

A \wp_x - and Open C_D^* -Filters Process of Compactifications and Any Hausdorff Compactification

Hueytzen J. Wu¹, Wan-Hong Wu²

¹Department of Mathematics, Texas A & M University-Kingsville, Kingsville, USA ²University of Texas at San Antonio, One UTSA Circle, San Antonio, USA Email: hueytzen.wu@tamuk.edu, dd1273@yahoo.com

Received February 23, 2012; revised March 15, 2012; accepted March 22, 2012

ABSTRACT

Keywords: Net; Open Filter; Open C_D^{\bullet} -Filter Base; Basic Open C_D^{\bullet} -Filter; Open C_D^{\bullet} -Filter; \mathcal{P} -Filter; \mathcal{P}_x -Filter; Tychonoff Space; Normal T₁-Space; Compact Space; Compactifications; Stone-Čech Compactification; Wallman Compactification

1. Introduction

Throughout this paper, $[\mathbf{T}]^{<\omega}$ denotes the collection of all finite subsets of the set **T**. For the other notations and terminologies in General Topology which are not explicitly defined in this paper, the readers will be referred to the Ref. [1].

For an arbitrary topological space \mathbf{Y} , let $\mathbf{C}^*(\mathbf{Y})$ be the set of bounded real-valued continuous functions on Y, D $\subset C^*(Y)$. It is shown in Sec. 2 that there exists a unique $r_f \in Cl(f(\mathbf{Y}))$ for each f in **D** such that for any $\mathbf{H} \in [\mathbf{D}]^{<\omega}$, $\varepsilon > 0, \cap_{f \in H} f^{-1}((r_f - \varepsilon, r_f + \varepsilon)) \neq \phi$. Let $\mathbf{V}_r = \{\cap_{f \in H} f^{-1}((r_f - \varepsilon, r_f + \varepsilon)) \neq \phi$. $|\mathbf{r}_{f} + \varepsilon\rangle| | \cap_{f \in \mathbf{H}} f^{-1}((\mathbf{r}_{f} - \varepsilon, \mathbf{r}_{f} + \varepsilon)) \neq \phi \text{ for any } \mathbf{H} \in [\mathbf{D}]^{<\omega}, \varepsilon > \varepsilon$ 0}. \mathbf{V}_{r} is called an *open* C_{D}^{*} -*filter base*. An open filter \mathcal{E}_{r} on Y containing an open C_D^* -filter base V_r is called an open C_D^{\bullet} -filter. An open filter Å_r on Y generated by an open C_D^{\bullet} -filter base V_r is called a *basic open* C_D^{\bullet} -filter. By a characterization of compact spaces in Sec. 2 and the \mathscr{P}_{x} - and open C_{p}^{*} -filters process of compactifications in Sec. 3, Y can be embedded as a dense subspace of (Y_s^W) , $\mathfrak{I}_{\mathcal{B}}$) or $(\mathbf{Y}_{T}^{W}, \mathfrak{I}_{\mathcal{B}})$, where $\mathbf{Y}_{S}^{W} = \mathbf{Y}_{E} \cup \mathbf{Y}_{S}, \ \mathbf{Y}_{T}^{W} = \mathbf{Y}_{E} \cup$ $\mathbf{Y}_{\mathrm{T}}, \mathbf{Y}_{\mathrm{E}} = \{\mathbf{N}_{\mathbf{x}} | \mathbf{N}_{\mathbf{x}} \text{ is a } \boldsymbol{\wp}_{\mathbf{x}} \text{-filter, } \mathbf{x} \in \mathbf{Y}\}, \mathbf{Y}_{\mathrm{S}} = \{\boldsymbol{\mathcal{E}} | \boldsymbol{\mathcal{E}} \text{ is an }$ open C_D^* -filter that does not converge in Y}, Y_T = {Å|Å is a basic open C_p^* -filter that does not converge in Y},

 $\mathfrak{I}_{\mathscr{B}}$ is the topology induced by the base $\mathscr{B} = \{\mathbf{U}^* | \mathbf{U} \neq \phi, \mathbf{U} \text{ is open in } \mathbf{Y}\}$ and $\mathbf{U}^* = \{\mathscr{F} \in \mathbf{Y}_{\mathrm{S}}^{\mathrm{W}} \text{ (or } \mathbf{Y}_{\mathrm{T}}^{\mathrm{W}}) | \mathbf{U} \in \mathscr{F}\}$. Furthmore an arbitrary Hausdorff compactification (**Z**, h) of a Tychonoff space **X** can be obtained from a $D \subseteq \mathbf{C}^*(\mathbf{X})$ by the similar process in Sec. 3.

2. Open C_D^* -Filters and a Characterization of Compact Spaces

Let **Y**, **C***(**Y**) and **D** be the sets that are defined in Sec. 1.

Theorem 2.1 Let \mathcal{F} be a filter on a topological space \mathbf{Y} . For each $f \in \mathbf{D}$, there exists a $r_f \in Cl(f(\mathbf{Y}))$ such that $f^{-1}((r_f - \varepsilon, r_f + \varepsilon)) \cap \mathbf{F} \neq \phi$ for any $\mathbf{F} \in \mathcal{F}$ and any $\varepsilon > 0$. (See Thm 2.1 in the Ref. [2, p. 1164].)

Proof. If the conclusion is not true, then there is an $f \in D$ such that for each $r_t \in Cl(f(\mathbf{Y}))$, there exist an $\mathbf{F}_t \in \mathcal{F}$ and an $\epsilon_t > 0$ such that $\mathbf{F}_t \cap f^{-1}((r_t - \epsilon_t, r_t + \epsilon_t)) = \phi$. Since $Cl(f(\mathbf{Y}))$ is compact and $Cl(f(\mathbf{Y})) \subset \cup \{(r_t - \epsilon_t, r_t + \epsilon_t) | r_t \in Cl(f(\mathbf{Y}))\}$, there exist r_1, \cdots, r_n in $Cl(f(\mathbf{Y}))$ such that $\mathbf{Y} = f^{-1}(Cl(f(\mathbf{Y}))) = \cup \{f^{-1}((r_i - \epsilon_i, r_i + \epsilon_i)) | i = 1, \cdots, n\}$. Let $\mathbf{F}_o = \cap \{\mathbf{F}_i | i = 1, \cdots, n\}$, then $\mathbf{F}_o \in \mathcal{F}$ and $\mathbf{F}_o = \mathbf{F}_o \cap \mathbf{Y} \subseteq \cup \{[\mathbf{F}_i \cap f^{-1}((r_i - \epsilon_i, r_i + \epsilon_i))] | i = 1, \cdots, n\} = \phi$, contradicting that $\phi \notin \mathcal{F}$. \Box

Corollary 2.2 Let Q be an open ultrafilter on Y. For

each $f \in D$, there exists a unique $r_f \in Cl(f(\mathbf{Y}))$ such that (1) for any $\mathbf{H} \in [D]^{<\omega}$, any $\varepsilon > 0$, $\bigcap_{f \in H} f^{-1}((r_f - \varepsilon, r_f + \varepsilon)) \in \mathbf{Q}$ and (2) for any $\mathbf{H} \in [D]^{<\omega}$, any $\varepsilon > 0$, $\bigcap_{f \in H} f^{-1}((r_f - \varepsilon, r_f + \varepsilon)) \neq \phi$. (See Cor. 2.2 in the Ref. [2, p. 1164].)

Therefore, for a given open ultrafilter **Q**, **Q** contains a unique open filter base $\mathbf{V}_r = \{ \bigcap_{f \in \mathbf{H}} f^{-1}((\mathbf{r}_f - \varepsilon, \mathbf{r}_f + \varepsilon)) | \cap_{f \in \mathbf{H}} f^{-1}((\mathbf{r}_f - \varepsilon, \mathbf{r}_f + \varepsilon)) \neq \phi$ for any **H** in $[\mathbf{D}]^{<\omega}, \varepsilon > 0\}$. \mathbf{V}_r is called an *open* C_D^* -*filter base*. An open filter \mathcal{E}_r on **Y** containing an open C_D^* -filter base \mathbf{V}_r is called an *open* C_D^* -filter. An open filter \mathbf{A}_r on **Y** generated by an open C_D^* -filter base \mathbf{V}_r is called a *basic open* C_D^* -filter. For each $f \in \mathbf{D}$, if $\mathbf{r}_f = f(\mathbf{x})$ for an \mathbf{x} in **Y**, then \mathbf{V}_r and \mathbf{A}_r are called the *open* C_D^* -filter base and the basic open C_D^* -filter at \mathbf{x} , denoted by $\mathbf{V}_{\mathbf{x}}$ and $\mathbf{A}_{\mathbf{x}}$, respectively.

Definition 2.3 *Let* L *be a family of continuous functions on* Y*. A net* $\{x_i\}$ *in* Y *is called a* L*-net, iff* $\{f(x_i)\}$ *converges for each* $f \in L$.

Theorem 2.4 Let L be a set of continuous functions on Y. Then Y is compact iff (1) f(Y) is contained in a compact set C_f for each f in L, and (2) every L-net has a cluster point in Y.

Proof. Let $\{x_i\}$ be an ultranet in Y. For each f in L, $\{f(x_i)\}$ is an ultranet in C_f , hence converges in C_f , *i.e.*, $\{x_i\}$ is a *L*-net. (2) implies that $\{x_i\}$ has a cluster point x in Y. Since $\{x_i\}$ is an ultranet, $\{x_i\}$ converges to x. Thus, Y is compact. The converse is obvious. \Box

Corollary 2.5 Let $D \subseteq C^*(Y)$. If every *D*-net converges in Y, then Y is compact.

Definition 2.6 If \mathcal{F} is a filter on \mathbf{Y} , let $\Lambda_{\mathcal{F}} = \{(\mathbf{x}, \mathbf{F}) | \mathbf{x} \in \mathbf{F} \in \mathcal{F}\}$. Then $\Lambda_{\mathcal{F}}$ is directed by the relation $(\mathbf{x}_1, \mathbf{F}_1) \leq (\mathbf{x}_2, \mathbf{F}_2)$ iff $\mathbf{F}_2 \subset \mathbf{F}_1$, so the map $\mathbf{P}: \Lambda_{\mathcal{F}} \to \mathbf{Y}$ defined by $\mathbf{P}(\mathbf{x}, \mathbf{F}) = \mathbf{x}$ is a net in \mathbf{Y} . It is called the net based on \mathcal{F} . (See Def.12.16 in the Ref. [1, p. 81].)

Corollary 2.7 If \mathcal{F} is a filter on \mathbf{Y} , { $\mathbf{P}(\mathbf{x}, \mathbf{F})$ } is the net based on \mathcal{F} , then $\mathcal{F} = {\mathbf{S} \subseteq \mathbf{Y} | \mathbf{P}(\mathbf{x}, \mathbf{F})}$ is eventually in \mathbf{S} }. (See L2) in the Ref. [3, p. 83].)

Lemma 2.8 Let $D \subseteq C^*(Y)$. 1) For each open C_D^* -filter \mathcal{E} , let V_r , as the V_r defined in Section 1, be an open C_D^* -filter base such that $V_r \subset \mathcal{E}$. Then the net $\{x_F\}$ based on \mathcal{E} is a *D*-net such that $\lim \{f(x_F)\} = r_f$ for each $f \in D$. 2) For each *D*-net $\{x_i\}$ in Y, $\{x_i\}$ induces a unique open C_D^* -filer base $V\{x_i\}$ on Y.

Proof. 1) By Cor. 2.7, $\{x_F\}$ is eventually in $f^{-1}((r_f - \varepsilon, r_f + \varepsilon)) \in \mathbf{V}_r \subset \mathcal{E}$ for each $f \in \mathbf{D}$ and any $\varepsilon > 0$. Thus $\lim \{f(x_F)\} = r_f$ for each $f \in \mathbf{D}$; *i.e.*, $\{x_F\}$ is a \mathbf{D} -net. 2) Let $\{x_i\}$ be a \mathbf{D} -net. For each $f \in \mathbf{D}$, let $t_f = \lim \{f(x_i)\}$. Then $\bigcap_{f \in \mathbf{H}} f^{-1}((t_f - \varepsilon, t_f + \varepsilon)) \neq \phi$ for any $\mathbf{H} \in [\mathbf{D}]^{<\omega}$, any $\varepsilon > 0$. Let $\mathbf{V}\{x_i\} = \{\bigcap_{f \in \mathbf{H}} f^{-1}((t_f - \varepsilon, t_f + \varepsilon)) | \bigcap_{f \in \mathbf{H}} f^{-1}((t_f - \varepsilon, t_f + \varepsilon)) \neq \phi$ for any $\mathbf{H} \in [\mathbf{D}]^{<\omega}$, $\varepsilon > 0\}$, then $\mathbf{V}\{x_i\}$ is an open C_D^{*} -filter base on \mathbf{Y} . Since t_f is unique for each $f \in \mathbf{D}$, thus $\mathbf{V}\{x_i\}$ is uniquely induced by $\{x_i\}$. \Box

Theorem 2.9 Let $D \subseteq C^*(Y)$. Then, 1) and 2) in the following are equivalent: 1) Every *D*-net converges in Y. 2) Every open C_D^* -filter \mathcal{E} converges in Y.

Copyright © 2012 SciRes.

Proof. 1) \Rightarrow 2) is obvious by Lemma 2.8 1) above and Thm. 12.17 (a) in the Ref. [1, p. 81]. For 2) \Rightarrow 1): Let {x_i} be a *D*-net in **Y**, let $\mathcal{F} = \{\mathbf{O} | \mathbf{O} \text{ is open and } \{x_i\} \text{ is eventu$ ally in**O** $}. Clearly, <math>\mathcal{F}$ is an open filter. For each f in *D*, let $t_f = \lim\{f(x_i)\}$, then {x_i} is eventually in $f^{-1}((t_f - \varepsilon, t_f + \varepsilon))$ for any $\varepsilon > 0$; *i.e.*, for each f in *D*, any $\varepsilon > 0$, $f^{-1}((t_f - \varepsilon, t_f + \varepsilon)) \in \mathcal{F}$, so \mathcal{F} is an open C_D^* -filter. 2) implies that \mathcal{F} converges to a point x. Thus, for any open nhood U_x of x, $U_x \in \mathcal{F}$; *i.e.*, {x_i} is eventually in U_x . So {x_i} converges to x. \Box

Corollary 2.10 If every open C_D^* -filter \mathcal{E} on Y converges in Y, then Y is compact.

3. An Open C_D^* -Filter Process of Compactification

For each $x \in Y$, let $N_x = \{\{x\}\} \cup \{O|O \text{ is open, } x \in O\}$. N_x is a β -filter (See 12E. in the Ref. [1, p. 83] for its definition and convergence.) with $\beta = N_x$. For each $x \in Y$, N_x is called a β_x -filter. Let $Y_E = \{N_x|N_x \text{ is a } \beta_x$ -filter, $x \in Y\}$, $Y_S = \{\mathcal{E}|\mathcal{E} \text{ is an open } C_D^*$ -filter that does not converge in $Y\}$, $Y_T = \{\mathcal{A}|\mathcal{A} \text{ is a basic open } C_D^*$ -filter that does not converge in $Y\}$, $Y_S^W = Y_E \cup Y_S$ and $Y_T^W = Y_E \cup Y_T$.

Lemma 3.11 For each $\mathcal{F} \in \mathbf{Y}_{S}^{W}$ (or \mathbf{Y}_{T}^{W}), there is a unique $r_{f} \in Cl(f(\mathbf{Y}))$ for each $f \in \mathbf{D}$ such that $f^{-1}(r_{f} - \varepsilon, r_{f} + \varepsilon) \in \mathbf{V}_{r} \subset \mathcal{F}$ for all $\varepsilon > 0$.

Proof. If $\mathcal{F} = \mathbf{N}_x$ for an $x \in \mathbf{Y}$, then for each $f \in \mathbf{D}$, $f^{-1}((\mathbf{r}_f - \varepsilon, \mathbf{r}_f + \varepsilon)) \in \mathbf{V}_x \subset \mathbf{N}_x$ for all $\varepsilon > 0$, where $\mathbf{r}_f = \mathbf{f}(x)$. If $\mathcal{F} = \mathcal{E}$ (or Å), then there is an open C_D^{\bullet} -filter base \mathbf{V}_r , as the \mathbf{V}_r defined in Sec. 1, such that for each $f \in \mathbf{D}$, $f^{-1}((\mathbf{r}_f - \varepsilon, \mathbf{r}_f + \varepsilon)) \in \mathbf{V}_r \subset \mathcal{E}$ (or Å) for all $\varepsilon > 0$. The uniqueness of \mathbf{r}_f for each $f \in \mathbf{D}$ follows from Cor. 2.2. \Box

Definition 3.12 For each open set $U \neq \phi$ in Y, define $U^* = \{\mathcal{F} \in \mathbf{Y}_S^W \text{ (or } \mathbf{Y}_T^W) | U \in \mathcal{F}\}.$

Lemma 3.13 1) For any open set U in Y, $U \neq \phi \Leftrightarrow U^* \neq \phi$; 2) $U = Y \Leftrightarrow U^* = Y_S^W$ (or Y_T^W); and 3) for any \mathcal{F} in Y_S^W (or Y_T^W), any open set $U \neq \phi$ in Y, $\mathcal{F} \in U^* \Leftrightarrow U \in \mathcal{F}$.

Proof. 1) If $U \neq \phi$, pick an $x \in U$, then $U \in N_x \Rightarrow N_x \in U^*$; *i.e.*, $U^* \neq \phi$. If $U^* \neq \phi$, pick a $\mathcal{F} \in U^*$, then $U \in \mathcal{F} \Rightarrow U \neq \phi$. 2) and 3) are obvious from Def. 3.12. \Box

Lemma 3.14 For any two nonempty open sets **S** and **T** in **Y**, 1) **S** \subseteq **T** iff **S*** \subseteq **T***, and 2) (**S** \cap **T**)* = **S*** \cap **T***, if **S** \cap **T** $\neq \phi$.

Proof. 1): (⇒): $\mathcal{F} \in \mathbf{S}^* \Rightarrow \mathbf{S} \in \mathcal{F} \Rightarrow \mathbf{T} \in \mathcal{F} \Rightarrow \mathcal{F} \in \mathbf{T}^*$. (⇐): $\mathbf{S} \notin \mathbf{T} \Rightarrow$ there is a $y \in (\mathbf{S} - \mathbf{T}) \Rightarrow \mathbf{N}_y \in (\mathbf{S}^* - \mathbf{T}^*) \Rightarrow$ $\mathbf{S}^* \notin \mathbf{T}^*$. 2): By 1) above, $(\mathbf{S} \cap \mathbf{T})^* \subseteq \mathbf{S}^* \cap \mathbf{T}^*$. If $\mathcal{F} \in \mathbf{S}^*$ $\cap \mathbf{T}^*$, then $\mathbf{S} \in \mathcal{F}$, $\mathbf{T} \in \mathcal{F}$ and $\mathbf{S} \cap \mathbf{T} \in \mathcal{F}$; *i.e.*, $\mathcal{F} \in (\mathbf{S} \cap \mathbf{T})^*$. \Box

Proposition 3.15 $\mathcal{B} = \{ \mathbf{U}^* | \mathbf{U} \neq \phi \text{ is an open set in } \mathbf{Y} \}$ is a base for \mathbf{Y}_{S}^{W} (or \mathbf{Y}_{T}^{W}).

Proof. For (a) in Thm. 5.3 in the Ref. [1, p. 38]: For each $\mathcal{F} \in \mathbf{Y}_{S}^{W}$ (or \mathbf{Y}_{T}^{W}), pick a $\mathbf{O} \in \mathcal{F}$. Then $\mathbf{O} \neq \phi, \mathcal{F} \in \mathbf{O}^{*}$ and $\mathbf{O}^{*} \in \mathcal{B}$. Thus \mathbf{Y}_{S}^{W} (or \mathbf{Y}_{T}^{W}) = $\bigcup \{\mathbf{U}^{*} | \mathbf{U}^{*} \in \mathcal{B}\}$. For (b): If $\mathcal{F} \in \mathbf{S}^{*} \cap \mathbf{T}^{*}$ for $\mathbf{S}^{*}, \mathbf{T}^{*} \in \mathcal{B}$, then $\mathbf{S}, \mathbf{T} \in \mathcal{F}, \phi$

 \neq **S** \cap **T** \in \mathcal{F} , (**S** \cap **T**)* \in \mathcal{B} and $\mathcal{F} \in$ (**S** \cap **T**)* \subset **S*** \cap **T*** ∈ ℬ. □

Equip \mathbf{Y}_{S}^{W} (or \mathbf{Y}_{T}^{W}) with the topology induced by \mathcal{B} . For each f in D, define f*: \mathbf{Y}_{s}^{W} (or \mathbf{Y}_{T}^{W}) $\rightarrow \mathbb{R}$ by f*(\mathcal{F}) = r_f, if $f^{-1}((r_{f} - \varepsilon, r_{f} + \varepsilon)) \in \mathbf{V}_{r} \subset \mathcal{F}$ for all $\varepsilon > 0$. By Lemma 3.11, for each $f \in D$, f^* is well-defined and $f^*(\mathbf{Y}_S^W)$ (or $f^*(\mathbf{Y}_T^W)$) \subseteq Cl(f(Y)), thus f* is a bounded real-valued function on \mathbf{Y}_{s}^{W} (or \mathbf{Y}_{T}^{W}) such that $f^{*}(\mathbf{N}_{x}) = f(x)$ for all $x \in \mathbf{Y}$.

Proposition 3.16 For each f in D, let $t \in Cl(f(Y))$. For any δ , ε with $0 < \delta < \varepsilon$, 1) $[f^{-1}((t - \delta, t + \delta))]^* \subseteq f^{*-1}((t - \varepsilon, t + \delta))$ $(t + \varepsilon)$, 2) $f^{*-1}((t - \varepsilon, t + \varepsilon)) \subseteq [f^{-1}((t - \varepsilon, t + \varepsilon))]^*$.

Proof. 1): If $\mathcal{F} \in [f^{-1}((t-\delta, t+\delta))]^*$, then $f^{-1}((t-\delta, t+\delta))$ δ)) $\in \mathcal{F}$. If $f^*(\mathcal{F}) = e$, then $f^{-1}((e - \gamma, e + \gamma)) \in \mathcal{F}$ for all $\gamma >$ 0. Since $f^{-1}((t-\delta, t+\delta) \cap (e-\gamma, e+\gamma)) = f^{-1}((t-\delta, t+\delta))$ \cap f⁻¹((e - γ , e + γ)) $\in \mathcal{F}$ for all $\gamma > 0$, so (t - δ , t + δ) \cap (e $-\gamma$, $e + \gamma$) $\neq \phi$ for all $\gamma > 0$. Thus $f^*(\mathcal{F}) = e \in [t - \delta, t + \delta] \subset$ $(t-\varepsilon, t+\varepsilon)$; *i.e.*, $\mathcal{F} \in f^{*-1}((t-\varepsilon, t+\varepsilon))$. 2): If $\mathcal{F} \in f^{*-1}((t-\varepsilon, t+\varepsilon))$. $-\varepsilon, t+\varepsilon$), then $f^*(\mathcal{F}) = s \in (t-\varepsilon, t+\varepsilon)$ and $f^{-1}((s-\gamma, s+\varepsilon))$ γ)) $\in \mathcal{F}$ for all $\gamma > 0$. Pick $\rho > 0$ such that $(s - \rho, s + \rho) \subset (t - \rho)$ $-\varepsilon, t + \varepsilon$). Then $\mathbf{S} = f^{-1}((s - \rho, s + \rho)) \subset f^{-1}((t - \varepsilon, t + \varepsilon))$ and $\mathbf{S} \in \mathcal{F}$. Thus $f^{-1}((t-\varepsilon, t+\varepsilon)) \in \mathcal{F}$; *i.e.*, $\mathcal{F} \in [f^{-1}((t-\varepsilon, t+\varepsilon))]$ $(t + \epsilon))]*. \Box$

Proposition 3.17 For each $f \in D$, f^* is a bounded realvalued continuous function on \mathbf{Y}_{S}^{W} (or \mathbf{Y}_{T}^{W}). **Proof.** For any $\mathcal{F} \in \mathbf{Y}_{S}^{W}$ (or \mathbf{Y}_{T}^{W}), let $f^{*}(\mathcal{F}) = t$. We

show that for any $\varepsilon > 0$, there is a $U^* \in \mathcal{B}$ such that $\mathcal{F} \in$ $\mathbf{U}^* \subset \mathbf{f}^{*^{-1}}((\mathbf{t} - \varepsilon, \mathbf{t} + \varepsilon))$. Let $\mathbf{U} = \mathbf{f}^{-1}((\mathbf{t} - \varepsilon/2, \mathbf{t} + \varepsilon/2))$. Since $f^{-1}((t - \gamma, t + \gamma)) \in \mathcal{F}$ for all $\gamma > 0$. Thus, $U = f^{-1}((t - \gamma, t + \gamma))$ $\epsilon/2, t + \epsilon/2) \in \mathcal{F}; i.e., \mathcal{F} \in \mathbf{U}^*$. By Prop. 3.16 1), $\mathcal{F} \in \mathbf{U}^*$ \subset f^{*-1}((t - ε , t + ε)). Thus f^{*} is continuous on **Y**_s^W (or $\mathbf{Y}_{\mathrm{T}}^{\mathrm{W}}$).

Lemma 3.18 Let k: $\mathbf{Y} \to \mathbf{Y}_{S}^{W}$ (or \mathbf{Y}_{T}^{W}) be defined by $k(x) = N_x$. Then, 1) k is well-defined, one-one and $k^{-1}(U^*)$ = U for all nonempty open set U in Y and all $U^* \in \mathcal{B}$; i.e., k is continuous; 2) $f^* \circ k = f$ for all $f \in D$; 3) k(Y) is dense in \mathbf{Y}_{S}^{W} (or \mathbf{Y}_{T}^{W}).

Proof. 1) For any x, y in Y, $x = y \Leftrightarrow N_x = N_y$, thus $x \neq y$ $\Leftrightarrow N_x \neq N_y$, so k is well-defined and one-one. For any U* $\in \mathcal{B}$, by Def. 3.12 and Lemma 3.13 1), $\mathbf{U}^* \neq \phi$, U is open, $\mathbf{U} \neq \phi$. So (a): $\mathbf{x} \in \mathbf{k}^{-1}(\mathbf{U}^*) \Leftrightarrow$ (b): $\mathbf{N}_{\mathbf{x}} = \mathbf{k}(\mathbf{x}) \in \mathbf{U}^*$. By Lemma 3.13 3), (b) \Leftrightarrow (c): U \in N_x. By the setting of N_x, (c) \Leftrightarrow (d): x \in U. Thus k⁻¹(U*) = U for all U* $\in \mathcal{B}$, U $\neq \phi$ and U is open in Y; *i.e.*, k is continuous. 2) is obvious from (f* $o k(x) = f^*(N_x) = f(x)$ for all x in Y and all f in D. 3) For any $U^* \in \mathcal{B}$, pick a $\mathcal{F} \in U^*$, then $U \in \mathcal{F}$ and $U \neq \phi$. Pick an $x \in U$, by 1) above, $x \in U \Leftrightarrow k(x) \in U^*$; *i.e.*, $k(x) \in U^*$ $\cap \mathbf{k}(\mathbf{Y}) \neq \phi$. Hence $\mathbf{k}(\mathbf{Y})$ is dense in $\mathbf{Y}_{\mathrm{S}}^{\mathrm{W}}$ (or $\mathbf{Y}_{\mathrm{T}}^{\mathrm{W}}$). \Box

Let $D^* = \{f^* | f \in D\}$. Then, $D^* \subseteq C^*(Y_S^W)$ (or $C^*(Y_T^W)$). For each open $C^*_{D^*}$ -filter \mathcal{E}_t^* on \mathbf{Y}_S^W (or \mathbf{Y}_T^W), let $\mathbf{V}_t^* =$ $\{ \bigcap_{f^* \in H^*} f^{*-1}((t_{f^*} - \tilde{\epsilon}, t_{f^*} + \epsilon)) | \bigcap_{f^* \in H^*} f^{*-1}((t_{f^*} - \tilde{\epsilon}, t_{f^*} + \epsilon)) \neq \phi$ for any $\mathbf{H}^* \in [D^*]^{\leq \omega}$, $\varepsilon > 0$ be the open $C_{D^*}^*$ -filter base on \mathbf{Y}_{S}^W (or \mathbf{Y}_{T}^W) such that $\mathbf{V}_{t}^* \subseteq \mathcal{E}_{t}^*$. Since f^* o k = f, k is one-one and $k(\mathbf{Y})$ is dense in \mathbf{Y}_{S}^W (or \mathbf{Y}_{T}^W), so $k(\cap_{f \in H} f^{-1})$ $((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon))) = [\bigcap_{f^* \in H^*} f^{*-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon))] \cap k(\mathbf{Y}) \neq \mathbf{Y}$

 ϕ for any $\mathbf{H}^* \in [D^*]^{<\omega}$, $\mathbf{H} = \{\mathbf{f} \in D | \mathbf{f}^* \in \mathbf{H}^*\}$ and any $\varepsilon >$ 0. Thus $\mathbf{V}_t = \{ \bigcap_{f \in H} f^{-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) | \bigcap_{f \in H} f^{-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) \}$ ε)) $\neq \phi$ for any $\mathbf{H} \in [D]^{<\omega}, \varepsilon > 0$ } is a well-defined open C_D^* -filter base on **Y**. Let $\mathcal{L}_S = \{ \mathbf{U} \subseteq \mathbf{Y} \mid \mathbf{U} \text{ is open, } \mathbf{U} \neq \phi \text{ and } \mathbf{U}^* \in \mathcal{E}_t^* \}$ and $\mathcal{L}_T = \mathbf{A}_t$, the basic open C_D^* -filter generated by \mathbf{V}_t . Since \mathcal{E}_t^* is a filter, clearly, by Lemma 3.14, \mathcal{L}_{S} is an open filter on **Y**.

Lemma 3.19 \mathcal{L}_{S} is an open C_{D}^{*} -filter on Y. **Proof.** For any $\mathbf{H} \in [D]^{<\omega}, \varepsilon > 0$, let $\mathbf{H}^{*} = \{\mathbf{f}^{*} | \mathbf{f} \in \mathbf{H}\}, \mathbf{O}$ $= \bigcap_{f \in H} f^{-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon))$ and $\mathbf{P} = \bigcap_{f^* \in H^*} f^{*-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon))$ ε)). Then $\phi \neq \mathbf{P} \in \mathbf{V}_t^* \subset \mathcal{E}_t^*$. By Lemmas 3.13, 14 and Prop. 3.16 2), $\mathbf{P} \subseteq \mathbf{O}^*$, $\phi \neq \mathbf{O}^* \in \mathcal{E}_{+}^*$, $\mathbf{O} \neq \phi$ and $\mathbf{O} \in \mathcal{L}_{S}$. This implies that $V_t \subseteq \mathcal{L}_S$. \Box

Theorem 3.20 $(\mathbf{Y}_{s}^{W}, \mathbf{k})$ is a compactification of **Y**.

Proof. Case 1: If \mathcal{L}_S converges to a point p in Y. Let U be any open set in Y such that $k(p) \in U^* \in \mathcal{B}$. By Lemma 3.18 1), $p \in U = k^{-1}(U^*)$, thus $U \in \mathcal{L}_S$; *i.e.*, $U^* \in \mathcal{E}_t^*$. This implies that \mathcal{E}_t^* converges to k(p) in \mathbf{Y}_s^{W} . Case 2: If \mathcal{L}_s does not converge in **Y**, then $\mathcal{L}_{s} \in \mathbf{Y}_{s}^{W}$. For any U* in \mathcal{B} such that $\mathcal{L}_{s} \in \mathbf{U}^{*}, \mathbf{U} \in \mathcal{L}_{s}$ and therefore $\mathbf{U}^{*} \in \mathcal{E}_{t}^{*}$. This shows that \mathcal{E}_{t}^{*} converges to \mathcal{L}_{s} in \mathbf{Y}_{s}^{W} . By Cor. 2.10, \mathbf{Y}_{s}^{W} is compact and by Lemma 3.18 3), (\mathbf{Y}_{s}^{W}, k) is a compactification of Y. \Box

Lemma 3.21 For each open set $\mathbf{U} \in \mathcal{L}_{\mathrm{T}} = \mathbf{A}_{\mathrm{t}}, \mathbf{U}^* \in \mathcal{E}_{\mathrm{t}}^*$. **Proof.** If $\mathbf{U} \in \mathbf{A}_{t}$, then there exist a $\mathbf{H} \in [\boldsymbol{D}]^{<\omega}$, an $\varepsilon > 0$ such that $\mathbf{E} = \bigcap_{f \in H} f^{-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) \in \mathbf{V}_t$ and $\mathbf{E} \subseteq \mathbf{U}$. Lemma 3.14 and Prop. 3.16 2) imply that $\mathbf{F} = \bigcap_{\mathbf{f}^* \in \mathbf{H}^*} \mathbf{f}^{*-1}$ $((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) \subseteq \mathbf{E}^* \subseteq \mathbf{U}^*$ and $\mathbf{F} \in \mathcal{E}^*_t$. Thus, $\mathbf{U}^* \in \mathcal{E}^*_t$. П

Theorem 3.22 $(\mathbf{Y}_{T}^{W}, \mathbf{k})$ is a compactification of \mathbf{Y} .

Proof. Case 1: If $\mathcal{L}_{T} = \mathbf{A}_{t}$ converges to a point p in **Y**, let U be any open set in Y such that $k(p) \in U^*$, Lemma 3.18 1) implies that $p \in U$, thus $U \in \mathcal{L}_T = A_t$. So by Lemma 3.21, $\mathbf{U}^* \in \mathcal{E}_t^*$. This implies that \mathcal{E}_t^* converges to k(p) in \mathbf{Y}_{T}^{W} . *Case 2*: If $\mathcal{L}_{T} = \mathbf{\hat{A}}_{t}$ does not converge in \mathbf{Y} , then $\mathcal{L}_{T} = \mathbf{\hat{A}}_{t} \in \mathbf{Y}_{T}^{W}$. For any $\mathbf{U}^{*} \in \mathcal{B}$ such that $\mathbf{\hat{A}}_{t} \in \mathbf{U}^{*}$, U $\in A_t$ and by Lemmas 3.21, $U^* \in \mathcal{E}_t^*$. Thus \mathcal{E}_t^* converges to $\mathcal{L}_{T} = \mathbf{A}_{t}$ in \mathbf{Y}_{T}^{W} . Cor.2.10 implies that \mathbf{Y}_{T}^{W} is compact and by Lemma 3.18 3), $(\mathbf{Y}_{T}^{W}, \mathbf{k})$ is a compactification of \mathbf{Y} .

4. An Arbitrary Hausdorff Compactification of a Tychonoff Space

For an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X, let $D = \{f | f = {}^{\circ}f \circ h, {}^{\circ}f \in {}^{\circ}D = C(Z)\}$. Then $D \subseteq C^*(X)$, D separates points of X and the topology on \mathbf{X} is the weak topology induced by D. For each $x \in \mathbf{X}$, let \mathbf{V}_x , as the \mathbf{V}_x defined in Section 2, be the open C_D^* -filter base at x induced by **D**. Obviously, we can easily get Lemma 4.21 as follows:

Lemma 4.21 $G_D = \bigcup \{ V_x | x \in X \}$ is a base for the topology on **X** and for each $x \in \mathbf{X}$, \mathbf{V}_x is an open nhood base at x.

Let $\mathbf{X}^{W} = \{ \mathbf{A} | \mathbf{A} \text{ is a basic open } \mathbf{C}_{D}^{\bullet} \text{-filter on } \mathbf{X} \}$. For each $\mathbf{A}_{r} \in \mathbf{X}^{W}$, let \mathbf{V}_{r} , as the \mathbf{V}_{r} defined in Sec. 1, be the open \mathbf{C}_{D}^{\bullet} -filter base that generates \mathbf{A}_{r} . If \mathbf{A}_{r} converges to an $x \in \mathbf{X}$, then for each $f \in D$, $x \in Cl(f^{-1}((\mathbf{r}_{f} - \varepsilon/2, \mathbf{r}_{f} + \varepsilon/2)))$ $\subseteq f^{-1}([\mathbf{r}_{f} - \varepsilon/2, \mathbf{r}_{f} + \varepsilon/2]) \subset f^{-1}((\mathbf{r}_{f} - \varepsilon, \mathbf{r}_{f} + \varepsilon))$ for all $\varepsilon > 0$; *i.e.*, $\mathbf{r}_{f} = f(x)$ for all $f \in D$, so $\mathbf{V}_{r} = \mathbf{V}_{x}$ and $\mathbf{A}_{r} = \mathbf{A}_{x}$. Thus \mathbf{X}^{W} $= \mathbf{X}_{E} \cup \mathbf{X}_{F}$ and $\mathbf{X}_{E} \cap \mathbf{X}_{F} = \phi$, where $\mathbf{X}_{E} = \{ \mathbf{A}_{x} | x \in \mathbf{X} \}$ and $\mathbf{X}_{F} = \{ \mathbf{A} | \mathbf{A} \text{ is a basic open } \mathbf{C}_{D}^{\bullet}$ -filter that does not converge in $\mathbf{X} \}$. Similar to what we have done in Section 3, we can get the similar definitions and results for \mathbf{X}^{W} in the following:

4.22-1. For each open set $U \neq \phi$ in X, define $U^* = \{ \mathring{A} \in X^W | U \in \mathring{A} \}$.

4.22-2. 1) for any open set U in X, $U \neq \phi \Leftrightarrow U^* \neq \phi$, 2) U = X \Leftrightarrow U* = X^W; and (c) for any Å in X^W, any open set U $\neq \phi$, Å \in U* \Leftrightarrow U \in Å.

4.22-3. For any two nonempty open sets **S** and **T** in **X**, 1) **S** \subseteq **T** iff **S**^{*} \subseteq **T**^{*}, and 2) (**S** \cap **T**)^{*} = **S**^{*} \cap **T**^{*}, if **S** \cap **T** $\neq \phi$.

4.22-4. $\mathcal{B} = \{ \mathbf{U}^* | \mathbf{U} \neq \phi, \mathbf{U} \text{ is an open set in } \mathbf{X} \}$ is a base for a topology on **X**.

4.22-5. For each $f \in D$, $f^*: X^W \to \mathbb{R}$ is defined by $f^*(\mathring{A}_r) = r_f$, if $f^{-1}((r_f - \varepsilon, r_f + \varepsilon)) \in V_r \subset \mathring{A}_r$ for all $\varepsilon > 0$. Then $f^*(\mathring{A}_x) = f(x)$ for all $x \in X$.

4.22-6. For each f in **D**, let $t \in Cl(f(\mathbf{X}))$. For any δ , ε with $0 < \delta < \varepsilon$, 1) $[f^{-1}((t - \delta, t + \delta))]^* \subseteq f^{*-1}((t - \varepsilon, t + \varepsilon))$, 2) $f^{*-1}((t - \varepsilon, t + \varepsilon)) \subseteq [f^{-1}((t - \varepsilon, t + \varepsilon))]^*$.

4.22-7. For each f in D, f* is a bounded real-valued continuous function on X^{W} .

4.22-8. Define k: $\mathbf{X} \to \mathbf{X}^{\mathbf{W}}$ by $\mathbf{k}(\mathbf{x}) = \mathbf{A}_{\mathbf{x}}$, then 1) k is well-defined, one-one, and $\mathbf{U} = \mathbf{k}^{-1}(\mathbf{U}^*)$ for all open set $\mathbf{U} \neq \phi$ in **X** and all $\mathbf{U}^* \in \mathcal{B}$; *i.e.*, k is continuous, 2) f* o k = f for all f in **D** and 3) k(**X**) is dense in $\mathbf{X}^{\mathbf{W}}$.

4.22-9. Let $D^* = \{f^* | f \in D\}$. Then $D^* \subseteq C^*(X^W)$. Lemma 4.23 D^* separates points of X^W .

Proof. For \mathbf{A}_s , $\mathbf{A}_t \in \mathbf{X}^W$, let $\mathbf{V}_s = \{ \bigcap_{f \in \mathbf{H}} f^{-1}((\mathbf{s}_f - \varepsilon, \mathbf{s}_f + \varepsilon)) | \bigcap_{f \in \mathbf{H}} f^{-1}((\mathbf{s}_f - \varepsilon, \mathbf{s}_f + \varepsilon)) \neq \phi$ for any $\mathbf{H} \in [\mathbf{D}]^{<\omega}$, $\varepsilon > 0 \}$ be the open $C_{\mathbf{D}}^{\bullet}$ -filter base that generates \mathbf{A}_s and similarly for \mathbf{V}_t . Since $\mathbf{A}_s = \mathbf{A}_t$, $\mathbf{V}_s = \mathbf{V}_t$ and that $\mathbf{s}_f = \mathbf{t}_f$ for all f in \mathbf{D} are equivalent, thus $\mathbf{A}_s \neq \mathbf{A}_t$, $\mathbf{V}_s \neq \mathbf{V}_t$ and that there is a g in \mathbf{D} such that $\mathbf{s}_g \neq \mathbf{t}_g$ are equivalent. So, if $\mathbf{A}_s \neq \mathbf{A}_t$, then $\mathbf{g}^*(\mathbf{A}_s) = \mathbf{s}_g \neq \mathbf{t}_g = \mathbf{g}^*(\mathbf{A}_t)$ for some $\mathbf{g}^* \in \mathbf{D}^*$. \Box

Lemma 4.24 *The topology on* X^W *is the weak topology induced by* D^* *.*

Proof. For each Å_r ∈ X^W, let V_r, as the V_r defined in Sec. 1, be the open C^{*}_D -filter base that generates Å_r and let U^{*} ∈ ℬ such that Å_r ∈ U^{*}, then U ∈ Å_r. So there exist a H ∈ [D]^{<ω}, an ε > 0 such that $\cap_{f \in H} f^{-1}((r_f - ε, r_f + ε)) ⊂ U$, where $\cap_{f \in H} f^{-1}((r_f - δ, r_f + δ)) ∈ V_r ⊂ Å_r$ for all δ > 0. By 4.22-2 (c), 4.22-3 and 4.22-6 2), Å_r ∈ [$\cap_{f \in H} f^{-1}((r_f - ε, r_f + ε/2))$]^{*} ⊂ $\cap_{f^* \in H^*} f^{*-1}((r_f - ε, r_f + ε)) ⊂ [<math>\cap_{f \in H} f^{-1}((r_f - ε, r_f + ε))$]^{*} ⊂ U^{*}; *i.e.*, Å_r ∈ $\cap_{f^* \in H^*} f^{*-1}((r_f - ε, r_f + ε)) ⊂ U^*$.

For any open $C_{D^*}^*$ -filter \mathcal{E}_t^* on \mathbf{X}^W , let $\mathbf{V}_t^* = \{ \cap_{f^* \in H^*} \}$

$$\begin{split} &f^{*^{-1}}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon))| \cap_{f^* \in H^*} f^{*^{-1}}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) \neq \phi \text{ for } \\ &\text{any } \mathbf{H}^* \in [\boldsymbol{D}^*]^{<\omega}, \varepsilon > 0 \} \text{ be the open } \boldsymbol{C}_{\boldsymbol{D}^*}^{\bullet}\text{-filter base that } \\ &\text{ is contained in } \mathcal{E}_t^*. \text{ Since } f^* \text{ o } \mathbf{k} = f \text{ for all } f \in \boldsymbol{D}, \mathbf{k} \text{ is one-} \\ &\text{ one and } \mathbf{k}(\mathbf{X}) \text{ is dense in } \mathbf{X}^W, \text{ so } \mathbf{k}(\cap_{f \in H} f^{-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)))) \\ &= \cap_{f^* \in H^*} f^{*^{-1}}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) \cap \mathbf{k}(\mathbf{X}) \neq \phi \text{ for any } \mathbf{H}^* \in [\boldsymbol{D}^*]^{<\omega}, \mathbf{H} = \{f \in \boldsymbol{D} | f^* \in \mathbf{H}^*\} \text{ and any } \varepsilon > 0. \text{ Thus } \mathbf{V}_t = \{f \in \boldsymbol{D} | f^* \in \mathbf{H}^*\} \text{ or } f^{*} \in \mathbf{H}^* \} \end{split}$$

 $\{\bigcap_{f \in H} f^{-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) | \bigcap_{f \in H} f^{-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) \neq \phi \text{ for any } \mathbf{H} \in [\mathbf{D}]^{<\omega}, \varepsilon > 0\} \text{ is a well-defined open } C_D^* \text{-filter on } \mathbf{X} \text{ generated by } \mathbf{V}_t.$

Lemma 4.25 For any open set $U \in \mathring{A}_t, U^* \in \mathscr{E}_t^*$.

Proof. For any $\mathbf{U} \in \mathbf{\mathring{A}}_{t}$, there exist a $\mathbf{H} \in [\boldsymbol{D}]^{<\omega}$, an $\varepsilon > 0$ such that $\bigcap_{f \in H} f^{-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) = \mathbf{S} \in \mathbf{V}_t$ and $\mathbf{S} \subseteq \mathbf{U}$. By 4.22-3 and 4.22-6, $\mathbf{T} = \bigcap_{f^* \in H^*} f^{*-1}((t_{f^*} - \varepsilon, t_{f^*} + \varepsilon)) \subseteq \mathbf{S}^* \subseteq \mathbf{U}^*$ and $\mathbf{T} \in \mathbf{V}_t^*$. Thus $\mathbf{U}^* \in \mathcal{E}_t^*$.

Theorem 4.26 $(\mathbf{X}^{W}, \mathbf{k})$ is a Hausdorff compactification of \mathbf{X} .

Proof. We show that the open $C_{p^{\bullet}}^{\bullet}$ -filter \mathcal{E}_{t}^{*} converges to \mathbf{A}_{t} in \mathbf{X}^{W} . For any open set U in X such that $\mathbf{A}_{t} \in \mathbf{U}^{*}$, by 4.22-2 (c), $\mathbf{U} \in \mathbf{A}_{t}$, by Lemma 4.25, $\mathbf{U}^{*} \in \mathcal{E}_{t}^{*}$. This implies that \mathcal{E}_{t}^{*} converges to \mathbf{A}_{t} in \mathbf{X}^{W} . By Cor. 2.10, \mathbf{X}^{W} is compact. Thus, by 4.22-8 3) and Lemma 4.23, $(\mathbf{X}^{W}, \mathbf{k})$ is a Hausdorff compactification of X. \Box

5. The Homeomorphism between (X^W, k) and (Z, h)

For each basic open C_D^* -filter $\mathbf{A}_r \in \mathbf{X}^W$, let \mathbf{V}_r , as the \mathbf{V}_r defined in Sec. 1, be the open C_p^* -filter base that generates \mathbf{A}_{r} . Since \mathbf{h}^{-1} : $\mathbf{h}(\mathbf{X}) \rightarrow \mathbf{X}$ is one-one, $\mathbf{f} = {}^{\circ}\mathbf{f} \circ \mathbf{h}$ and $\mathbf{h}(\mathbf{X})$ is dense in **Z**, so $h^{-1}(\bigcap_{f \in H} f^{-1}((r_f - \varepsilon, r_f + \varepsilon))) = \bigcap_{f \in H} f^{-1}$ $((\mathbf{r}_{f} - \varepsilon, \mathbf{r}_{f} + \varepsilon)) \neq \phi$ for any $\mathbf{H} \in [\mathbf{D}]^{<\omega}, \mathbf{H} = \{\mathbf{f} | \mathbf{f} \in \mathbf{H}\}$ and any $\varepsilon > 0$. Thus, ${}^{\circ}V_{r} = \{ \bigcap_{f \in {}^{\circ}H} {}^{\circ}f^{-1}((r_{f} - \varepsilon, r_{f} + \varepsilon)) |$ $\bigcap_{\mathbf{f} \in \mathbf{H}} \mathbf{f}^{-1}((\mathbf{r}_{\mathbf{f}} - \varepsilon, \mathbf{r}_{\mathbf{f}} + \varepsilon)) \neq \phi \text{ for any } \mathbf{H} \in [\mathbf{D}]^{<\omega}, \varepsilon > 0 \} \text{ is }$ a well-defined open $C^{\bullet}_{,p}$ -filter base on \mathbf{Z} . Let $^{\circ}\mathbf{A}_{r}$ be the basic open $C^{\bullet}_{,p}$ -filter on \mathbf{Z} generated by $^{\circ}\mathbf{V}_{r}$. Since \mathbf{Z} is compact, ${}^{\circ}A_{r}$ clusters at a $z_{r} \in \mathbb{Z}$. For each ${}^{\circ}f \in {}^{\circ}D$, $z_{r} \in \mathbb{Z}$ $\operatorname{Cl}({}^{\circ}\mathrm{f}^{-1}((\mathrm{r}_{\mathrm{f}} - \varepsilon/2, \mathrm{r}_{\mathrm{f}} + \varepsilon/2))) \subseteq {}^{\circ}\mathrm{f}^{-1}([\mathrm{r}_{\mathrm{f}} - \varepsilon/2, \mathrm{r}_{\mathrm{f}} + \varepsilon/2]) \subset$ $f^{-1}((\mathbf{r}_{f} - \varepsilon, \mathbf{r}_{f} + \varepsilon)) \in \mathbf{V}_{r}$ for all $\varepsilon > 0$; *i.e.*, $f(z_{r}) = r_{f}$ for all $\mathbf{\hat{f}} \in \mathbf{D}$. So $\mathbf{\hat{V}}_{r} = \mathbf{\hat{V}}z_{r}$ and $\mathbf{\hat{A}}_{r} = \mathbf{\hat{A}}z_{r}$. The z_{r} is called *the* w-point in Z induced by \mathbf{A}_r such that $\mathbf{f}(\mathbf{z}_r) = \mathbf{r}_f = \mathbf{f}^*(\mathbf{A}_r)$ for all $\hat{f} \in D$ and $f^* \in D^*$. Vz_r and Az_r are called the *open* $C^*_{o_D}$ -filter base and the basic open $C^*_{o_D}$ -filter at z_r in Z *induced by* \mathbf{V}_{r} *or* \mathbf{A}_{r} , If $\mathbf{z}_{s} \neq \mathbf{z}_{r}$ in \mathbf{Z} , there is a $\mathbf{\hat{f}} \in \mathbf{D}$ such that $f(z_s) \neq f(z_r) = r_f = f^*(A_r)$, so z_r is the unique w-point in Z induced by \mathbf{A}_{r} . If $\mathbf{A}_{t} \neq \mathbf{A}_{r}$, let z_{t} be the w-point in Z induced by \mathbf{A}_{t} . By Lemma 4.23, there is a $\mathbf{g}^* \in \mathbf{D}^*$ such that ${}^{\circ}g(z_t) = g^*(A_t) \neq g^*(A_r) = {}^{\circ}g(z_r)$; *i.e.*, $z_t \neq z_r$. So, if \mathcal{H} : $\mathbf{X}^{W} \rightarrow \mathbf{Z}$ is defined by $\mathcal{H}(\mathbf{A}_{r}) = \mathbf{z}_{r}$, where \mathbf{z}_{r} is the w-point in Z induced by $Å_r$, then \mathcal{H} is well-defined and one-one. For any $z \in \mathbb{Z}$, let \hat{A}_z be the basic open C_{D}^{\bullet} -filter at $z \in \mathcal{L}$ **Z** generated by ${}^{\circ}\mathbf{V}_{z} = \{ \bigcap_{f \in {}^{\circ}\mathrm{H}} {}^{\circ}f^{-1}(({}^{\circ}f(z) - \varepsilon, {}^{\circ}f(z) + \varepsilon)) | {}^{\circ}\mathbf{H}$ $\in [{}^{\circ}D]^{<\omega}, \varepsilon > 0$. Since h is one-one, f = °f o h and h(X) is dense in **Z**, so $h(\bigcap_{f \in H} f^{-1}(({}^{\circ}f(z) - \varepsilon, {}^{\circ}f(z) + \varepsilon))) = \bigcap_{f \in {}^{\circ}H} f^{-1}(f^{-1}(f^{-1}))$

 $\begin{array}{l} ((°f(z) - \varepsilon, °f(z) + \varepsilon))) \cap h(\mathbf{X}) \neq \phi \text{ for any } \mathbf{H} \in [\boldsymbol{D}]^{<\omega}, °\mathbf{H} = \\ \{°f|f \in \mathbf{H}\}, \varepsilon > 0. \text{ Thus } \mathbf{V}_z = \{\cap_{f \in \mathbf{H}} f^{-1}((°f(z) - \varepsilon, °f(z) + \varepsilon))| \\ \cap_{f \in \mathbf{H}} f^{-1}((°f(z) - \varepsilon, °f(z) + \varepsilon)) \neq \phi \text{ for any } \mathbf{H} \in [\boldsymbol{D}]^{<\omega}, \varepsilon > 0\} \\ \text{ is a well-defined open } \boldsymbol{C}_D^*\text{-filter base on } \mathbf{X}. \text{ Let } \mathbf{A}_z \text{ be the basic open } \boldsymbol{C}_D^*\text{-filter on } \mathbf{X} \text{ generated by } \mathbf{V}_z. \text{ If } z_o \text{ is the w-point in } \mathbf{Z} \text{ induced by } \mathbf{A}_z. \text{ Then } °f(z_o) = °f(z) = f^*(\mathbf{A}_z) \text{ for all } °f \in ^{\circ} \boldsymbol{D} \text{ and } f^* \in \boldsymbol{D}^*. \text{ This implies that } z = z_o \text{ in } \mathbf{Z}. \text{ So, for any } z \in \mathbf{Z}, \text{ there is a unique } \mathbf{A}_z \text{ in } \mathbf{X}^W \text{ such that } \mathcal{H}(\mathbf{A}_z) \\ = z. \text{ Hence, } \mathcal{H} \text{ is well-defined, one-one and onto.} \end{array}$

Theorem 5.27 (\mathbf{X}^{W} , k) is homeomorphic to (\mathbf{Z} , h) under the mapping \mathcal{H} such that $\mathcal{H}(k(x)) = h(x)$.

Proof. Since the topologies on **Z** and **X**^W are the weak topologies induced by ${}^{\circ}D$ and D^{*} , respectively, to show the continuity of \mathcal{H} , it is enough to show that for any ${}^{\circ}f \in {}^{\circ}D$ (or $f^{*} \in D^{*}$), any $\varepsilon > 0$, $\mathcal{H}^{-1}({}^{\circ}f^{-1}((t_{f} - \varepsilon, t_{f} + \varepsilon))) = f^{*-1}((t_{f} - \varepsilon, t_{f} + \varepsilon))$. For each \mathbf{A}_{s} in **X**^W, let $\mathbf{V}_{s} = \{ \bigcap_{f \in H} f^{-1}((s_{f} - \varepsilon, s_{f} + \varepsilon)) | \bigcap_{f \in H} f^{-1}((s_{f} - \varepsilon, s_{f} + \varepsilon)) \neq \phi$ for any $\mathbf{H} \in [D]^{\leq \omega}, \varepsilon > 0 \}$ be the open C_{D}^{\bullet} -filter base on **X** that generates \mathbf{A}_{s} . Let z_{s} be the w-point in **Z** induced by \mathbf{A}_{s} , then ${}^{\circ}f(z_{s}) = s_{f} = f^{*}(\mathbf{A}_{s})$. Thus (a): $[\mathbf{A}_{s} \in f^{*-1}((t_{f} - \varepsilon, t_{f} + \varepsilon))]$ iff (b): $[{}^{\circ}f(z_{s}) = f^{*}(\mathbf{A}_{s}) = s_{f} \in (t_{f} - \varepsilon, t_{f} + \varepsilon)]$. Since $\mathcal{H}(\mathbf{A}_{s}) = z_{s}$, so (b) iff (c): $[\mathcal{H}(\mathbf{A}_{s}) = z_{s} \in {}^{\circ}f^{-1}((t_{f} - \varepsilon, t_{f} + \varepsilon))]$ and (c) iff (d): $[\mathbf{A}_{s} \in \mathcal{H}^{-1}({}^{\circ}f^{-1}((t_{f} - \varepsilon, t_{f} + \varepsilon)))]$; *i.e.*, $f^{*-1}((t_{f} - \varepsilon, t_{f} + \varepsilon)) = \mathcal{H}^{-1}({}^{\circ}f^{-1}((t_{f} - \varepsilon, t_{f} + \varepsilon)))$. So, \mathcal{H} is continuous. Since \mathcal{H} is one-one, onto and **Z**, **X**^W are compact Haus-

dorff, by Theorem 17.14 in the Ref. [1, p. 123], \mathcal{H} is a homeomorphism. For that $\mathcal{H}(k(x)) = h(x)$ is obvious from the definitions of k and h. \Box

Corollary 5.28 Let $(\beta \mathbf{X}, \mathbf{h})$ be the Stone-Čech compactification of a Tychonoff space $\mathbf{X}, \mathbf{D} = \{f|f = {}^\circ f \circ \mathbf{h}, {}^\circ f \in \mathbf{C}(\beta \mathbf{X})\}$ and $\mathcal{H}_{\beta}: \mathbf{X}^{W} \to \beta \mathbf{X}$ is defined similarly to \mathcal{H} as above. Then $(\beta \mathbf{X}, \mathbf{h})$ is homeomorphic to $(\mathbf{X}^{W}, \mathbf{k})$ such that $\mathcal{H}_{\beta}(\mathbf{k}(\mathbf{x})) = \mathbf{h}(\mathbf{x})$.

Corollary 5.29 Let $(\gamma \mathbf{X}, \mathbf{h})$ be the Wallman compactification of a normal \mathbf{T}_1 -space $\mathbf{X}, \mathbf{D} = \{\mathbf{f} | \mathbf{f} = {}^\circ \mathbf{f} \text{ o } \mathbf{h}, {}^\circ \mathbf{f} \in \mathbf{C}(\gamma \mathbf{X})\}$ and $\mathcal{H}_{\gamma}: \mathbf{X}^{\mathbf{W}} \to \gamma \mathbf{X}$ is defined similarly to \mathcal{H} as above. Then $(\gamma \mathbf{X}, \mathbf{h})$ is homeomorphic to $(\mathbf{X}^{\mathbf{W}}, \mathbf{k})$ such that $\mathcal{H}_{\gamma}(\mathbf{k}(\mathbf{x})) = \mathbf{h}(\mathbf{x})$.

REFERENCES

- S. Willard, "General Topology," Addison-Wesley, Reading, 1970.
- H. J. Wu and W. H. Wu, "An Arbitrary Hausdorff Compactification of a Tychonoff Space X Obtained from C[•]_D-Base by a Modified Wallman Method," *Topology and its Applications*, Vol. 155, 2008, pp. 1163-1168. doi:10.1016/j.topol.2007.05.021
- [3] J. L. Kelly, "General Topology," Van Nostrand, Princeton, 1955.