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ABSTRACT 

The solution of a nonlinear elliptic equation involving Pucci maximal operator and super linear nonlinearity is studied. 
Uniqueness results of positive radial solutions in the annulus with Dirichlet boundary condition are obtained. The main 
tool is Lane-Emden transformation and Koffman type analysis. This is a generalization of the corresponding classical 
results involving Laplace operator. 
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1. Introduction 

We study the nonlinear elliptic equation 
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0 ,

             (1) 

where    M ,

  is Pucci maximal operator, the 

potential f is super linear with some further constraints. 
Using i , 1, ,i n   2 ,D u

M
 to denote the eigenvalues of  

then explicitly, the Pucci operator ,
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.
i i

i i
 

 is given by  

 2u,M D  
 

     

For more detailed discussion, see for example [1,2]. 
This equation has been extensively studied, see [3-5], etc. 
and the references therein. 

Normalize   to be 1  for simplicity. We will in this 
paper investigate the uniqueness of  positive radial 
solution of (1) in the annulus 
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with Dirichlet boundary condition. In this case, Equation 
(1) reduces to  

     1
0, ,

n
u u r u u r f u r a b
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, for > 0,
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where  
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Throughout the paper, we assume  Note that 
 Now we could state our main results.  

Theorem 1. Suppose 
b

a
 is small enough and  

   > > 0 for > 0.tf t f t t  

Then (2) has at most one positive solution with Di- 
richlet boundary condition.  

If instead of the smallness of 
b

a
,

 we assume further 

growing condition on f  then we have the following  

Theorem 2. Suppose that for ,  > 0t
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where  

 
 
2 1 2 2

max 1, .
2 1 2

n

n


              

= 1,

 

Then (2) has at most one positive solution with Di- 
richlet boundary condition.  

In the case   the Pucci operator reduces to the 
usual Laplace operator, and the corresponding unique 
results are proved by Ni and Nussbaum in [6]. 

We also remark that the above theorems could be 
generalized to nonlinearities ,f  which also depends on 

 We will not pursue this further in this paper. .r

2. Lane-Emden Transformation and  
Uniqueness of the Radial Solutions 

2.1. Proof of Theorem 1 

We shall perform a Lane-Emden type transformation to 
Equation (2). Let us introduce a new function 
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where s r  with  

 1 0.n  

w

: 1    

Then  satisfies  
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where we have denoted  

     
  

1 1
: 0,

r n 
 

   , = , .

u r u
m s
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and 1 2s s b a   Note that m may not be con- 
tinuous at the points where  or   = 0u r   = 0.u r

 2= = 0.w s

 
Additionally, if  and  then  

 
  < 0u r   > 0,u r

  = 0.m s
Lemma 3. Let w be a positive solution of (3) with 

1  Then there exists  w s  1 2,s s s  such 
that   = 0,w s  and  

   > 0, in ,1 ,s sw s  

   10, in , ,s s

 1 2, ,

w s 

  = 0w 

 

Proof. If  for some s s 

 

 then  
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> 0,d

1w ms w    


 

The conclusion of the lemma follows immediately 
from this inequality. ■ 

Given  the solution of (3) with   = 0,w s
 1 =w s d 

.d

1  
and  will be denoted by . Let  ,w s d

 , , s d w  s d  

By standard argument, we know that positive solution 
of (3) with Dirichlet boundary condition is unique if we 
could show that  

 2 0, 0,s d   

whenever  is a positive solution to (3) with 
 

 ,w s d0

 0, , 0.w s d  1 0d 2

The functions 
w s

  and  satisfy the following equa- 
tions: 

w
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 1 1s  . 
t Now le 0d  be a positive constant such that 0,w s d  

is  so a positive lution to (3) with    2 0, 0d 1 0,w s d w s . 
To show that  2 0, 0s d  , let us  0, d first prove that    
must vanish at  in the interval  1 2, . some point s s  
following, we write 

 In the
 0,s d  simply as  .s  

xists Lemma 4. There e  1 2,s s  
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he functioProof. Let us consider t n  
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We remark that 1  is indeed not everywhere differ-
en ntiable, since m is ot continuous. It however could be 
shown that the jump points of m are isolated. Here by 

1 , we mean the derivative of 1  at the point where it 
differentiable. The same rem rk applies to the func-

tions 2

is a
  and 3  below. 

Now if   0s   for  1 2, ,s s s  then  

   .1 1 20, ,s s s s 

Since 

   

 1 1 0,s  we infer that  

 1 2 0.s   

It follows that  

   2 2 0.w s s   

This is a contradiction, since  2 0w s   and  
 2 0s  . ■ 

e ab


With th ove lemma at hand, we wish to show that 
in the interval  1 2, ,s s    vanishes at only one point ξ. 
For this purpos s efine functions  e, let u  d  :g s w s  
and      1: .h s s s w s   Put  

        2 : ,m ms s g s s g s      s s

         3 : ,m ms s h s s s s h s      

and 
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Lemma 5. We have  
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  1, ,Proof. Differentiate the Equation (3) with respect to s 
gives us 

2, .s  Note that in 
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As to the function h, there holds  
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It follows that 
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■ 
Now we are ready to prove Theorem 1. 
Proof of Theorem 1. We nee hat 

  

d to show t  2 0s  . 
We first of all claim that the first zero   of   in 

 21, ss  must stay in   the interval  , ,2s s  where s  
gi  that  

is 
ven by Lemma 3. Suppose to the contrary
 1, .s s  By (5) using the fact that 0,m   we find  

that if 
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a
small enough, then in the interval  is  1, ,s   
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 3 1 0,s   we find that  
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Now the first z

h s
  of   lies in  2, ,s s  If  

 2s  th  the s  10 en econd zero   of   lies in 

   .m  Therefore, by 
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= 0
tity (4)  

 2 0.ss      

This together with  

      g    0g       

implies that  

       1 1 1 < 0g g       

bu ith  1 0   ,  1 0   , and 

1

t this contradicts w
 1 < 0.g   This finishes the proof. ■ 

 Theorem 2 

Similar arguments as that of Theorem 1 cou used to 
e, we shall make the f

ng t ansfo

2.2. Proof of

ld be 
prove Theorem 2. In this cas ollow-
i r rm: 
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With this transformation, in the interval  1 2,s s  
 b,a  , w satisfies  
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By the definition of , ,   one could verify at 

2 0.m   Note that 1m  and 2m  are step functions and 
not continous. 

Let 

th

 ,w s d  be the solution of (8) with  1, 0w s d   
and  1,sw s d d . Now similar as in the proof of Theo-
rem  1, we suppose 0,s d
w dit

w w  is a positive solution 
ith Dirichlet boundary con ion and  0,d w s d   . 

We have the following lemma, whose proof will be 
omitted.  

Lem here exists ma 6. T  1 2,s s s  such that  
  0w s  , and  

   10, in , ,w s s s   
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   20, in , .w s s s   
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With this lemma at hand rve that by (8, we obse )  
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From this we infer that the function   must change 
sign in the interval  1 3, ,s s  similar as that of Theo m 
1. 
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Now let us define  
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