ( ), W nα β ∈ . At the moment we 
have every point in ( )W n  as the image of some ( )p x  with , 0α β ≥ . Clearly 
this is a bijective mapping. We call ( )W n  a window of feasibility since any 
( )p x  with 0 nβ< ≤  and 1nα > +  is necessarily impossible to factor. The 

motivation for constructing the window is to exclude those cases which over-
whelm ordinary probability calculations. A quadratic inside the window may or 
may not be factorable, but if not, the reason will not be due to incommensura-
bility of coefficients. Figure 2 shows this situation. 

Note that a grid point of the form ( ),0α  corresponds to the quadratic 
( )2x x x xα α− = − , so factorization is always possible. A grid point of the form 

( )0,β , provided 0β >  corresponds to the quadratic 2x β+ , which never 
factors. 

Now denote by ( )F n  the grid points in ( )W n  corresponding to factorable 
polynomials. A factorable quadratic mapped to ( ),α β  must have 1 2r rα = +  
and 1 2r rβ =  for some 1 2,r r . Let us then plot pairs of roots on the ( )W n  grid 
and define ( ) ( )1 2, ,r rφ α β=  as the mapping that associates a root pair to the 
quadratic which factors with those roots. We will see shortly that there are sub-
stantial limitations on which points in ( )W n  can be root pairs. In other words, 
 

 
Figure 2. Window of Feasibility for 9n = . Grid points in shaded area are possible root 
pairs. 
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the domain of φ  will be relatively small, so surjectivity will clearly be out of the 
question. We would like φ  to be injective, and since ( ) ( )1 2 2 1, ,r r r rφ φ=  we 
impose the condition 2 1r r≤  without loss of generality. Graphically, this 
amounts to eliminating all root pairs strictly above the line 2 1r r= . Now 

( ) ( ){ }1 2 2 1\ , :W n r r r r≤  is still not ( )F n  since there is another important con-
dition on the root pairs, namely 1 2r r n≤ . The only admissible root pair grid  

points whenever 2 0r >  are also below the hyperbola 2
1

nr
r

= . This is also true  

trivially if 2 0r =  so the hyperbola is an upper bound for all root pairs corres-
ponding to factorable quadratics. Now we estimate the number of points in 
( )F n  by calculating the area inside the region of the plane defined by the line  

2 0r = , the line 2 1r r= , and the hyperbola 2
1

nr
r

= . The area of this region is 

( )
1

1 1 1
10

ln 3d d
2

n n

n

n n n nA r r r
r

+   +
= + = 

 
∫ ∫ . We estimate the number of grid points in 

( )F n  by assuming one grid point per unit of area. This estimate is asymptoti-

cally exact. Now ( )W n  has ( )( )1 2n n+ +  total grid points. Finally, our con-

ditional probability estimate is 
( )( )

ln 3
2 1 2

n n n
n n

+
+ +

. We have proved: 

3.1. Proposition 2 

Given a random quadratic in [ ]x  of the form 2x xα β− + , where , 0α β ≥ , 
the approximate probability ( )P n  of factorization, subject to the conditions 

1nα ≤ +  and nβ ≤  for fixed n∈ , is given by ( ) ( )( )
ln 3

2 1 2
n n nP n
n n

+
=

+ +
. 

3.2. Corollary 2-1 

With the notation of Proposition 2, ( )P n  is asymptotically ln
2

n
n

. 

Proof. Divide numerator and denominator of 
( )( )

ln 3
2 1 2

n n n
n n

+
+ +

 by n to get 

ln 3
22 3

n

n
n

+
 + + 
 

. Note that for large n we have ln 3n  and 23n
n

+ . Hence 

1n  implies ( ) ln
2

nP n
n

≈ . 

Unsurprisingly, letting n →∞  corresponds to α  and β  being chosen 
completely arbitrarily and we confirm that ( )lim 0n P n→∞ =  by L’Hôpital’s  

rule. The rate at which the likelihood of factorization declines is ( ) 2
ln
2

nP n
n

′ ≈ −  

for large n, as would be expected. 
For perspective, if 440n = , the corresponding likelihood of factorability 
( )440 1%P ≈ . 
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4. Factoring over  -General Case 
Consider the lattice cube ( ) [ ]3 30,L n n= ⊂   as the three-dimensional analog 
of the preceding window of feasibility. The general quadratic [7]  
( ) [ ]2p x x x xα β γ= − + ∈  with 0, , 0α β γ> ≥  can be associated injectively 

with the point ( ) ( ), , L nα β γ ∈  provided { }max , , nα β γ ≤ . Since 0α ≠ , there 
are ( ) 21n n−  grid points in ( )L n  which represent distinct quadratics of this 
type. We would like to estimate the number of these which are factorable so that 
we can calculate the conditional probability ( )P n  of factorability in the man-
ner of the finite field and monic cases above. Suppose ( )p x  does factor in   
as ( )( )ax b cx d− − , with , 0a c >  and , 0b d ≥ . Note that the greatest com-
mon divisor of ,α β  and γ  does not appear as a separate factor but is consi-
dered to be bundled into the term ( )ax b− . Then acα = , bc adβ = + , and 

bdγ = . Since the maximum α  is n, it follows that admissible pairs ( ),a c  

would satisfy nc
a

≤ . As in the monic case, we embed 2  in 2 , calculate the  

appropriate area under the given hyperbola, and then assume one grid point 
(admissible pair) per unit of area with the understanding that this is asymptoti-
cally correct. The area in the first quadrant of the ac plane is 

( ) ( )
1

ln ln 1
n n a

n n n n n n
a
δ

− = − = −∫ . Since the maximum γ  is n, but either b 

or d (or both) could be zero, the appropriate area in the first quadrant of the bd 

plane would be 
( ) ( )

1
ln ln 1

n n b
n n n n n n

b
δ

+ = + = +∫ . Evidently there are  

( ) ( ) ( )( ) ( )22ln 1 ln 1 ln 1n n n n n n F n− ⋅ + = − =        expressions of the form  

( )( )ax b cx d− −  which could factor the quadratic 2x xα β γ− +  subject to the  

constraints imposed on those coefficients. Certainly not every point in ( )L n  
corresponds to a factorable quadratic, but we can be assured that any points 
which are associated with a factorable quadratic have a factorization counted by 
( )F n . Since the factor pairs commute, we divide ( )F n  by two and it follows  

that the conditional probability of factorization is estimated by  

( ) ( ) ( )( ) ( )
22 2

3 3

ln 1 ln 1
2 2 2

n nF n n
P n

n n n

− −
= = = . 

We have proved: 

4.1. Proposition 3 

Given a random quadratic in [ ]x  of the form 2x xα β γ− + , where 

0, , 0α β γ> ≥  and { }max , , nα β γ ≤ , an estimate for the probability ( )P n  of 

factorization is given by ( ) ( )2ln 1
2
n

P n
n
−

= . 

4.2. Corollary 3-1 

With the notation of Proposition 3, ( )P n  is asymptotically 
( )2ln n

n
. 
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Table 1. Actual vs. Calculated-Monic Case. 

n Calc Actual 

10 0.200 0.197 

20 0.128 0.121 

30 0.097 0.089 

40 0.078 0.070 

50 0.065 0.058 

1000 0.005 * 

∞ 0 * 

n = coefficient bound; Calc = calculated P(n); Actual = actual P(n) by computer check. 

 
Table 2. Actual vs. Calculated-General Case. 

n Calc Actual 

10 0.215 0.149 

20 0.199 0.190 

30 0.176 0.067 

40 0.158 0.054 

50 0.143 0.045 

1000 0.023 * 

∞ 0 * 

n = coefficient bound; Calc = calculated P(n); Actual = actual P(n) by computer check. 

 

 
Figure 3. Probability of factoring P(n) vs. absolute coefficient bound n actual vs. calcu-
lated. 
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Proof. For n e , 
( ) ( )2 2ln 1 ln

2 2
n n

n n
−

≈ . 

As expected, ( )lim 0n P n→∞ =  again by L’Hôpital’s rule. 

5. Summary & Conclusions 

We have described two methods for estimating the conditional probability that a 
random quadratic in [ ]x  with non-negative bounded coefficients can be fac-
tored as a function of the bounding parameter. The simpler case is based on 
mapping monic quadratics injectively to a two-dimensional lattice in 2  and 
enumerating the formal expressions that could possibly represent factorizations 
of them. The ratio of the number of admissible formal factorizations to the total 
number of points in the lattice defines the conditional probability of factoriza-
tion for the given coefficient bound. The more complicated case involves map-
ping general quadratics to a three-dimensional lattice in 3  and reprising the 
calculation for the two-dimensional case. Both methods have their provenance 
in the problem of calculating the likelihood that a quadratic over a finite field 
may be factored. In the case of finite fields, only a finite number of polynomials 
are possible and only a finite number of factorizations can be written, making 
the calculation a simple ratio. This fails, of course, for  , but the point of our 
method is to resurrect the utility of finiteness by imposing a size limitation on 
coefficients [8]. 

Table 1 presents a comparison of values from the monic formula for condi-
tional probability given by Proposition 2 with a computer generated census of 
factorable monic quadratics. There is reasonably close agreement, even for small 
n. The computer algorithm works by simply checking to see if the quadratic 
formula yields a rational number. Recall if a polynomial in [ ]x  factors over 
 , then it factors over  . 

Table 2 recaps a similar comparison for the general quadratics in Proposition 
3. For the sake of simplicity we have ignored double counting certain factored 
expressions arising from symmetries (for example if a c= ). This overstates the 
calculated probability of factorization, especially for small n, so we may regard 
( )P n  in this case as an upper bound for the true probability. In any case, our 

formula establishes ( ) 0P ∞ = . 
Below in Figure 3 a graph of the calculated ( )P n  versus n is shown as the 

continuous curve. The separate data points correspond to Table 1. The expected 
feature that ( )lim 0n P n→∞ =  is also evident. 

To close on a philosophical note, although factorization of random quadratics 
over   has been shown to be a progressively futile exercise, practicing pattern 
recognition with doable examples for small n is a worthwhile exercise that no 
doubt pays dividends elsewhere in mathematics. 
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Abstract 
The most interesting and famous problem that puzzled the mathematicians 
all around the world is much likely to be the Fermat’s Last Theorem. Howev-
er, since the Theorem was proposed, people can’t find a way to solve the 
problem until Andrew Wiles proved the Fermat’s Last Theorem through a 
very difficult method called Modular elliptic curves in 1995. In this paper, I 
firstly constructed a geometric method to prove Fermat’s Last Theorem, and 
in this way we can easily get the conclusion below: If a  and b are integer 
and a  = b, n∈  and 1n > , the value of c satisfies the function 

n n na b c+ =  that can never be integer; if a , b and c are integer and a b≠ , 
n is integer and 2n > , the function n n na b c+ =  cannot be established. 
 

Keywords 
Pythagoras Theorem, Fermat’s Last Theorem, Geometric Method, Equation 
of Degree n with One Unknown 

 

1. Introduction 
The Fermat’s Last Theorem was proposed by French famous mathematician 
Pierre de Fermat in 1637, it was called the last theorem because it was the theo-
rem of Fermat that can be proved at last, which means to prove the theorem is 
very difficult. The Fermat’s Last Theorem states: there is no positive integer a, b 
and c to satisfy the function n n na b c+ =  (1) when n is integer and 2n >  [1]. 

Many mathematicians paid attention to this theorem, and they found it not as 
easy as it looks like. In 1753, the famous Swiss mathematician Euler said in a let-
ter to Goldbach that he proved the Fermat conjecture at n = 3, and his proof was 
published in the book Algebra Guide in 1770 [2]. Fermat himself proved the 
Fermat conjecture at n = 4 [3]. In 1825, the German mathematician Dirichlet 
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and the French mathematician Legendre independently proved that Fermat’s 
theorem was established at n = 5, using the extension of the method used by Eu-
lerasin [2]. In 1844, Kummer proposed the concept of “ideal number”, he proved 
that for all prime indices n less than 100, Fermat’s theorem was established, and 
this study came to a stage [4]. But the mathematicians still struggled with Fer-
mat’s theorem in the first two hundred years of the conjecture with little 
progress. What’s more, many theorem were proposed in order to prove the 
Fermat’s Last Theorem, such as Modell conjecture, Taniyama-Shimura theorem. 
After proving the Taniyama-Shimura theorem, Andrew Wiles finally got a way 
to prove the Fermat’s Last Theorem in 1995 [5]. 

At first, people wanted to prove that the Fermat’s Last Theorem was estab-
lished at different indices n, but the indices n is infinite, this method is meant to 
be failed. Then, people tried to propose another theorem to indirectly prove the 
Fermat’s Last Theorem, but the relationship between two theorems is not very 
clear, thus the proof is hard to be verified. 

To prove the Fermat’s Last Theorem, I got inspiration from the Pythagoras 
Theorem. As we all know the Pythagoras Theorem: the sum of the squares of the 
two right-angled sides of a right-angled triangle is equal to the square of the hy-
potenuse, let the length of two right-angled sides be a  and b, and the length of 
hypotenuse is c, then 2 2 2a b c+ =  (2) [6]. What’s more, if a , b and c satisfy the  

function (2), the angle (θ) between a  and b must be 
2
π . If a , b and c satisfy the 

function n n na b c+ =  (1), what is the relationship between n and θ? This paper 
discusses the relationship between n and θ, and in this geometric method, we 
can easily prove the Fermat’s Last Theorem. 

2. Proof 
2.1. Geometric Construction 

A triangle has three sides, a, b and c, respectively. Firstly, let us discuss an easy 
condition: a = b. 

As we can see in Figure 1, the point O is the center of circle, the radius of the 
circle is r, the point A and B are on the circle, and A is fixed, B can move to B’ (B’ 
is B1, B2, …, shown on the circle), connect point O, A and B to form a triangle 
∆OAB. The length of each side of ∆OAB is: OA = a , OB = b, AB = c, and 
a b r= = , the angle of BOB θ′∠ = . 

If BOB 0θ′∠ = =  (B’ = B), then AB 2c a b r= = + = , a, b and c satisfy the 
function n n na b c+ =  (2), in this condition, n = 1. 

If BOB
2

θ′∠ =
π

=  (B’ = B3), according to Pythagoras Theorem:  

2 2 2 2AB c a b= = + , a, b and c satisfy the function n n na b c+ =  (1), in this con-
dition, n = 2. 

In general condition: BOB θ′∠ = , because of BB AB′ ⊥ ′ , then 2 cos
2

c r θ
= , 

if a , b and c satisfy the function n n na b c+ =  (1), then 
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Figure 1. The Geometric construction to prove Fermat’s Last 
Theorem (a = b). 

 

2 2 cos
2

n
nr r θ =  

 
 

1

2 2cos
2

n θ
=  

2 2
1 log 2cos log

2
c

n r
θ   = =   

   
                  (3) 

The function (3) shows the relationship between n and θ, function (3) is the 
necessary and sufficient conditions of function (1). We can draw the function (3) 
as Figure 2. ( [ ]0,θ ∈ π ). 

1) When 2
3

θ =
π
−  , ( 0>  and 0→ ),  

2cos 2cos 2 cos cos sin sin
2 3 2 3 2 3 2

3cos 3sin 1
2 2 2

θ    π π π
= − = ∗ + ∗   

   

= + → +

  

 


, then  

2 2
1 3log 2cos log 1

2 2n
θ  

= → +  
 

 , 
1 3 0

2ln 2n
→ → , and 1 0, n

n
> → +∞  

2) When 

2
3

θ =
π
+ 

, ( 0>  and 0→ ),  

2cos 2cos 2 cos cos sin sin
2 3 2 3 2 3 2

3cos 3sin 1
2 2 2

θ    π π π
= + = ∗ − ∗   

   

= − → −

  

 


, then  

2 2
1 3log 2cos log 1

2 2n
θ  

= → −  
 

 , 1 3 0
2ln2n

 
→ − →  

 
 , and 1 0, n

n
< → −∞  
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Figure 2. The relationship between n, θ and c (a = b). 
 

3) When θ = π−  , ( 0>  and 0→ ),  

2cos 2cos 2 cos cos sin sin
2 2 2 2 2 2 2

0 sin
2 2

θ π π   = − = ∗ + ∗   
   

= + → +

π  

 
, then  

2 2
1 log 2cos log

2 2n
θ  = → → −∞ 

 

 , 0n → −  

If a b r= =  is integer, n∈ , then 1pn
q

= > , ( ), 1p q = , p and q are posi-

tive integer. 

1

2 2 2cos
2

q
pn c

r
θ

= = =                          (3) 

If c can be a positive integer, 
1

2n  must be a rational number. If 
1

2 2
q
pn =  is 

rational number, then 2
q
p t

s
= , ( ), 1t s = , t and s are positive integer, 0 2t

s
< < . 

2 2

p pq q qp t
s

   = =       
                       (4) 

( ) ( )2
p p
q qt s=  

( ) ( )2
q qp p

q qt s   =   
   

 

( ) ( )2p pqt s=                          (5) 

t, s, p, q are positive integer, so 2q  is an even number, then t is an even number, 
let t = 2k (k is positive integer), 

( ) ( )2 2p pqk s=  

( )2 p q p pk s− =                           (6) 
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1pn
q

= > , p q> , p, q are positive integer, then ( ) 0p q− >  and ( )p q−  is  

positive integer, so 2 p q−  is even number, and ( ) ps  is also an even number, 
then s must be an even number. 

Above all, we can prove that t and s are even number, which is contradictory 

with ( ), 1t s = , therefore, 
1

2 2
q
pn c

r
= =  is irrational number, r is integer, then c 

must be irrational number. 
In summary, a , b and c are the 3 sides of triangle, if a b r= =  is positive 

integer, n is rational number ( 1n ≥ ), and a , b, c satisfy the function 
n n na b c+ =  (1), only if n = 1, c can be integer, the relationship between n and θ 

is: 

2 2
1 log 2cos log

2
c

n r
θ   = =   

   
 

2.2. The Proof of Fermat’s Last Theorem 

The Fermat’s Last Theorem is: 
n n na b c+ =                            (1) 

When n is integer and 2n > , the function (1) has no positive integer solution, 
which means a , b and c can’t be positive integer at the same time or when a, b, 
and c is positive integer, n is integer and 2n > , the function n n na b c+ =  (1) 
cannot be established. 

First of all, we have to prove the value of a, b, c in the function (1) can form a 
triangle. 

If n is integer and 2n > , a, b and c are more than 0, then: 
n n n na b c a+ = > , so c a> ; 
n n n na b c b+ = > , so c b> ; 

( )nn n na b c a b+ = < + , so c a b< +  
Therefore, a, b, and c can certainly form a triangle ∆OAB [7], and the triangle 

∆OAB is shown in Figure 3. 
In the section of 1.1, we have proved that the value of c in the function (1) is 

irrational even if n is rational ( 1n > ) when a b r= =  and r is positive integer. 
To prove the Fermat’s Last Theorem, we have to prove another condition: if a, b 
and c is positive integer, and a b≠ , the function n n na b c+ =  (2) can not be 
established when n is integer and 2n > . 

Similarly, we can also construct the geometric method as same as the section 
of 2.1. The geometric graph is shown in Figure 3. As shown in Figure 3, OA = 
a , OB = b, and let a  > b, the point of B can move to B’ on the circle which 
centered on point O and the radius of the circle is b. Connect point O, A and B 
to form a triangle ∆OAB, the angle of BOB θ′∠ = , AB’ = c. a , b and c are the 
length of the 3 sides of ∆OAB, so their value are more than 0. 

So ( ) ( )2 22 2 2 2AB cos sin 2 cosc a b b a b abθ θ θ′ = = + + = + +  
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Figure 3. The Geometric construction to prove Fermat’s Last 
Theorem ( a b≠  and let a b> ). 

 
If 0θ = , ( )22 2 2 2 22 cos 2c a b ab a b ab a bθ= + + = + + = + , c a b= + , n = 1. 

If 
2

θ =
π , 2 2 2 2 22 cosc a b ab a bθ= + + = + , n = 2, and the value of a , b, c 

can be integer. 

If 
2

θ ≠
π  and 0θ ≠ , a and b are positive integer, a , b and c satisfy the 

function (1), then: 

( )2 2 22 cos
n

n n na b c a b ab θ+ = = + +  

2 2 2 cos n n nc a b ab a bθ= + + = +                (7) 

Function (7) shows the relationship between a , b, n and θ, what’s more, 
function (7) is the necessary and sufficient conditions of function (1), so: 

2 2 2 22 cos 2 2 2 cosc a b ab a b ab ab abθ θ= + + = + + − +  

( ) ( )2 2 1 cosc a b ab θ= + − −                   (8) 

if c is integer, according to function (8), ( )c a b< + , let ( )c a t= + , t is integer 
and 0 t b< < . 

( ) ( ) ( )2 22 2 1 cosc a t a b ab θ= + = + − −  

( )( ) ( )2 2 1 cosa b t b t ab θ+ + − = −                  (9) 

a , b and t is integer, so ( )( )2a b t b t+ + −  is integer, then cosθ  must be ra-
tional. Let cos Rθ = , and R is rational. 

1) When 0,
2

θ  π ∈ 
 

, ( )1,0R∈  

( )2 2 22n n n n n na b a a b b+ = + +                  (10) 

( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2

2 1 2 2 22 1 2 1 2 2 2 2

2 cos
n nn

n n n nn n n
n n n

c a b ab a b

a C a b C a b C a b

θ
− − −× × ×

= + + > +

= + ++ +
     (11) 

So ( )2 2 2 2 22
nn n n n na a b b a b c+ + < + < , n n na b c+ <  (12). 
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Therefore, when 0,
2

θ  π ∈ 
 

, ( )1,0R∈ , 2 22c a Rab b= + +  and c can be 

integer, n is integer and n>2, if a , b is positive integer, the relationship between 
a , b, c and n must be n n na b c+ < , no matter c is integer or not. 

2) When ,
2

θ  π π∈  
, ( )0, 1R∈ −  

Because of n n na b c+ = , n is integer and n > 2, so that c > a  and c > b. 
However, if B’ = B3 (B3 is the intersection of the two circles in Figure 3), 

3BOB arcsin
2 2

b
a

θ = ∠ = +
π  (please see Figure 3.), it means  

3AB AB AO c a′ = = = = , and if 3BOB OBBθ ′= ∠ > ∠ , AB c a′ = <  (Accord-

ing to Euclid’s Elements, big angle to big side) [7], so if arcsin ,
2 2

b
a

θ  ∈ + 

π


π , 

the value of c < a . 

Therefore, if , arcsin
2 2 2

b
a

θ  ∈ + 


π



π , ,0
2
bR
a

 ∈ − 
 

, then c > a , and there is  

possible to make the function n n na b c+ =  to be tenable when n > 2. Let 
( )c a t= + , t is integer and 0 t b< < , 1a b≥ + , then 

( ) ( )1n nn n na b c a t a+ = = + ≥ +                   (13) 

( ) ( ) ( )1 21 21 1n n nn
n na a C a C a− −+= ++ + +                (14) 

So, if the function n n na b c+ =  is established when n is integer and n > 2, 
a  > b, we can get: 

( ) ( ) ( )1 2 11 2 1 1n n nn n n
n n na b a C a C a C a− − −+++ ≥ + + +          (15) 

( ) ( ) ( )( ) ( )( )1 21 21 21 2 1 1 111
n nn n

n nn n
n n

C b C bC a C a
b b

− −− − ++ + + + ++ +
≥ ≥


    (16) 

If b = 1, according to function (15), ( ) ( )1 21 21 1n n
n nC a C a− −≥ + + +  can’t be 

established; if b > 1, according to function (16), there are two conditions that 
need to be discussed: 

1) 1n b≥ + , then 

( )( ) ( )( )

( )( )( ) ( )( )( ) ( )( )

( )
( ) ( )

( ) ( )

1 21 2

1 2 1

1

1

1

1 1 1

1 1 1 1 1 1 1 1 1

1 1 11
1 1

1 1 1
1

n n
n n

n

n n

n

n

n

n

n

C b C b
b

b b b b b b b b
b

b
b

b b

b b b
b

− −

− −

+

+

+

+ + + +

+ + + + + + + + + + + + − −
>

 + −
= − + × 
 + − 

+ − − +
=

+

>





 

(which is contradictory with function (16)) 
Therefore, if b > 1 and 1n b≥ + , the relationship between a , b, c and n must 

be n n na b c+ < , the function (16) can’t be satisfied. 
2) 2 1n b< < + , then 
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( )nn n na b c a t+ = = +                     (17) 

( ) ( )1 21 2 2n nn n n n
n na b a C a t C a t t− −+ + ++ +=   

( ) ( ) ( ) ( )1 1 2 11 2 2 1 0n n n nn n
n n nt C a t C a t C a t b− − − −+ + + + − =          (18) 

If there exists a positive integer c to satisfy the function (17), then t must be a 
integer, and the value of t is the solution for the equation of degree n with one 
unknown in function (18), and the solution of t in function (18) is also the solu-
tion of t in function (17). 

Obviously, one of the solution of t in function (17) must be: 

( )if is even numbern n nt a a b n= − ± +                  (19) 

( )if is odd numbern n nt a a b n= − + +                  (20) 

In this paper, we only discuss the condition of 0 t b< < , so the value of t sa-
tisfies the requirement is: 

n n nt a a b= − + +                         (21) 

Therefore, we have found a solution for the equation of degree n with one 
unknown in function (18), and the solution of t is the function (19) and (20). 

For example: let a  = 2, b = 1, and n = 5, so the function (18) is equal to the 
function shows below: 

5 4 3 210 40 80 80 1 0t t t t t+ + + + − =                  (22) 

According to function (20), we can easily get the solution of t in function (22) is 

5 5 5 52 2 1 2 33t = − + + = − +                    (23) 

This is a special example of the solution for the equation of degree n with one 
unknown. However, how to find the solution for the arbitrarily equation of de-
gree n with one unknown as function (24): 

( )
( )1 2

2 11 0nn
n nA t A t A t A t B−

−+ + + + − =               (24) 

Let’s discuss the question in the next Section 2.3. 
According to function (18), we can transform it to the function (25): 

( ) ( ) ( ) ( )1 2 2 11 1 2 1 1
n

n n n nn
n n n

bt C a t C a t C a
t

− − − −− + + + + =           (25) 

t is a positive integer, so the left side of the equal sign in function (25) must be a 

positive integer, therefore, the value of 
nb
t

 must be a positive integer. 

Let the value of 
nb m
t
= , and m is a positive integer, then 

( ) ( ) ( ) ( )1 2 2 11 1 2 1 1 0n n n nn
n n nt C a t C a t C a m− − − −− + + + + − =           (26) 

Therefore, we have to find the value of t in the function (26), and determine if 
the value of t can be an integer. If t can’t be a positive integer when 3n ≥ , then 
the Fermat’s last Theorem is right. 

https://doi.org/10.4236/apm.2020.103009


Y. F. Xia 
 

 

DOI: 10.4236/apm.2020.103009 133 Advances in Pure Mathematics 
 

If n = 1, the function (26) is equal to 1 0m− = , then 
1

1b
t
= , t b= , so  

c a t a b= + = + ; 

If n = 2, the function (26) is equal to 2 0t a m+ − = , then 
2

2b t a
t
= + ,  

2 22t at b+ = , so ( )22 2 2 2 22a b a t at a t c+ = + + = + = . 

Therefore, if n = 1 and n = 2, the function n n na b c+ =  can have integer so-
lution. 

If n = 3, the function (26) is equal to 2 23 3 0t at a m+ + − = , then  
23 4 3

2
a m at − ± −

= , 

The value of t must be integer and 0 t b< < , then 2 2 24 3m a R a− = , 2R  is a 
positive integer, thus, 24m Ka= , 23K R− = , 4,7,12,19,K =  ,  

1,2,3,4,R =  , then: 

( )2 33 4 3
2 2

R aa m at
−− + −

= =  

( )2 23 2 3
4 4

R ab Kam
t

+
= = =  

( ) ( ) ( )( )2 2 2 3
3

3 3 33
4 2 8

R a R R aR a
b

+ + −−
= × =  

( )( )23 3 3
2
ab R R= + −  

Therefore, ( )( )2 3 3R R+ −  must be a positive cubic number, so 3R > . Let 

( )( ) ( )32 3 3R R R α+ − = − , α  is positive integer, then: 
3 2 3 2 2 33 3 9 3 3R R R R R Rα α α− + − = − + −  

If 1α = , 3 2 2 3 3 2 3 23 3 3 3 1 3 3 9R R R R R R R R Rα α α− + − = − + − > − + −  

If 2α = , 
( )3 2 2 3 3 2

2
2

3 3 3 3 9

3 313 9 1 3
2 4

R R R R R R

R R R

α α α− + − − − + −

 = − + + = ∆ = − − + 
 

 

Because R is positive integer and 3, 0R > ∆ < , so,  
3 2 3 26 12 8 3 3 9R R R R R R− + − < − + −  

If 3α = , 
( )

( )

3 2 2 3 3 2

22

3 3 3 3 9

6 24 18 6 2 1

R R R R R R

R R R

α α α− + − − − + −

 = − + − = ∆ = − − − 

, Because R is positive 

integer and 3, 0R > ∆ < , so, 3 2 3 29 27 27 3 3 9R R R R R R− + − < − + −  
If α α= , and 3α > , then, 

( )
( ) ( ) ( )
( ) ( ) ( )

( )

3 2 2 3 3 2

2 2 3

2 3

2 3 2

3 3 3 3 9

3 3 3 3 9

3 3 1 9

1 3 3 333 3
2 4

R R R R R R

R R

R R

R

α α α

α α α

α α α

α α α αα

− + − − − + −

= − − + − − −

 = − − − + − − 

+ − + − +  = ∆ = − − − +    
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When 4α = , 
3 23 3 33 5

4 4
α α α− + − +

= , Because R is positive integer and 

3, 0R > ∆ < , so, 3 2 2 3 3 23 3 3 3 9R R R R R Rα α α− + − < − + −  

When 5α = , 
3 23 3 33 8

4
α α α− + − +

= − , No matter what the value of R is, 

3 2 2 3 3 23 3 3 3 9R R R R R Rα α α− + − < − + −  
The function ( ) 3 23 3 33f α α α α= − + − +  is monotonically decreasing func-

tion when 5α > , so ( ) 8f α < −  when 5α > , therefore, No matter what the 
value of R is, 3 2 2 3 3 23 3 3 3 9R R R R R Rα α α− + − < − + − . 

Thus, ( )( ) ( )32 3 3R R R α+ − = −  can’t be established when α  is positive 
integer, and ( )( )2 3 3R R+ −  can’t be a positive cubic number, therefore, the 
value of b can’t be a positive integer. 

In conclusion, if n = 3, and the solution of t in function (26) is positive integer, 
but the value of b can’t be a positive integer, thus, the Fermat’s Last Theorem is 
established when n = 3. 

2.3. The Solution for the Equation of Degree n with One Unknown 

How to find the solution for the arbitrarily equation of degree n with one un-
known as function (24): 

( )
( )1 2

2 11 0nn
n nA t A t A t A t B−

−+ + + + − =                (24) 

This paper only discusses the real solution of function (24). As we already 
known, the solution of t in the function (18) is 

( )if is even numbern n nt a a b n= − ± +               (19) 

( )if is odd numbern n nt a a b n= − + +               (20) 

So, the function (24) can be deformed as function (27): 
( ) ( ) ( ) ( )( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )( )
( )

( )
( )
( ) ( )

( )
( )

( )
( )

( )( )
( ) ( )

1 1 2 11 2 2 1

1 2 2 2 11 2 2 1
1 1 1 1 1

2 3 3 4 31 2 2 1
2 2 2 2 2

2 1 1 1
2 2 2 1 1 0

n n n nn
n n n n n

n n n n n
n n n n n

n n n n n
n n n n n

A t C a t C a t C a t b

B t C a t C a t C a t b

B t C a t C a t C a t b

B t C a t b B t b

− − − −

− − − − −
− − − − −

− − − − −
− − − − −

+ + + + −

+ + + + + −

+ + + + + −

+ + + − + − =









  (27) 

The coefficients in function (27) are shown below: 

( ) ( )
( )( )1 1

1 1
n

n nn nB A A C a−
− −= −  

( ) ( )
( )

( ) ( )
( )

( )
( )

( )
( )( ) ( )

( )

2 22 1
2 2 1 1

2 1 22 1 1
2 1 1

n n
n nn n n n

n n n
n n n nn n n

B A A C a B C a

A A C a A A C a C a

− −
− − − −

− − −
− − −

 
= − −

= − −



− 
 

 

  
( )

( ) ( )
( )

( ) ( )
( )2 2 42 2 2 2 1

2 2 3 31 1 2 2
n n n

n n n n n nB A A C a B C a B C a B C a− − −
− − − −

 = − − − − −   

( )
( ) ( )

( )
( ) ( )

( )1 1 31 1 1 1 1
1 1 2 21 1 2 2

n n n
n n n n n nB A A C a B C a B C a B C a− − −

− − − −
 = − − − − −   

https://doi.org/10.4236/apm.2020.103009


Y. F. Xia 
 

 

DOI: 10.4236/apm.2020.103009 135 Advances in Pure Mathematics 
 

( ) ( ) ( ) ( ) 2 2 1 11 1 2 2n n n n n nA b B b B b B b B b B− − − −+ + + + + =         (28) 

The solution of t in the function (27) is t(k), and the value t(k) after substitut-
ing the equation coefficient with ( ) ( ) 21 2, , , ,n n nA B B B− −   and 1B  in the function 
(27) is zero. According to the function (19) and (20), we can easily get the value 
( ) ( )1,2, ,t k k n=   are: 
As 0 t b< < , so: 

( ) nn
nt n a a b= − + +  

( ) ( )
( )

( ) 11
11 nn

nt n a a b−−
−− = − + +  

( ) ( )
( )

( ) 22
22 nn

nt n a a b−−
−− = − + +  

  

( ) 22
22t a a b= − + +  

( ) 11t b=  

If we want the function (27) to be established, then all the value of t(k) must 
be equal, and we can find the solution for the equation of degree n with one un-
known. We can set the value of a and 0a ≠ , so here are n equations and we 
have to find the solution of 1 2, , , nb b b , and the solution can be found. 

1) Part one: let’s find the solution for the random equation of degree 3 with 
one unknown, the equation is shown below: 

3 2
3 2 1 0A t A t A t B+ + − =                   (29) 

The function (29) can be deformed as: 

( ) ( ) ( )3 2 2 2
3 3 1 3 3 33 3 3 0A t at a t b A A a t B A b+ + − + − × − − =       (30) 

and 3 23A a A× = , 2

33
Aa
A

=  

we can easily get the value ( )3t  and ( )1t : 

( )

( )

3

2 23
3

3 3

3 3
2
2

1
3

3
3 3

1

3

A At b
A A

B A bt
AA
A

   = − + +   
 −

=
 −

 

In order to make the function (29) to be established, the value of ( )3t  and 

( )1t  must be equal, let ( ) ( )1 3t t m= = , then: 

2
2

1
3

3
3

3
AB m A
A

b
A

 
− − 

 =  

https://doi.org/10.4236/apm.2020.103009


Y. F. Xia 
 

 

DOI: 10.4236/apm.2020.103009 136 Advances in Pure Mathematics 
 

3 3 3 1
32 2 2

2
2

3
3 3 3 3

3
3 3 3

AB m A
AA A Am b

A A A A


 
− −      + = + = +   

   


 
 

 

2

3 1
2 2 1 2 33

3
3 3 3 3

2
2 3
3 227 9 23

3 3 27

AA
A A A B A A A AAm m
A A A A

−
+ −

+ = −
   
   
 

+
 

+  

Let 2

33
Am w
A

+ = , then: 

2 2
3 1 3 1 2 3

2

3
2 3 2

3
3 3

3 27 9 2 0
3 27

A A A A B A A A Aw w
A A
− + −

+ − =          (31) 

According to the Cardano Formula of the General Solution of Cubic Algebraic 
Equations [8], the real solution of function (31) is: 

2 3 2 3

3 3

2 2 3 2 2 3
q q p q q pw        = − + + + − − +       

       
        (32) 

2
1 3 2

2
3

2 3
3 1 2 3 2

3
3

3
3

27 9 2
27

A A Ap
A

A B A A A Aq
A

 −
=




+ − = −

 

Therefore, the solution of t satisfy the function in (29) is 2

33
At w
A

= − +  

For example, Let’s find the solution of t in the function (33) below: 

3 22 3 4 5 0t t t+ + − =                       (33) 

2
2

2
3

1 33 5
3 4

A A Ap
A
−

= =  

2 3
3 1 2 3 2

3
3

27 9 2 13
27 4

A B A A A Aq
A

+ −
= − = −  

2 3 2 3

3 3
13 13 5 13 13 5 1.20393969
8 8 12 8 8 12

w        = + + + − + ≈       
       

 

so the real solution of t in the function (33) is 1 0.70393969
2

t w= − + ≈  

If n = 4, the function (26) is equal to the function (34) shows below: 

( )3 1 2 2 1 34 6 4 0t a t a t m a+ + − − =                  (34) 

2 2
1 3 2

2
3

3 2
3 3

A A A ap
A
−

= =  

2 3 3
3 1 2 3 2

3
3

27 9 2 20
27 27

A B A A A A aq m
A

+ −
= − = −  
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2 3 2 3

3 3

2 2 3 2 2 3
q q p q q pw        = − + + + − − +       

       
 

2 32 3 3 210 2
2 3 27 2 9
q p a m au

      = + = − +      
       

           (35) 

The value of u in the function (35) must be a integer, therefore, 
2 33 210 2

27 2 9
a m a   

  +  
   

−  must be a positive square integer, otherwise, the value of  

w can’t be a rational number. 
Let m = 2k, a  = 3s, k and s is positive integer, then: 

( ) ( )
2 33 2 2 33 210 2 10 2

27 2 9
a m au s k s

   
= − + = − +   

   
 

Obviously, if ( )23 2 610s k K s− = , 2 28K R+ = , K and R is a positive integer, 
under this condition, the value of u can be a integer. Then, 2 1,8,17,28,K =  ,

3,4,5,6,R =  , and 3u Rs= ± .However, the value of K must be a positive square 
integer, a positive square integer plus 8 is still a square integer, only when 

2 21, 9K R= =  can satisfy the requirement, then 39k s=  or 311s , 33u s= ± . 
2

22 6
3
ap s= =  

3
3 31 2

3

2 3
3 23

3

27 9 2 20 20 2 2
27 27

A B A A A A aq m s k s
A

+ −
= − = − = − = ±  

When 39k s=  

( ) ( )3 3 3 3 3 33 33 3 4 2w s s s s s s= + ± + − ± = + −  

When 311k s=  

( ) ( )3 3 3 3 3 33 33 3 2 4w s s s s s s= − + ± + − − ± = + −  

Absolutely, the value of w is irrational, therefore, the solution of t satisfy the 
function in (34) is 12t s w= − +  is irrational. 

In conclusion, if n = 4, the solution of t in function (26) is irrational, thus, the 
Fermat’s Last Theorem is established when n = 4. 

2) Part two: let’s discuss the solution for the random equation of degree 4 
with one unknown, the equation is shown below: 

4 3 2
4 3 2 1 0A t A t A t A t B+ + + − =                   (32) 

The function (32) can be deformed as: 

( ) ( )
( ) ( )

4 3 2 2 3 2 2
4 4 2 4

3
1 4 4 4

4 6 4 6

4 0

A t at a t a t b A A a t

A A a t B A b

+ + + − + − ×

+ − × − − =
          (33) 

and 4 34A a A× = , 3

44
Aa
A

=  
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we can easily get the value ( )4t  and ( )2t : 

( )

( )
( )

4
3 34

4
4 4

23 3 2
3 3 3

1 1 2 4 42 2
4 4 4

2
3

2
4

4
4 4

34
16 16 8

2
32
8

A At b
A A

A A AA A A B A b
A A A

t
AA
A

   = − + +   

       − − ± − + − −            =

  −   

 

Similarly, in order to make the function (33) to be established, the value of 
( )4t  and ( )2t  must be equal, let ( ) ( )4 2t t m= = , then 

3
2 3

2 1
4

4
4

2
3

2
4

3
8 16

A AB A m A m
A A

b
A

− − −
   
   − 
   =  

4 4
3 3

4
4 4

2 3
23 3

4 2 1 2
4 43

4 4

4 4

3
8 16

4

A Am b
A A

A AB A m A m
A AA

A A

   
+ = +   

   
   

− − − −        = + 
 

 

4 2
3 2 4 3

4 4

2 3 4 1 3

2
3

2
4

2 3 2 3
4 3 4 3

3
4

3 2 2 2 4 2 4
4 3 3 4 3 4

4

2 4 2 4 1 3

4

3

4

8 3
4 8 4

8 3 16
16 4

9128 8 16 6 32
2

128

A A A A Am m
A A A

A A A A A A A A Am
A A

A B A A A A A A A A A A A A

A

  −
+ + + 

 
 − − +

− + 
 

+

 
 
 

− + + −
=

 

Let 3

44
Am w
A

+ = , then: 

4 2 0w pw qw r+ + + =                     (34) 

2
3

2
4

2 3 2 3
4

2 4

2 3 4 1

2

3 4 3
3
4

3 2 2 2 4 2 4
4 3 4 2 4 1 33 4 3 4 3

4
4

8 3
8

8 3 16
16

9128 8 16 6 32
2

128

A A Ap
A

A A A A A A A Aq
A

A B A A A A A A A A A A A A
r

A

−
=

− − +
= −

+







− + + −
= −








 

then the function (34) can be transformed to the function (35): 

( )( )4 2 2 2 0w pw qw r w kw u w kw v+ + + = + + − + =           (35) 

( )( ) ( ) ( )2 2 4 2 2w kw u w kw v w u v k w k v u w uv+ + − + = + + − + − +  
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Then we can get: 

( )

2p u v k
q k v u
r uv

 = + −


= −
 =

 

We can set a value for k and 0k ≠ , p, q, and r are the known number, there-
fore, we can find the value of u and v are: 

3

2
k pk qu

k
+ −

=  

3

2
k pk qv

k
+ +

=  

3 3

2 2
k pk q k pk q r

k k
+ − + +

× =  

( )6 4 2 2 22 4 0k pk p r k q+ + − − =                 (36) 

Let 2k x= , then the function (36) can be deformed as : 

( )3 2 2 22 4 0x px p r x q+ + − − =                 (37) 

Now, the problem is transformed to find the solution x for function (37), ac-
cording to the results of Part one, we can get the solution x is: 

2 3 2 3

3 3

2 2 3 2 2 3
Q Q P Q Q PW        = − + + + − − +       

       
        (38) 

( )2 2 23 4 4 12
3 3

p r p p rP
− − +

= = −  

( )2 2 3 2 327 18 4 16 27 72 2
27 27

q p r p p q pr pQ
+ − − − +

= − = −  

And the solution 2
3
px W= − +  

0 1,2
2
3
pk k x W= = ± = − +  

3
0 0

0
02

k pk qu
k

+ −
=  

3
0 0

0
02

k pk qv
k

+ +
=  

( )( )2 2
0 0 0 0 0w k w u w k w v+ + − + =  

Then the solutions w in the function (35) are: 

2
0 0 0

1,2
4

2
k k u

w
− ± −

=  

2
0 0 0

3,4

4
2

k k v
w

± −
=  
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Therefore, the solution of t in the function (32) are: 

3
1,2 1,2

44
At w
A

= − +  

3
3,4 3,4

44
At w
A

= − +  

For example, Let’s find the solution of t in the function (39) below: 
4 3 22 3 4 5 0t t t t+ + + − =                    (39) 

2
2 4 3

2
4

8 3 3
8 2

A A Ap
A
−

= =  

2 3 2 3
2 3 4 3 4 1 4 3

3
4

8 3 16 2
16

A A A A A A A Aq
A

− − +
= − =  

3 2 2 2 4 2 4
4 2 3 4 2 3 4 3 4 1 3 4 3

4
4

9128 8 16 6 32 1032
128 16

A B A A A A A A A A A A A A
r

A

+ − + + −
= − = −  

2 12 25
3

p rP +
= − =  

2 327 72 2 30
27

q pr pQ − +
= − = −  

2 3 2 3

3 3 1.14063859
2 2 3 2 2 3
Q Q P Q Q PW        = − + + + − − + ≈       

       
 

2 1 1.14063859 0.14063859
3
px W= − + ≈ − + =  

1
2 0.37501813
3
pk x W= = − + ≈  

3
1 1

1
0

1.8462185
2

k pk qu
k

+ −
= ≈ −  

3
1 1

1
0

3.48685708
2

k pk qv
k

+ +
= ≈  

2
1 1 1

1,2
4

1.18412432 or 1.5591424
2

k k u
w

− ± −
= ≈ −  

2
2 0.37501813
3
pk x W= − = − + ≈ −  

3
2 2

2
2

3.48685708
2

k pk qu
k

+ −
= ≈  

3
2 2

2
2

1.8462185
2

k pk qv
k

+ +
= ≈ −  

2
2 2 2

3,4

4
0.1875091 1.8578744 or 0.1875091 1.857 7

2
 8 44 

k k u
w i i

± −
= = + −  
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Therefore, the solutions of t in the function (32) are: 

3
1,2 1,2

4

0.68412432 or 2.0591424
4
At w
A

= − + ≈ −  

3
3,4 3,4

4

0.3124909 1.85   78744 or 0.3124909 1.8578744
4
A

t w i i
A

= − + = − + − −  

Similarly, if n = 5, the function (26) is equal to the function (40) shows below: 

( )4 3 2 2 3 1 45 10 10 5 0t at a t a t m a+ + + − − =             (40) 

2
22 4 3

2
4

8 3 5
8 8

A A Ap a
A
−

= =  

2 2
32 3 4

3 3
3 3

3
1

4

4 48 3 16 5
16 8

A A A A A A A Aq a
A

− − +
= − =  

3 2 2 2 4 2 4
4 2 3 4 2 3 4 3 4 1 3 4 3

4
4
4

9128 8 16 6 32 2052
128 256

A B A A A A A A A A A A A A
r a m

A

+ − + + −
= − = −  

2
412 104

3 3
p rP m a+

= − = −  

2 3 2 627 72 2 45 25
27 27

q pr p ma aQ − + −
= − = −  

2 3 2 3

3 3

2 2 3 2 2 3
Q Q P Q Q PW        = − + + + − − +       

       
 

2 32 3 6 2 425 45 4 10
2 3 54 54 3 9
Q P a ma m au

      = + = − + −      
       

     (41) 

The value of u in the function (41) must be a integer, therefore,  
2 36 2 425 45 4 10

54 54 3 9
a ma m a   

  +
 

− 
 

−  must be a positive square integer, otherwise, 

the value of w can’t be a rational number. 
Let 4m ka= , k is positive number, then: 

2 3
12 12 2 3 625 45 12 10

54 9
k ku a a aα β− −   = + = +   

   
 

( )2 3 6

2
Q u aα α β− + = − + +  

( )2 3 2 2 3 2 23 3W a a K S aα α β α α β= − + + + − − + = +  

( )2 22 5
3 12
px W a K S a= − + = − + +  

( )0
5

12
k x a K S aγ= ± = ± + − = ±  
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( )
2 2 20

0
0

3
0

5
5 512

2 2 16 16

K Sk pk qu a a a
k γ

+ −+ −
= = + −  

3
0 0

0
02

k pk qv
k

+ +
=  

2
0 0 0

1,2
4

2
k k u

w
− ± −

=  

2
0 0 0

3,4
4

2
k k u

w
± −

=  

3
1,2 1,2

44
At w
A

= − +  

3
3,4 3,4

44
At w
A

= − +  

Obviously, 

( )
( )

2 2 2 2
0

2

0

2

2

5
5 5 5124 4

12 2 16 16

5 5
4 4

K S
k u K S a a a a

a

γ

γ
γ

 + −  − = + − − + −     
 

 
= − − 
 

 

must be a square number, then 
2

2 4
2 5 5 4

4
a γ γ γ
γ

− −    must be a square number, 

( )22 4 2 2 2 2 2 45 5 4 2u v v uv uγ γ γ δ γ γ γ − − = = − = − +           (42). 

Clearly, the function (42) can’t be established, therefore, the value of w is irra-

tional, and the solutions of t satisfy the function in (40) is 5
4

t a w= − +  is irra-

tional. 
In conclusion, if n = 5, the solution of t in function (26) is irrational, thus, the 

Fermat’s Last Theorem is established when n = 5. 
3) Part three: let’s discuss the solution for the random equation of degree 5 

with one unknown, the equation is shown below: 
5 4 3 2

5 4 3 2 1 0A t A t A t A t A t B+ + + + − =               (43) 

The function (43) can be deformed as: 

( ) ( )
( ) ( ) ( )

5 4 2 3 3 2 4 2 3
5 5 3 5

3 2 4
2 5 1 5 5 5

5 10 10 5 10

10 5 0

A t at a t a t a t b A A a t

A A a t A A a t B A b

+ + + + − + − ×

+ − × + − × − − =
     (44) 

and 5 45A a A× = , 4

55
Aa
A

=  

The function (44) can also be deformed as: 
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( ) ( )( )
( ) ( )

5 4 2 3 3 2 4 2 3 2 2
5 5 3 5 3

4 2 2 2
1 5 3 5 5 5 3 5 3

5 10 10 5 10 3 3

5 10 3 10 0

A t at a t a t a t b A A a t ct c t b

A A a A A a c t B A b A A a b

+ + + + − + − × + + −

+     − × − − × × − − − × −  =
 

and 4

55
Aa
A

= , ( ) ( )2 3
3 5 2 510 3 10A A a c A A a− × × = − × , 

( )
3

2 5
2

3 5

10
3 10

A A ac
A A a
− ×

=
− ×

 

We can easily get the value ( )5t , ( )3t  and ( )1t : 

( )
( )

( ) ( )
( )

55
5

33
3

2
5 5 3 5 3

4 2 2
1 5 3 5

5

3

10
1

5 10 3

t a a b

t c c b

B A b A A a b
t

A A a A A a c

 = − + +

 = − + +


− − − ×
=

− × − − × ×

 

In order to make the function (43) to be established, the value of ( )5t , ( )3t  
and ( )1t  must be equal, let ( ) ( ) ( )5 3 1t t t m= = = , then, 

( ) ( ) ( )
( )

5 35 2 3
5 3 5

4 2 2
1 5 3 5

10

5 10 3

B A m a a A A a m c c
m

A A a A A a c

 − + − − − × + −
 
  =

− × − − × ×
     (45) 

The function (45) can be arranged as: 
5 3 2 0w pw qw rw s+ + + + =                 (46) 

m a w+ =  

( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

2
3 5

5

2
3 5

5
22 4 2 2

3 5 1 5 3 5

5
32 4 2 2 5 2 3

3 5 1 5 3 5 5 3 5

5

10

10 3

10 3 5 10 3

10 5 10 3 10

A A ap
A

A A a c a
q

A

A A a c a A A a A A a c
r

A

A A a c a a A A a A A a c B A a A A a c
s

A

 − ×
=


 − × × −
 =

 − × × − + − × − − × × =

  − × − − − × − − × × − − −

 

− × 




 =


 

The function (46) can be deformed as: 

( ) ( )4 2 2 0w w pw r qw s+ + + + =                  (47) 

Let 2w x= , then the function (47) can be deformed as: 

( ) ( ) ( )( ) ( )
( ) ( )
( )( )

2

2 3

1

1

w x px r qx s w qx s x qx s

qx s w x

qw s w w

α β

α β

α β

+ + + + = + + + +

= + + +  

= + + +

        (48) 

If p, r, α, β satisfies the condition (49) below: 

2 2

1

1

q
s r

rs q s q p
q s

s q r pqs

α
β

α β

=
 =

 + = + =


+ =

                   (49) 
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Therefore, if p, q, r, s satisfy the function (49), the solution of the function (48) 
are easy to be found. 

1,2
sw
q

= ± −  

2 3 2 3

3 3
3,4,5 2 2 3 2 2 3

q q qr q q qrw w
s s

       = = − + + + − − +       
       

 

But, if those conditions can’t be satisfied, then the function (46) can’t be de-
formed as function (47), so we can deform the function (46) to function (50): 

( )( )3 2 2 0w dw ew f w dw g+ + + − + =                   (50) 

The unknown number d, e, f, g satisfy the relationship (51) below: 
2e d g p

f de dg q
df eg r

fg s

− + =
− + =

− + =
=








                          (51) 

There are four functions in (51), so we can solve each value of the unknown 
number d, e, f, g, then the solution for the random equation of degree 5 with one 
unknown (50) was found. However, to solve the function (51) is beyond my 
ability, therefore, I leave this puzzle to the clever reader. 

For example, Let’s find the solution of function (52): 
5 4 3 22 3 4 5 6 0t t t t t+ + + + − =                   (52) 

4

5

2
5 5
Aa
A

= =  

( )
3

2 5
2

3 5

84 1010 4125
4 53 10 3 3 10
25

A A ac
A A a

− ×− ×
= = =

 − × − × 
 

 

2
3 5

5

10 7
5

A A ap
A

− ×
= =  

( ) ( )2
3 5

5

10 3 42
25

A A a c a
q

A
− × × −

= =  

( ) ( ) ( )22 4 2 2
3 5 1 5 3 5

5

10 3 5 10 3 357
125

A A a c a A A a A A a c
r

A

 − × × − + − × − − × × = =  

( )( ) ( ) ( )32 4 2 2 5 2 3
3 5 1 5 3 5 5 3 5

5

10 5 10 3 10
7.49056

A A a c a a A A a A A a c B A a A A a c
s

A

− × − − − × − − × × − − − − ×
= −

  =
 

2 7
5

e d g− + =  

42
25

f de dg− + =  
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357
125

df eg− + =  

7.49056fg = −                        (53) 

If we can find the value of d, e, f, g, then the solution for the Equation (52) was 
found. Obviously, the value of d, e, f, g can’t be positive integer, then the solu-
tion t of function (52) can’t be positive integer. 

Similarly, if n = 6, the function (26) is equal to the function (54) shows below: 

( )5 4 2 3 3 2 4 1 56 15 20 15 6 0t at a t a t a t m a+ + + + − − =            (54) 

4

5

6
5 5
Aa a
A

′ = =  

( )

3 3
3

2 5
2

2 23 5

21620 1010 4125
36 153 10 3 15 10
25

a aA A ac a
A A a a a

− ×′− ×′ = = = −
′  − × − × 

 

 

2
23 5

5

10 3
5

A A ap a
A

′− ×
= =  

( ) ( )2
3 5 3

5

10 3 66
25

A A a c a
q a

A

′ ′ ′− × × −
= = −  

( ) ( ) ( )22 4 2 2
3 5 1 5 3 5 4

5

10 3 5 10 3 1047
125

A A a c a A A a A A a c
r a

A

 ′ ′ ′ ′ ′ ′− × × − + − × − − × × = =
 

( )( ) ( ) ( )

( ) ( )

32 4 2 2 5 2 3
3 5 1 5 3 5 5 3 5

5

5 5

10 5 10 3 10

9.77472 3.77472

A A a c a a A A a A A a c B A a A A a c
s

A

a B a m

  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− × − − − × − − × × − − − − ×
=

= − + = − +

 

a  and m are positive integer, if p, q, r, s are positive integer, then the solution t 
of function (54) can be a positive integer. Therefore, 5a k= , k is positive integ-
er, so: 

2 23 15
5

p a k= =  

3 366 330
25

q a k= − = −  

4 41047 5235
125

r a k= =  

( ) ( )5 53.77472 11796s a m k m= − + = − +  

2 215e d g k− + =  

3330f de dg k− + = −  
45235df eg k− + =  

( )511796fg k m= − +                      (55) 
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If we can solve the function (51), then we can find the relationship between d, 
e, f, g and k through function (55), then we can according to the result in Part 
one to judge if the function (54) can have a positive integer solution. 

However, the function (26) can be further transformed to the function (26-1) 

( ) ( ) ( ) ( ) ( )1 3 3 2 12 1 3 1 2 0 1 0n n n n nn
n n n n

mt C a t C a t C a t C a
t

− − − − −− + + + + + − =     (26-1) 

Thus, the function (54) can be deformed to function (56): 
5

4 3 2 2 3 1 4 66 15 20 15 0m at at a t a t a
t
−

+ + + + − =           (56) 

Let 
56m a m

t
− ′= , then we can use the result in Part two to prove the value of 

t in function (56) cannot be a positive integer. What’s more, the function (56) 
can be transformed further to function (57): 

4
3 2 2 1 3 156 15 20 0m at at a t a

t
′ −

+ + + − =            (57) 

Let 
415m a m

t
′ − ′′= , then we can use the result in Part one to prove the value 

of t in function (57) cannot be a positive integer. 

( )3 2 2 1 36 15 20 0t at a t m a′′+ + − − =                (57) 

2
2 2

2
1

3

33 3
3

A A Ap a
A
−

= =  

2 3
33 1 2 3 2

3
3

27 9 2 6
27

A B A A A Aq a m
A

+ − ′′= − = −  

2 3 2 3

3 3

2 2 3 2 2 3
q q p q q pw        = − + + + − − +       

       
 

( )
2 3 2

33 23
2 3 2
q p mu a a

′′     = + = − +     
     

            (58) 

The value of u in the function (58) must be a integer, therefore,  

( )
2

33 23
2

ma a 
 
 

′′
− +  must be a positive square integer, otherwise, the value of w 

can’t be a rational number. 
Let 2m k′′ = , k is positive integer, then: 

( ) ( ) ( )
2

3 2 33 2 3 23 3
2

mu a a a k a
′′ = − + = − + 

 
 

Obviously, if ( )23 2 63a k K a− = , 2 21K R+ = , K and R is a positive integer, 
under this condition, the value of u can be a integer. Then, 2 0,3,8,15,K =  ,

1,2,3,4,R =  , and 3u Ra= ± . However, the value of K must be a positive 
square integer, a positive square integerplus 1 is still a square integer, only when 

2 20, 1K R= =  can satisfy the requirement, then 33k a= , 32 6m k a′′ = = ,
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3u a= ± . 

( ) ( )3 33 30 0 0w a a= + ± + − ± =  

Therefore, the solution of t satisfy the function in (57) is  

2

3

2 2
3
At w a w a
A

= − + = − + = − . However, the  

4
315 6m a m a

t
′ − ′′= =  

56m a m
t
− ′=  

nb m
t
=                            (59) 

According to the 3 equation infunction (59), we can get: 
3 3 4 2 5 16 15 6 0na t a t a t b+ + − =                 (60) 

Substitute 2t a= −  into the function (60), then 0nb = , thus 0b = , this is 
contradictory with 0b > , therefore, the value of t in function (57) can’t be posi-
tive integer, thus, the Fermat’s Last Theorem is established when n = 6. 

Through this method, we can prove the Fermat’s Last Theorem is established 
when n = 6 even we don’t know the solution of equation of degree 5 with one 
unknown, what’s more, we can use the same method to prove the Fermat’s Last 
Theorem is established when n > 6, thus the Fermat’s Last Theorem was proved. 

Use the way we transform the function (26) to function (26-1), we can finally 
transform the function (26) to function (26-2): 

( ) ( ) ( )( )1 2 33 1 2 2 1 3 0n n n
n n nt C a t C a t m C a− − −′′+ + − − =          (26-2) 

( ) ( ) ( )1 2 41 2 4

4 4 5 1

n n n
n n n

n n n
m C a C a C am

t t t t

− − −

− − −
′′ = − − − −  

The function (26-2) is equal to: 

( ) ( )( )3 1 2 2 1 31 1 2
0

2 6
n n n n n

t na t a t m a
− − −

′′
 
+


− − 


+ =     (26-2) 

( ) 21
2
2

2
3

3 33
3 6

n nA A Ap a
A

−−
= =  

( )( )32
3

3
3

31 2 3 2 3 2 327 9 2
27 27

n n nA B A A A Aq a m
A

− −+ − ′′= − = −  

2 3 2 3

3 3

2 2 3 2 2 3
q q p q q pw        = − + + + − − +       

       
 

( )( ) ( )2 32 3
3 23 2 3 3

2 3 54 2 18
n n n n nq p mu a a

− − −   ′′   = + = − +      
       

   (61) 

The value of u in the function (61) must be a integer, therefore,  
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( )( ) ( )2 3
3 23 2 3 3

54 2 18
n n n n nma a

− − −   ′′
∆ = − +   

   
 must be a positive square in-

teger, otherwise, the value of w can’t be a rational number. 
Let 3a s= , 32m ks′′ = , s and k is positive integer, then: 

( )( ) ( )2 3
3 3 23 2 3 3

2 2
n n n n n

u s ks s
− − −   

= − +   
   

 

( )( )3 2 3
2

n n n− −
 and 

( )3
2

n n −
 are integer when n is integer and n > 3. 

Let 
( )3

2
n n

r
−

= , and r is a positive integer ( 2,5,9,14,20,r =  ), then

( )( ) ( )2 33 3 22 3n rs ks rs∆ = − − +  

Obviously, if ( )( )23 3 2 62 3n rs ks K s− − = , 2 3 2K r R+ = , K and R is integer, 
under this condition, the value of u can be a integer. 

( )( )2 3 2 2 3
6 2 3n r k r R K r

s
∆
= − − + += =  

( )( )3 2 2r R K R K R K= − = + −  

Let ( )
2rR K

m
+ = , then ( )R K mr− = , 

R, k and r are integer, then m Q∈  
2

2rR mr
m

 
= + 
 

 

2

2rK mr
m

 
= − 
 

 

2
3 3 3 33 3

2 2
w q q ru u K R K R mr
s m
= − + + − − = − + + − − = + −  

Only if 
3Nm

r
= − , N is integer but 0N ≠ , ( )3

2
n n

r
−

= , then 

( )3
2

n nw rN N
s N N

−
= − + = − +  is rational, then  

( )3
3 2

n nnt a w n N s
N
− 

= − + = − − + 
 

 can be integer. 

( ) 332 33 3
2

2 2 2

n nrr NNmr NNmR

−   ++  +  
   = = − = −  

( ) 332 33 3
2

2 2 2

n nrr NNmr NNmK

−   −−  −  
   = = − = −  

The value of N must be the factor of r, thus the value of R, K could be integer. 
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For example, if n = 7, ( )3
14

2
n n

r
−

= =  

3
314

2

N
NR

  + 
 = −  

If N = 1, 2, 7, 14, 
3

314 N
N

  + 
 

 is an odd number; 

If N is integer and 0N ≠ , 1, 2, 7, and 14, 
3

314 N
N

  + 
 

 is a fraction number, 

therefore, 

3
314

2

N
NR

  + 
 = −  can not be a integer, which is contradictory with R 

is a integer. Thus 
3Nm

r
≠ −  and w

s
 is irrational, s is integer, the value of w  

is irrational, then the value of t in function (26-2) can’t be positive integer when 
n = 7, so the Fermat’s Last Theorem is established when n = 7. 

Similarly, if n = 8, ( )3
20

2
n n

r
−

= =  

3
320

2

N
NR

  + 
 = −  

If N = 1, 2, 4, 5, 10, 20, 
3

320 N
N

  + 
 

 can be a integer, but only N = 2, 10, R 

can be a integer. 
When N = 2 or 10, R = −504, in other condition, R is not a integer. 

( )( ) ( )

3
320

2 3 260 496
2

N
NK n r k k

  − 
 = − − = − = − = ±  

( ) ( )2 23 2 2 320 504 496r R K= − = = − − ±  

8w rN
s N
= − + = ±  

( )3
3 2

n nnt a w n N s
N
− 

= − + = − − + 
 

 

When N = 2, ( )8 2 10 0 0t s s= − − + ∗ = ∗ =  
When N = 10, ( )8 10 2 16 0t s s= − − + ∗ = − ∗ <  
which is contradictory with t is a integer and 0 < t < b. so the Fermat’s Last 

Theorem is established when n = 8. 

If n = 9, ( )3
27

2
n n

r
−

= =  

3
327

2

N
NR

  + 
 = −  
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If N = 1, 3, 9, 27, 
3

327 N
N

  + 
 

 can be even number, and R can be a integer. 

N = 1, R = −9842, 9841K = − , 26w
s
= , 17t s=  

N = 3, R = −378, 351K = − , 6w
s
= , 3t s= −  

N = 9, R = −378, 351K = , 6w
s
= , 15t s= −  

N = 27, R = −9842, 9841K = , 26w
s
= − , 35t s= −  

Only if N = 1, 17t s=  satisfies the condition. What’s more, we have to verify 
if the value of b is integer or not. 

( )( )2 3 9841K n r k= − − = − , 10246k =  

3 32 20592m ks s′′ = =  
( ) ( ) ( )1 2 41 2 4

4 4 5 1

n n n
n n n

n n n
m C a C a C am

t t t t

− − −

− − −
′′ = − − − −  

nb m
t
= , 3a s= , 9n = , 17t s= , then: 

( )
( )
( )

( )
( )

( )
( )

( )
( )

( )8 7 6 5 49
3

6 5 4 3 2 1

9 3 36 3 84 3 126 3 126 3
20592

(17 )17 17 17 17 17
s s s s sbm s

ss s s s s
′′ = − − − − − =  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

8 7 2 6 39

5 4 4 5 63

9

9 3 17 36 3 17 84 3 17

126 3 17 126 3 17 20592 17

514413737217

b s s s s s s

s s s s s s

s

∗ ∗ ∗

∗

= + +

+ ∗ ∗+

∗

+

=

 

9 514413737217b s=  

s is a positive integer, thus b is irrational, which is contradictory with b is a in-
teger. Therefore, the Fermat’s Last Theorem is established when n = 9. 

If n = 10, ( )3
35

2
n n

r
−

= =  

Only if N = 1, 24t s=  satisfies the condition. 
Use the same way to verify if b is a integer or not when N = 1, 24t s= , 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

9 1 8 2 7 310

6 4 5 5

4 6 73

10

10 3 24 45 3 24 120 3 24

210 3 24 252 3 24

210 3 24 44064 24

205891132035600

b s s s s s s

s s s s

s s s s

s

= + ∗ ∗

∗ ∗

∗

+ +

+

= ∗

+

+ ∗
 

10 205891132035600b s=  

s is a positive integer, thus b is irrational, which is contradictory with b is a in-
teger. Therefore, the Fermat’s Last Theorem is established when n = 10. 

The values of b satisfy the condition under different n is concluded in the Ta-
ble 1. 

Table 1 indicated that if 2 < n < 21, in order to have a positive integer solution  
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Table 1. The value of b under different n. 

n r N k t b 

3 0 none    

4 2 none    

5 5 1 97 −s  

6 9 1 445 2 s 6 14896s  

7 14 none    

8 20 
2, 
10 

756, 
−236 

0, 
−16 s 

 

9 27 1 10,246 17 s 9 514413737217s  

10 35 1 22,032 24 s 10 205891132035600s  

11 44 2 6156 9 s 11 743008193541s  

12 54 none    

13 65 1 138,807 51 s 13 33198531813531451984941s  

14 77 1 230,191 62 s 14 461540731532546208768008s  

15 90 none    

16 104 
2, 
4 

73,316, 
11,772 

34 s, 
6 s 

16 12337511914217166319227520s  
16 1853020145805120s  

17 119 1 846,268 101 s 17 19479004955562800041143429455772221s  

18 135 
1, 
3, 
5 

1,234,642, 
50,004, 
14,234 

116 s, 
24 s, 
4 s 

18 23015822943866122205667120134071432s  
18 58149737003040059302969680s  

18 1628413210489960s  

19 152 
2, 
4 

224,804, 
32,724 

55 s, 
15 s 

19 3199866632452173458088314772999205s  
19 708235345355336514096165s  

20 170 none    

Note: “none” means there is no integer of N to make 

3
3

2

r N
NR

  + 
 = −  and 

3
3

2

r N
NK

  − 
 = −  to be 

integer. 

 
of t in function (26-2), the value of b cannot be a integer (Although the value of 
b is very close to a integer), which means b and c(c = a + t) in function (1) can 
not be integer at the same time, thus the Fermat’s Last Theorem is established 
when 2 < n < 21. 

Use the same way, we can easily prove the Fermat’s Last Theorem is estab-
lished under different indices n. 

4) Part four: The conclusion of Section 2.3 
In order to prove the value of c satisfies the function (1) can’t be positive in-

teger when a, b, and n are positive integer and n > 2, in this section, we find the 
solution for the random equation of degree n with one unknown (when n = 3 
and 4), and proved that the Fermat’s theorem was established at n = 3, 4 and 5, 
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the solution for the random equation of degree 5 with one unknown is hard to 
be found, if we find this solution, we can prove that the Fermat’s theorem was 
established at n = 6. Therefore, if we want to prove the Fermat’s theorem, we 
have to find the solution for the random equation of degree n with one unknown, 
then we can solve the certain function (26) 

( ) ( ) ( ) ( )1 2 2 11 1 2 1 1 0n n n nn
n n nt C a t C a t C a m− − − −− + + + + − =          (26) 

has no positive integer solution, thus the Fermat’s theorem was proved. 
However, if we can’t find the solution for the random equation of degree n 

with one unknown when n > 4, we can transfer the function (26) into (26-2) 
( ) ( ) ( )( )1 2 33 1 2 2 1 3 0n n n
n n nt C a t C a t m C a− − −′′+ + − − =          (26-2) 

( ) ( ) ( )1 2 41 2 4

4 4 5 1

n n n
n n n

n n n
m C a C a C am

t t t t

− − −

− − −
′′ = − − − −  

thus we proved the Fermat’s Last Theorem is established when n = 3, 4, 5, ……, 
20 in this section, and in this method, we can also prove the Fermat’s Last Theo-
rem is established when n > 20, then the Fermat's theorem was proved. 

3. Extension of Fermat’s Last Theorem 

Based on the Fermat’s Last Theorem, I put forward another extension theorem: 

1 2
1

i k
n n n n n
i k

i
a a a a b

=

=

= + + + =∑                     (E-1) 

1 2
1

i n
n n n n n
i n

i
a a a a b

=

=

= + + + =∑                     (E-2) 

When n is integer and 2n > , to satisfy the function (E-1) and (E-2), 

21, , , ka a a  ( 2,3,k =  , when k = 2, function (E-1) is equivalent to the Fer-
mat’s Last Theorem)and 21, , , na a a  ( 3,4,n =  ) and b can’t be positive in-
teger at the same time. 

The function 3 3 3 3
1 2 3a a a b+ + =  has positive integer solution, so the key of the 

extension theorem is to find: under what conditions, the function (E-1) and (E-2) 
have no positive integer solution? 

4. Conclusions 

In this paper, I proposed an easy way to prove the Fermat’s Last Theorem 
through a geometric method, and I found the relationship between  

( )nn n na b c a t+ = = +  and the solution t for equation of degree n with one un-
known, then I found the solution when n = 3 and 4. If we can’t find the solution 
of function (26) when n > 5, 

( ) ( ) ( ) ( )1 2 2 11 1 2 1 1 0n n n nn
n n nt C a t C a t C a m− − − −− + + + + − =         (26) 

nbm
t

=  

We can transfer function (26) to (26-2) 
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( ) ( ) ( )( )1 2 33 1 2 2 1 3 0n n n
n n nt C a t C a t m C a− − −′′+ + − − =          (26-2) 

( ) ( ) ( )1 2 41 2 4

4 4 5 1

n n n
n n n

n n n
m C a C a C am

t t t t

− − −

− − −
′′ = − − − −  

In this way, we can easily prove the Fermat’s Last Theorem is established un-
der different indices n, and the value of b that make c = a + t to be a integer un-
der different n is: 

When n = 3, 3 32 0b ks= =  
When n > 3, 

( )
( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( )

1 1 2 21 2

4 4 34 3

    

       

3 3

3 2

nn n

n nn n
n n

n n
n

b Bs s

C s t C s t

C s t ks t

ζ
− −− −

− −

= =

= +

+ + ∗ + ∗

 

( )( )
( ) 3

33
23 2 3

2 2

n n
N

Nn n n
k

− 
+ 

− −  = +  

( )3
2

n n
t n N s

N
− 

= − − + 
 

 

Nis the factor of 
( )3

2
n n

r
−

=  that can make kand t to be a positive integer, s 

is a positive integer. n Bζ =  is irrational that very closing to a integer, thus 
b sζ=  cannot be a positive integer. 

Therefore, the function n n na b c+ =  can be established only under the fol-
lowing conditions: 

1) When 0θ = , a b c+ = , n = 1 

2) When 
2

θ =
π , 2 2 2a b c+ = , n = 2 

3) When n > 2, a , b, c are more than 0 and a  > b: 0,
2

θ  π ∈ 
 

, 

n n na b c+ < , arcsin ,
2 2

b
a

θ  ∈ + 


π


π , n n na b c+ > , under this condition, the 

function n n na b c+ =  cannot be established. , arcsin
2 2 2

b
a

θ  ∈ + 


π



π
, there is 

possible to make n n na b c+ = , but the value of a , b and c can’t be positive in-
teger at the same time 
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