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ABSTRACT

By means of a characterization of compact spaces in terms of open C -filters induced by a D < C*(Y), a - and open
Cy, -filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding Y as a
dense subspace of (Y, Ig) or (YTW, Jp), where YSW =Yg U Ys, YTW =Yg U Y1, Y= {N,N, is a ,-filter, x € Y}, Y5
= {€€ is an open C] -filter that does not converge in Y}, Y1 = {A|A is a basic open C}, -filter that does not converge in
Y}, Jg is the topology induced by the base B = {U*U is open in Y, U # ¢} and U* = {F € Y, (or Y,)|U € F}.
Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X can be obtained from a D < C*(X)

by the similar process in Sec. 3.

Keywords: Net; Open Filter; Open C{, -Filter Base; Basic Open C{, -Filter; Open Cp -Filter; -Filter; fo,-Filter;
Tychonoff Space; Normal T;-Space; Compact Space; Compactifications; Stone-Cech Compactification;

Wallman Compactification

1. Introduction

Throughout this paper, [T]" denotes the collection of all
finite subsets of the set T. For the other notations and ter-
minologies in General Topology which are not explicitly
defined in this paper, the readers will be referred to the
Ref. [1].

For an arbitrary topological space Y, let C*(Y) be the
set of bounded real-valued continuous functions on Y, D
< C*(Y). It is shown in Sec. 2 that there exists a unique
rr € CI(f(Y)) for each fin D such that for any H € [D]"®,
£>0, Npenf ' ((rr— &, 1p + 8)) # ¢ Let V, ={mpeuf (15— &,
17+ €)|[Neenf ' ((tr — &, 1p+ €)) # ¢ for any H € [D]"°, & >
0}. V., is called an open C}, -filter base. An open filter &,
on Y containing an open C -filter base V, is called an
open Cp -filter. An open filter A; on Y generated by an
open C, -filter base V. is called a basic open C[ -filter.
By a characterization of compact spaces in Sec. 2 and the
$- and open C{ -filters process of compactifications in
Sec. 3, Y can be embedded as a dense subspace of (YSW,
Jg) or (Y,, Ig), where Y =Yr U Ys, YY) =Ye U
Y1, Ye = {NyN, is a @,filter, x € Y}, Y5 = {£|€ is an
open Cp -filter that does not converge in Y}, Y1 = {A|A
is a basic open C| -filter that does not converge in Y},
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Jg is the topology induced by the base B = {U*|U = 4,
Uisopenin Y} and U* = { F e Y" (or Y)|U € F}.
Furthmore an arbitrary Hausdorff compactification (Z, h)
of a Tychonoff space X can be obtained from a D <
C*(X) by the similar process in Sec. 3.

2. Open Cj-Filters and a Characterization
of Compact Spaces

Let Y, C*(Y) and D be the sets that are defined in Sec. 1.

Theorem 2.1 Let F be a filter on a topological space Y.
Foreach f € D, there exists a r; € CI((Y)) such that f'((r;
—er+e)NF=gforany F e F and any € > 0. (See
Thm 2.1 in the Ref. [2, p. 1164].)

Proof. If the conclusion is not true, then there is an f
D such that for each r, € CI(f(Y)), there exist an F, ¢ F
and an g > 0 such that F, N f'((r,— &, 1, + &)) = ¢. Since
CI(f(Y)) is compact and CI(f(Y)) c U{(r,— &, 1, + &)Jr, €
CI(f(Y))}, there exist 1y, ‘-, r, in CI(f(Y)) such that Y =
£ CIRY)) =u{f ((ri—e, 1+ &))i=1, ~,n}. Let F, =
N{F|i=1,,n}, thenF, € Fand F,=F, " Y < U{[F;
N —e, 1+ e))]i=1, -+, n} = ¢, contradicting that ¢
¢ F. o

Corollary 2.2 Let Q be an open ultrafilter on Y. For
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each f € D, there exists a unique ry € CI(f(Y)) such that (1)
forany H € [D]°°, any £ > 0, Nenf ' ((r;— &, 17+ €)) € Q
and (2) for any H € [D]°°, any &> 0, Neepf ' ((tp— &, 1+ £))
# ¢ (See Cor. 2.2 in the Ref. [2, p. 1164].)

Therefore, for a given open ultrafilter Q, Q contains a
unique open filter base V, = {Neuf '((r; — &, 17 + £))|
Aeenf ' ((ry— &, 10+ €)) # pfor any Hin [D]"°, &> 0}. V, is
called an open C; filter base. An open filter € on Y
containing an open C[ -filter base V, is called an open
C; filter. An open filter A, on Y generated by an open
Cp, -filter base V, is called a basic open Cp, -filter. For
each f € D, if ry = f(x) for an x in Y, then V, and A, are
called the open C; -filter base and the basic open
C; filter at x, denoted by V, and A, respectively.

Definition 2.3 Let L be a family of continuous functions
onY. Anet {x;} inY is called a L-net, iff {f(x;)} converges
foreach fe L.

Theorem 2.4 Let L be a set of continuous functions on
Y. Then Y is compact iff (1) AY) is contained in a com-
pact set C for each fin L, and (2) every L-net has a cluster
pointinY.

Proof. Let {x;} be an ultranet in Y. For each f in L,
{f(x;)} is an ultranet in Cg, hence converges in Cg; i.e., {X;}
is a L-net. (2) implies that {x;} has a cluster point x in Y.
Since {x;} is an ultranet, {x;} converges to x. Thus, Y is
compact. The converse is obvious. O

Corollary 2.5 Let D < C*(Y). If every D-net converges
inY, then'Y is compact.

Definition 2.6 If F is a filter on Y, let A7 = {(x, F)|x €
F € F}. Then A is directed by the relation (x,, F) < (X2,
F,) iff Fy, cFy, so the map P: Ag — Y defined by P(x, F)
= x is a net in Y. It is called the net based on F. (See
Def.12.16 in the Ref. [1, p. 81].)

Corollary 2.7 If F is a filter on Y, {P(x, F)} is the net
based on F, then F = {S c Y|P(x, F)} is eventually in S}.
(See L2) in the Ref. [3, p. 83].)

Lemma 2.8 Let D < C*(Y). 1) For each open
Cp, -filter &, let V,, as the V, defined in Section 1, be an
open C! -filter base such that V, c €. Then the net {x}
based on & is a D-net such that lim{f(xp)} =1 for each f €
D. 2) For each D-net {x;} in Y, {X;i} induces a unique
open C[ -filer base V{x;} on'Y.

Proof. 1) By Cor. 2.7, {xg} is eventually in f™'((r;— &, ¢
+¢)) e V,c € foreach f € D and any & > 0. Thus lim {f(xf)}
=r¢foreach f € D;i.e., {xp} is a D-net. 2) Let {x;} be a D-
net. For each f e D, let t;=lim{f(x;)}. Then Meenf ' ((t;— €,
tr+€)) # ¢ for any H € [D]"°, any € > 0. Let V{x;} =
{Opef ((te— &, te + &) Peenf ' ((tr— &, te+ €)) # ¢ for any
H € [D]"®, ¢ > 0}, then V{x;} is an open C_, -filter base
on Y. Since t; is unique for each f € D, thus V{x;} is
uniquely induced by {x;}. O

Theorem 2.9 Let D < C*(Y). Then, 1) and 2) in the
following are equivalent: 1) Every D-net converges in'Y.
2) Every open CF -filter € converges in Y.
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Proof. 1) = 2) is obvious by Lemma 2.8 1) above and
Thm. 12.17 (a) in the Ref. [1, p. 81]. For 2) = 1): Let {x;}
be a D-netin Y, let F = {O|O is open and {x;} is eventu-
ally in O}. Clearly, & is an open filter. For each fin D, let
te = lim{f(x;)}, then {x;}is eventually in 1((tf —¢g, tr+¢g))
for any € > 0; i.e., for each fin D, any € > 0, fl((tf— g, tpt+
g)) € F, so F is an open Cj -filter. 2) implies that F
converges to a point x. Thus, for any open nhood Uy of x,
U, € F;i.e., {x;} is eventually in U,. So {x;} converges to
X. O

Corollary 2.10 If every open C -filter & on Y con-
verges in Y, then' Y is compact.

3. An Open C[ -Filter Process of
Compactification

For each x € Y, let N = {{x}} U {O]O is open, x € O}.

N, is a g-filter (See 12E. in the Ref. [1, p. 83] for its
definition and convergence.) with ¢ =Ny. Foreachx €Y,
N, is called a @ -filter. Let Yg = {N4x|Ny is a fo,-filter, x €

Y}, Ys={€|€isanopen C; -filter that does not converge
in Y}, Yr={A|A is a basic open C], -filter that does not
convergein Y}, Yo' =YguU Ysand Y} =Y U Yr.

Lemma 3.11 For each F € Y’ (or Y,"), there is a
unique r; € CI(f(Y)) for each f € D such that f\(ry— &, re+
g)eV.cF foralle>0.

Proof. If & = N, for an x € Y, then for each f € D,
fl((rf— g, 17+ ¢)) € V, < N, for all € > 0, where rp= f(x). If
F =& (or A), then there is an open C; -filter base V,, as
the V; defined in Sec. 1, such that for each f € D, fl((rf— g,
r;+¢€)) € V. < € (or A) for all & > 0. The uniqueness of r¢
for each f € D follows from Cor. 2.2. o

Definition 3.12 For each open set U # ¢ in Y, define
U*s={Fe Y, (or Y,)U e F}.

Lemma 3.13 1) Forany opensetUin Y, U # ¢ & U* #
$2)U=Y < U*=Y" (or Y,); and 3) for any F in
Y. (or YY), any open set U= ¢gin Y, F e U* < U e F.

Proof. 1) If U= ¢, pickanx € U, then U € N, = N, €
U*;ie,U*= @ IfU* = ¢, pickaF € U* thenU € F =
U # ¢. 2) and 3) are obvious from Def. 3.12. o

Lemma 3.14 For any two nonempty open sets S and T
inY,)ScTiff S*cT*,and2) (SNT)*=S*NTH* if
SNT=¢

Proof.1): (=) FeS*=>SeF=>TeF=>F e T
(<):SET=thereisaye (S-T)=N, e (S*-T*) =
S* & T*,2): By 1) above, (SN T)* = S* N T* If F e S*
NT* thenS e F, Te FandSNT e F;ie,Fe (SN
T)* o

Proposition 3.15 B = {U*|U = ¢is an open set in Y} is
a base for YSW (or Y.

Proof. For (a) in Thm. 5.3 in the Ref. [1, p. 38]: For
eachF e Y,y (or Y,'),pickaO e F. ThenO = ¢, F
O* and O* € B. Thus Y’ (or Y') = U{U*|U* e B}.
For (b): IfF € S* N T* for S*, T* € B, then S, T € F, ¢
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28NTedF,SnT*eBandF e (SNT)* =S*NT*
eB. o

Equip Yy (or Y,") with the topology induced by B.
For each fin D, define f*:Y;" (or Y,') — R by f*(F) =1y,
iff'((rf— g, 1;+¢g)) e Vi F foralle>0. By Lemma 3.11,
for each f € D, f* is well-defined and £*(Y,") (or £*(Y,")
c CI(f(Y)), thus f* is a bounded real-valued function on
Y, (or Y,") such that f*(N,) = f(x) for all x € Y.

Proposition 3.16 For each fin D, let t € CI(f(Y)). For
any 8, e with0<3<eg, 1) [f'(t—8,t+d)]* < P '((t—e,
t+8)),2) P((t— 5, t+8)  [F((t-6, tHe))]*.

Proof. 1): IfF e [f'((t— 8, t+ 8))]*, then f'((t— 5, t +
3)) € F.IfFP*(F)=e, thenf'((e—y,e+7)) € F forally>
0.Since f'(t—8,t+8) N(e—y,e+vy) =" ((t—38,t+3))
Nf'((e—v,e+v)) e Fforally>0,s0 (t—3,t+8) N (e
—v,e+7y)# ¢ forally>0. Thus P*(F)=e e [t— 5, t+5] =
(t—e t+e)ie,Fef'(t—et+e) 2): IfF e P ((t
—g,t+eg)),then (F)=s e (t—e t+e)and f'((s—v,s+
) € F forally > 0. Pick p > 0 such that (s — p, s + p) = (t
—gt+e). ThenS=f'((s—p,s+p)cf'(t—¢t+¢))
andS € F. Thusf'(t—¢e,t+¢)) e Fiie, F e[ (t—¢,
t+e))l*. o

Proposition 3.17 For each f € D, t* is a bounded real-
valued continuous function on Y, (or Y,').

Proof. For any F € Y (or Y;"), let £*(F) = t. We
show that for any € > 0, there is a U* € B such that F e
U*c P (t—e t +g)). Let U=f"((t— /2, t + &/2)).
Since f'((t—v, t +y)) € F forall y>0. Thus, U=f"'((t —
e/2,t+¢/2)) e F;ie.,F € U* ByProp.3.16 1), F € U*
c P7'((t — &, t + g)). Thus f* is continuous on Yg' (or
YY), o

Lemma 3.18 Let k: Y — Y (or Y,') be defined by
k(x) =N,. Then, 1) k is well-defined, one-one and k™' (U*)
= U for all nonempty open set U inY and all U* € B; i.e.,
k is continuous; 2) t* o k =ffor all f € D; 3) k(Y) is dense
in Yg' (or Y.

Proof. 1) Forany x,yin Y, x=y < Ny=N,, thusx #y
<> Ni # Ny, so k is well-defined and one-one. For any U*
€ B, by Def. 3.12 and Lemma 3.13 1), U* # ¢, U is open,
U # ¢. So (a): x € k '(U¥) & (b): N, = k(x) € U*. By
Lemma 3.13 3), (b) < (c): U € N,. By the setting of N, (¢c)
< (d): x € U. Thusk '(U*)=U forall U* € B, U # gand
UisopeninY;i.e, kis continuous. 2) is obvious from (f*
o k)(x) = f*(N,) = f(x) for all x in Y and all fin D. 3) For
any U* € B, picka F € U*, then U € F and U = 4. Pick
anx € U, by 1) above, x € U< k(x) € U*;i.e, k(x) € U*
N k(Y) # ¢. Hence k(Y) is dense in Y," (or Y,'). O

Let D* = {f¥|f € D}. Then, D* < C*(Y,") (or C*(Y,")).

s

For each open C*p.-filter £* on Y, (or Y;'), let V, =

t
(PP ((te = &, to+ &) el (o — &, te +8)) # @
for any H* € [D*]"®, & > 0} be the open C/.filter base
on Yy (or Y;")suchthat V, < &;. Since f*ok="f, kis
one-one and k(Y) is dense in Y' (or Y;'), s0 k(Mepuf™

((to — &, to + €)= [NprersP ' (te — &, to + €))] N K(Y) 2
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¢ for any H* e [D*]"°, H = {f € D|f* € H*} and any & >
0. Thus V= {"yeuf ' ((t — &, to + €)|Mpenrf ™ (tp — €, toe +
€)) # ¢ for any H € [D]"°, € > 0} is a well-defined open
C,, -filter base on Y. Let £5= {U < Y | U is open, U = ¢
and U* € E’f} and L7 = A,, the basic open CB -filter
generated by V,. Since €] is a filter, clearly, by Lemma
3.14, £ is an open filter on Y.

Lemma 3.19 L is an open C[ -filter on'Y.

Proof. Forany H € [D]"®, &> 0, let H* ={f*/f € H}, O
= Npenf ((tp — &, tp + €)) and P = Myl (b — &, tpe +
g)). Then ¢ # P € V, c &, . By Lemmas 3.13, 14 and
Prop. 3.16 2),P c O*, ¢ O* € £,,0 # ¢ and O € Ls.
This implies that V, < £s. O

Theorem 3.20 (Y,", k) is a compactification of Y.

Proof. Case 1: If L£g converges to a point p in Y. Let U
be any open set in Y such that k(p) € U* € B. By Lemma
3.181),p € U=k '(U*), thus U € Lg; i.e., U* € &, . This
implies that €| converges to k(p) in Y,'. Case 2: If L
does not converge in Y, then £5 € Y,'. For any U* in B
such that £ € U*, U € Lg and therefore U* e 5?. This
shows that € converges to £Lsin Y,'. By Cor. 2.10, Y
is compact and by Lemma 3.18 3), (Y', k) is a compac-
tification of Y. o

Lemma 3.21 For each open set U € L= A, U* e gt .

Proof. If U € A,, then there exista H € [D]"®, ane> 0
such that E = mfegf'((tpk —¢g txte) e Viand E c U.
Lemma 3.14 and Prop. 3.16 2) imply that F = Mg cppef* !
(tx—e, tp+te) cE¥*cU*and F € E’f. Thus, U* € 5:.
m

Theorem 3.22 (Y,', k) is a compactification of Y.

Proof. Case 1: If £1 = A, converges to a point p in Y,
let U be any open set in Y such that k(p) € U*, Lemma
3.18 1) implies that p € U, thus U € £7 = A, So by
Lemma 3.21, U* e €. This implies that €, converges to
k(p) in Y,". Case 2: If £1 = A, does not converge in Y,
then £1=A, € Y, . Forany U* € B such that A, € U*, U
€ A, and by Lemmas 3.21, U* € €;. Thus &, converges
to £1 = A, in YTW . Cor.2.10 implies that YTW is compact
and by Lemma 3.18 3), (Y,", k) is a compactification of Y.
m

4. An Arbitrary Hausdorff Compactification
of a Tychonoff Space

For an arbitrary Hausdorff compactification (Z, h) of a
Tychonoff space X, let D = {fif="fo h, °f € °D = C(Z)}.
Then D < C*(X), D separates points of X and the
topology on X is the weak topology induced by D. For
each x € X, let V,, as the V, defined in Section 2, be the
open Cj -filter base at x induced by D. Obviously, we
can easily get Lemma 4.21 as follows:

Lemma 4.21 Gp = U{V,|x € X} is a base for the
topology on X and for each x € X, Vy is an open nhood
base at x.

APM



H.J. WU, W.-H. WU 299

Let XV = {A|A is a basic open Cp, -filter on X}. For
each &, € XV, let V,, as the V, defined in Sec. 1, be the
open Cp -filter base that generates A,. If A, converges to
anx € X, then for each f € D, x € CI(f '((ry — &/2, 1y + €/2))
c f([rp — /2, rp + €/2]) < £'((1; — &, 1¢ + €)) for all £ > 0;
ie,rp=1(x)forallf e D,soV,=V,and A=A, Thus X%V
= Xg U X and Xg N Xg = ¢, where Xg = {Ax|x € X} and
Xr = {AJA is a basic open C[ -filter that does not
converge in X}. Similar to what we have done in Section 3,
we can get the similar definitions and results for X% in the
following:

4.22-1. For each open set U # ¢in X, define U* = {A e
X"U e A},

4.22-2. 1) for any open set U in X, U # g <= U* = ¢; 2)
U=X < U*=XY; and (c) for any A in X%, any open set
Uz AcU*<UcA.

4.22-3. For any two nonempty open sets S and T in X, 1)
ScTiff S*cT*,and2) (SN T)*=S*"T*,if SNT=
@.

4.22-4. B={U*|U = ¢, U is an open set in X} is a base
for a topology on X.

4.22-5. For each f € D, f*: X¥ — R is defined by f*(A,)
=ry if f'((rf —¢grrte)eV,.c A, for all € > 0. Then
(A, = f(x) for all x € X.

4.22-6. For each fin D, let t € CI(f(X)). For any 9, ¢
with0<8d<e 1) [f'(t—8,t+3)]* P '((t—& t+¢)),
2) Pt tre) S [F (-5 t+ e)]%,

4.22-7. For each f in D, f* is a bounded real-valued
continuous function on X,

4.22-8. Define k: X — X" by k(x) = A,, then 1) k is
well-defined, one-one, and U = k™' (U*) for all open set U
# ¢in X and all U* € B; i.e., k is continuous, 2) f* ok =f
for all fin D and 3) k(X) is dense in X™.

4.22-9. Let D* = {f¥|f € D}. Then D* ¢ C*(X™).

Lemma 4.23 D* separates points of X"

Proof. For A,, A, € XV, let V= {neuf '((sr — &, s +
e)Merf ' ((s¢ — &, s + €)) # g for any H € [D]"°, & > 0}
be the open C}, -filter base that generates A, and similarly
for V,. Since A, = A,, V, =V, and that s; = t; for all f in D
are equivalent, thus A, # A, V,# V, and that there is a gin
D such that s, # t, are equivalent. So, if A, # A,, then g*(A,)
=5, # ty, = g*(A,) for some g* € D*. o

Lemma 4.24 The topology on X" is the weak topology
induced by D*.

Proof. For each A, € XV, let V,, as the V, defined in
Sec. 1, be the open C] -filter base that generates A, and
let U* € B such that A, € U*, then U € A,. So there exist
aH e [D]"®, an & > 0 such that Neenf '((rr— &, 17+ €)) < U,
where Neuf ' ((r; — 8, 1r + 8)) € V, < A, for all 8 > 0. By
4.22-2 (¢), 4.22-3 and 4.22-6 2), A e [r\fegf'((rf— €/2, ¢
+ &/2)]* C e (1 — &, 1 + €)) © [Mpenf (1 — &, 1
+e)]* cU*ie, A, mf*eH*f*_l((rf —g 1t e)c U™
o

For any open C;, filter £ on XV, let V| = {Np ey
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P((t — &, to + ) Npenel* (b — &, te + £)) # ¢ for
any H* e [D*]°®, € > 0} be the open C;, -filter base that
is contained in €; . Since f* 0 k = f for all f € D, k is one-
one and k(X) is dense in X%, 50 k(Mgenf ™' ((tm — €, te= + €)))
= Apef* ((tr — &, te + 8)) N K(X) # ¢ for any H* €
[D*]°°, H = {f € D|f* € H*}) and any £ > 0. Thus V, =
(et (o = € toe + €))Mpenf ((t — &, te + €)) # ¢ for
any H € [D]"®, € > 0} is a well-defined open Cp, -filter
base on X. Let A, be the basic open Cf -filter on X
generated by V..

Lemma 4.25 For any open set U € A, U* € €.

Proof. For any U € A,, there exista H € [D]*“,an&>0
such that Ngeuf '((te — &, t + €)) =S € V,and S ¢ U. By
4.22-3 and 4.22-6, T = Npeepst* '((t — €, tw + £)) = S*
U*and T € V, . Thus U* € €.

Theorem 4.26 (XV, k) is a Hausdorff compactification
of X.

Proof. We show that the open C’,-filter €, converges
to A in X™. For any open set U in X such that A, € U*, by
4.22-2(c), U € A, by Lemma 4.25, U* € €. This implies
that €] converges to A, in X%. By Cor. 2.10, X" is
compact. Thus, by 4.22-8 3) and Lemma 4.23, (X, k) is a
Hausdorff compactification of X. o

5. The Homeomorphism between (X", k) and
(Z, h)

For each basic open C;—ﬁlter A, e XV let V,, as the V,
defined in Sec. 1, be the open C[-filter base that gener-
ates A,. Since h™': h(X) — X is one-one, f="f o h and h(X)
is dense in Z, so h™' (Mo f ' ((rp — &, 17 + €))) = Npepf!
((r;— g, s + €)) # gforany ‘H € ['D]"°, H= {f]’f € "H}
and any € > 0. Thus, "V, = {m°f€°H°f1((rf — g 1 t g))
Mg T ((rs— €, 1p+ €)) # gfor any °H € ['D]°°, £ > 0} is
a well-defined open C;'D -filter base on Z. Let °A, be the
basic open CZD -filter on Z generated by °V,. Since Z is
compact, °A, clusters at a z, € Z. For each °f € °D, z, €
CICT (= /2, 1 + €/2)) € °F ({1 — /2, ¢ + €/2]) ©
T ((rr— ¢, 1+ €)) € °V, forall & > 0; i.e., °f(z,) = r; for all
°f € °D. So °V, = °Vz, and °A, = °Az,. The z, is called the
w- point in Z induced by A, such that *f(z,) = ry= £*(A,) for
all °f € °D and f* € D*. °Vz, and °Az, are called the open
C:, filter base and the basic open C’_filter at z, in Z
induced by V. or A, If z,# 7 in Z, there is a °f € °D such
that °f(z,) # °f(z,) = ry = f*(A,), 50 z, is the unique w-point
in Z induced by A,. If A, # A, let z, be the w-point in Z
induced by A By Lemma 4.23, there is a g* € D* such
that °g(z) = g*(A) # g*(&,) = °g(z); i.e., 2. # z.. So, if IP:
XV - Z is defined by JP(A,) = z,, where z, is the w-point
in Z induced by A,, then J¢ is well-defined and one-one.
For any z € Z, let °A, be the basic open C:D -filter at z
Z generated by °V, = {rvey’ T ((f(2) — &, f(z) + €))'H
€ ['D]*®, £>0}. Since h is one-one, = °f o h and h(X) is
dense in Z, so h(Meeuf (Cf(2) — &, “f(z) + €))) = N f !
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((“f(z) — &, “f(z) + £))) "h(X) # gforany H € [D]"®, 'H=
{*fif € H}, £>0. Thus V, = {~euf ' ((Cf(2) — &, *f(2) + &))|
Neenf ' ((Cf(z) — €, *f(z) + €)) = ¢ for any H € [D]"*, &> 0}
is a well-defined open C;—ﬁlter base on X. Let A, be the
basic open Cp-filter on X generated by V,. If z, is the
w-point in Z induced by A,. Then *f(z,) = °f(z) = f*(A,) for
all °f € °D and f* € D*. This implies that z = z, in Z. So,
for any z € Z, there is a unique A, in X" such that J(A,)
= z. Hence, J¥ is well-defined, one-one and onto.

Theorem 5.27 (X%, k) is homeomorphic to (Z, h)
under the mapping I such that 3 (k(x)) = h(x).

Proof. Since the topologies on Z and X" are the weak
topologies induced by °D and D*, respectively, to show
the continuity of J€, it is enough to show that for any °f €
°D (or f* € D*), any € > 0, FO ' ((t; — &, t; + €))) =
P ((tr — &, t + €)). For each Ay in XV, let V, =
{Orenf ' ((5¢ = & s¢+ &) Openrf (5~ &, 8¢+ €)) # ¢ for any
H € [D]"°, € > 0} be the open C}-filter base on X that
generates A,. Let z, be the w-point in Z induced by A,,
then °f(z,) = s;= f*(A,). Thus (a): [A, € ¥ '((tr— &, t; + €))]
iff (b): ["f(z,) = P*(A) =s¢ € (tr— &, t; + €)]. Since FP(A,) =
z,, 50 (b) iff (c): [F(A,) =z, € °F '((t;— &, t;+ €))] and (c)
iff (d): [As € H'CT((t— &, tr + €))]; ie., P ((t — &, t;
+€)=I'Cf'((t — & t; + €))). So, I is continuous.
Since J¢ is one-one, onto and Z, X" are compact Haus-
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dorff, by Theorem 17.14 in the Ref. [1, p. 123], # is a
homeomorphism. For that #(k(x)) = h(x) is obvious from
the definitions of k and h. o

Corollary 528 Let (BX, h) be the Stone-Cech
compactification of a Tychonoff space X, D = {f{f="foh,
f e C(BX)} and Ip: XY — BX is defined similarly to I
as above. Then (BX, h) is homeomorphic to (X%, k) such
that Hp(k(x)) = h(x).

Corollary 5.29 Let (yX, h) be the Wallman compactifi-
cation of a normal Ty-space X, D = {fif =°"fo h, ’f €
C(yX)} and Jey:XW — vX is defined similarly to J as
above. Then (yX, h) is homeomorphic to (X", k) such that
H,(k(x)) = h(x).
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