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ABSTRACT 

By means of a characterization of compact spaces in terms of open  -filters induced by a D  C*(Y), a ℘x- and open 

-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding Y as a 

dense subspace of ( , ℑℬ) or (Y , ℑℬ), where  = YE  YS,  = YE  YT, YE = {Nx|Nx is a ℘x-filter, x  Y}, YS 

= {ℰ|ℰ is an open -filter that does not converge in Y}, YT = {Å|Å is a basic open 
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DC  -filter that does not converge in 

Y}, ℑℬ is the topology induced by the base ℬ = {U*|U is open in Y, U  } and U* = {ℱ   (or Y )|U  ℱ}. 

Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X can be obtained from a D  C*(X) 
by the similar process in Sec. 3. 
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Tychonoff Space; Normal T1-Space; Compact Space; Compactifications; Stone-Čech Compactification; 
Wallman Compactification 

1. Introduction 

Throughout this paper, [T]<  denotes the collection of all 
finite subsets of the set T. For the other notations and ter- 
minologies in General Topology which are not explicitly 
defined in this paper, the readers will be referred to the 
Ref. [1].  

For an arbitrary topological space Y, let C*(Y) be the 
set of bounded real-valued continuous functions on Y, D 
 C*(Y). It is shown in Sec. 2 that there exists a unique 
rf  Cl(f(Y)) for each f in D such that for any H  [D]< , 
 > 0, fHf−1((rf − , rf + ))  . Let Vr ={fHf−1((rf − , 
rf + ))|fHf−1((rf − , rf + ))   for any H  [D]< ,  > 
0}. Vr is called an open -filter base. An open filter ℰr 
on Y containing an open D -filter base Vr is called an 
open -filter. An open filter År on Y generated by an 
open D -filter base Vr is called a basic open D

DC 

C 

DC 

C  C  -filter. 
By a characterization of compact spaces in Sec. 2 and the 
℘x- and open D -filters process of compactifications in 
Sec. 3, Y can be embedded as a dense subspace of ( SY , 
ℑℬ) or ( TY , ℑℬ), where S  = YE  YS, T  = YE  
YT, YE = {Nx|Nx is a ℘x-filter, x  Y}, YS = {ℰ|ℰ is an 
open D -filter that does not converge in Y}, YT = {Å|Å 
is a basic open -filter that does not converge in Y}, 

ℑℬ is the topology induced by the base ℬ = {U*|U  , 
U is open in Y} and U* = { ℱ  S  (or TY )|U  ℱ}. 
Furthmore an arbitrary Hausdorff compactification (Z, h) 
of a Tychonoff space X can be obtained from a D  
C*(X) by the similar process in Sec. 3. 
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2. Open D
 -Filters and a Characterization 

of Compact Spaces 

Let Y, C*(Y) and D be the sets that are defined in Sec. 1. 
Theorem 2.1 Let ℱ be a filter on a topological space Y. 

For each f  D, there exists a rf  Cl(f(Y)) such that f−1((rf 
− , rf + ))  F   for any F  ℱ and any  > 0. (See 
Thm 2.1 in the Ref. [2, p. 1164].) 

Proof. If the conclusion is not true, then there is an f  
D such that for each rt  Cl(f(Y)), there exist an Ft  ℱ 
and an t > 0 such that Ft  f−1((rt − t, rt + t)) = . Since 
Cl(f(Y)) is compact and Cl(f(Y))  {(rt − t, rt + t)|rt  
Cl(f(Y))}, there exist r1, ···, rn in Cl(f(Y)) such that Y = 
f−1(Cl(f(Y))) = {f−1((ri − i, ri + i))|i = 1, ···, n}. Let Fo = 
{Fi| i = 1, ···, n}, then Fo  ℱ and Fo = Fo  Y  {[Fi 
 f−1((ri − i, ri + i))]|i = 1, ···, n} = , contradicting that  
 ℱ.  

Corollary 2.2 Let Q be an open ultrafilter on Y. For 
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each f  D, there exists a unique rf  Cl(f(Y)) such that (1) 
for any H  [D] , any  > 0, fHf−1((rf − , rf + ))  Q 
and (2) for any H  [D] , any  > 0, fHf−1((rf − , rf + )) 
 . (See Cor. 2.2 in the Ref. [2, p. 1164].) 

Therefore, for a given open ultrafilter Q, Q contains a 
unique open filter base Vr = {fHf−1((rf − , rf + ))| 
fHf−1((rf − , rf + ))   for any H in [D]< ,  > 0}. Vr is 
called an open D -filter base. An open filter ℰr on Y 
containing an open D -filter base Vr is called an open 

-filter. An open filter År on Y generated by an open 

D -filter base Vr is called a basic open D -filter. For 
each f  D, if rf = f(x) for an x in Y, then Vr and År are 
called the open D -filter base and the basic open 

-filter at x, denoted by Vx and Åx, respectively. 
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Definition 2.3 Let L be a family of continuous functions 
on Y. A net {xi} in Y is called a L-net, iff {f(xi)} converges 
for each f  L. 

Theorem 2.4 Let L be a set of continuous functions on 
Y. Then Y is compact iff (1) f(Y) is contained in a com- 
pact set Cf for each f in L, and (2) every L-net has a cluster 
point in Y. 

Proof. Let {xi} be an ultranet in Y. For each f in L, 
{f(xi)} is an ultranet in Cf, hence converges in Cf; i.e., {xi} 
is a L-net. (2) implies that {xi} has a cluster point x in Y. 
Since {xi} is an ultranet, {xi} converges to x. Thus, Y is 
compact. The converse is obvious.  

Corollary 2.5 Let D  C*(Y). If every D-net converges 
in Y, then Y is compact. 

Definition 2.6 If ℱ is a filter on Y, let ℱ = {(x, F)|x  
F  ℱ}. Then ℱ is directed by the relation (x1, F1)  (x2, 
F2) iff F2  F1, so the map P: ℱ  Y defined by P(x, F) 
= x is a net in Y. It is called the net based on ℱ. (See 
Def.12.16 in the Ref. [1, p. 81].) 

Corollary 2.7 If ℱ is a filter on Y, {P(x, F)} is the net 
based on ℱ, then ℱ = {S  Y|P(x, F)} is eventually in S}. 
(See L2) in the Ref. [3, p. 83].) 

Lemma 2.8 Let D  C*(Y). 1) For each open 

D -filter ℰ, let Vr, as the Vr defined in Section 1, be an 
open D -filter base such that Vr  ℰ. Then the net {xF} 
based on ℰ is a D-net such that lim{f(xF)} = rf for each f  
D. 2) For each D-net {xi} in Y, {xi} induces a unique 
open -filer base V{xi} on Y. D

Proof. 1) By Cor. 2.7, {xF} is eventually in f−1((rf − , rf 
+ ))  Vr  ℰ for each f  D and any  > 0. Thus lim{f(xF)} 
= rf for each f  D; i.e., {xF} is a D-net. 2) Let {xi} be a D- 
net. For each f  D, let tf = lim{f(xi)}. Then fHf−1((tf − , 
tf + ))   for any H  [D]< , any  > 0. Let V{xi} = 
{fHf−1((tf − , tf + ))|fHf−1((tf − , tf + ))   for any 
H  [D]< ,  > 0}, then V{xi} is an open D -filter base 
on Y. Since tf is unique for each f  D, thus V{xi} is 
uniquely induced by {xi}.  

Theorem 2.9 Let D  C*(Y). Then, 1) and 2) in the 
following are equivalent: 1) Every D-net converges in Y. 
2) Every open -filter ℰ converges in Y. 

Proof. 1)  2) is obvious by Lemma 2.8 1) above and 
Thm. 12.17 (a) in the Ref. [1, p. 81]. For 2)  1): Let {xi} 
be a D-net in Y, let ℱ = {|O is open and {xi} is eventu- 
ally in O}. Clearly, ℱ is an open filter. For each f in D, let 
tf = lim{f(xi)}, then {xi}is eventually in f−1((tf − , tf + )) 
for any  > 0; i.e., for each f in D, any  > 0, f−1((tf − , tf + 
))  ℱ, so ℱ is an open D -filter. 2) implies that ℱ 
converges to a point x. Thus, for any open nhood Ux of x, 
Ux  ℱ; i.e., {xi} is eventually in Ux. So {xi} converges to 
x.  

Corollary 2.10 If every open -filter ℰ on Y con- 
verges in Y, then Y is compact. 

3. An Open D
 -Filter Process of  

Compactification  

For each x  Y, let Nx = {{x}}  {O|O is open, x  O}. 
Nx is a ℘-filter (See 12E. in the Ref. [1, p. 83] for its 
definition and convergence.) with  = Nx. For each x  Y, 
Nx is called a x-filter. Let YE = {Nx|Nx is a ℘x-filter, x  
Y}, YS = {ℰ|ℰ is an open DC  -filter that does not converge 
in Y}, YT = {Å|Å is a basic open D -filter that does not 
converge in Y}, Y  = YE  YS and  = YE  YT. 
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Lemma 3.11 For each ℱ  S  (or TY ), there is a 
unique rf  Cl(f(Y)) for each f  D such that f−1(rf − , rf + 
)  Vr  ℱ for all  > 0. 

Proof. If ℱ = Nx for an x  Y, then for each f  D, 
f−1((rf − , rf + ))  Vx  Nx for all  > 0, where rf = f(x). If 
ℱ = ℰ (or Å), then there is an open D -filter base Vr, as 
the Vr defined in Sec. 1, such that for each f  D, f−1((rf − , 
rf + ))  Vr  ℰ (or Å) for all  > 0. The uniqueness of rf 
for each f  D follows from Cor. 2.2.  

Definition 3.12 For each open set U   in Y, define 
U* = {ℱ   (or Y )|U  ℱ}. S T

Lemma 3.13 1) For any open set U in Y, U    U*  
; 2) U = Y  U* = SY  (or T ); and 3) for any ℱ in 

 (or ), any open set U   in Y, ℱ  U*  U  ℱ. T

Proof. 1) If U  , pick an x  U, then U  Nx  Nx  
U*; i.e., U*  . If U*  , pick a ℱ  U*, then U  ℱ  
U  . 2) and 3) are obvious from Def. 3.12.  

Lemma 3.14 For any two nonempty open sets S and T 
in Y, 1) S  T iff S*  T*, and 2) (S  T)* = S*  T*, if 
S  T  . 

Proof. 1): (): ℱ  S*  S  ℱ  T  ℱ  ℱ  T*. 
(): S ⊈ T  there is a y  (S – T)  Ny  (S* − T*)  
S* ⊈ T*. 2): By 1) above, (S  T)*  S*  T*. If ℱ  S* 
 T*, then S  ℱ, T  ℱ and S  T  ℱ; i.e., ℱ  (S  
T)*.  

Proposition 3.15 ℬ = {U*|U   is an open set in Y} is 
a base for  (or ). S T

Proof. For (a) in Thm. 5.3 in the Ref. [1, p. 38]: For 
each ℱ  S  (or TY ), pick a O  ℱ. Then O  , ℱ  
O* and O*  ℬ. Thus SY  (or TY ) = {U*|U*  ℬ}. 
For (b): If ℱ  S*  T* for S*, T*  ℬ, then S, T  ℱ,  
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 S  T  ℱ, (S  T)*  ℬ and ℱ  (S  T)*  S*  T* 
 ℬ.  

W W

W W

W W

W
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Equip SY  (or TY ) with the topology induced by ℬ. 

For each f in D, define f*: SY  (or TY )   by f*(ℱ) = rf, 
if f−1((rf − , rf + ))  Vr  ℱ for all  > 0. By Lemma 3.11, 
for each f  D, f* is well-defined and f*( SY ) (or f*( TY ) 
 Cl(f(Y)), thus f* is a bounded real-valued function on 

 (or Y ) such that f*(Nx) = f(x) for all x  Y. W
T

Proposition 3.16 For each f in D, let t  Cl(f(Y)). For 
any ,  with 0 <  < , 1) [f−1((t − , t + ))]*  f*−1((t − , 
t + )), 2) f*−1((t − , t + ))  [f−1((t-, t+))]*. 

Proof. 1): If ℱ  [f−1((t − , t + ))]*, then f−1((t − , t + 
))  ℱ. If f*(ℱ) = e, then f−1((e − , e + ))  ℱ for all  > 
0. Since f−1((t − , t + )  (e − , e + )) = f−1((t − , t + )) 
 f−1((e − , e + ))  ℱ for all  > 0, so (t − , t + )  (e 
− , e + )   for all  > 0. Thus f*(ℱ) = e  [t − , t+]  
(t − , t + ); i.e., ℱ  f*−1((t − , t + )). 2): If ℱ  f*−1((t 
− , t + )), then f*(ℱ) = s  (t − , t + ) and f−1((s − , s + 
))  ℱ for all  > 0. Pick  > 0 such that (s − , s + )  (t 
− , t + ). Then S = f−1((s − , s + ))  f−1((t − , t + )) 
and S  ℱ. Thus f−1((t − , t + ))  ℱ; i.e., ℱ  [f−1((t − , 
t + ))]*.  

Proposition 3.17 For each f  D, f* is a bounded real- 
valued continuous function on  (or ). T

Proof. For any ℱ  S  (or TY ), let f*(ℱ) = t. We 
show that for any  > 0, there is a U*  ℬ such that ℱ  
U*  f*−1((t − , t + )). Let U = f−1((t − /2, t + /2)). 
Since f−1((t − , t + ))  ℱ for all  > 0. Thus, U = f−1((t − 
/2, t + /2))  ℱ; i.e., ℱ  U*. By Prop. 3.16 1), ℱ  U* 
 f*−1((t − , t + )). Thus f* is continuous on Y  (or 

).  

WY

Lemma 3.18 Let k: Y  S  (or T ) be defined by 
k(x) = Nx. Then, 1) k is well-defined, one-one and k−1(U*) 
= U for all nonempty open set U in Y and all U*  ℬ; i.e., 
k is continuous; 2) f* o k = f for all f  D; 3) k(Y) is dense 
in  (or Y ). 

Y

S T

Proof. 1) For any x, y in Y, x = y  Nx = Ny, thus x  y 
 Nx  Ny, so k is well-defined and one-one. For any U* 
 ℬ, by Def. 3.12 and Lemma 3.13 1), U*  , U is open, 
U  . So (a): x  k−1(U*)  (b): Nx = k(x)  U*. By 
Lemma 3.13 3), (b)  (c): U  Nx. By the setting of Nx, (c) 
 (d): x  U. Thus k−1(U*) = U for all U*  ℬ, U   and 
U is open in Y; i.e., k is continuous. 2) is obvious from (f* 
o k)(x) = f*(Nx) = f(x) for all x in Y and all f in D. 3) For 
any U*  ℬ, pick a ℱ  U*, then U  ℱ and U  . Pick 
an x  U, by 1) above, x  U  k(x)  U*; i.e., k(x)  U* 

 k(Y)  . Hence k(Y) is dense in  (or Y ).  S T

Let D* = {f*|f  D}. Then, D*  C*( SY ) (or C*(Y )). 
For each open C*D*-filter ℰt* on SY  (or TY ), let t  = 
{f*H*f*

−1((tf* − , tf* + ))|f*H*f*
−1((tf* − , tf* + ))   

for any H*  [D*]< ,  > 0} be the open 
D -filter base 

on S  (or ) such that   ℰ*
t . Since f* o k = f, k is 

one-one and k(Y) is dense in SY  (or ), so k(fHf−1 

((tf* − , tf* + ))) = [f*H*f*
−1((tf* − , tf* + ))]  k(Y)  

 for any H*  [D*]< , H = {f  D|f*  H*} and any  > 
0. Thus Vt = {fHf−1((tf* − , tf* + ))|fHf−1((tf* − , tf* + 
))   for any H  [D]< ,  > 0} is a well-defined open 

D
 -filter base on Y. Let ℒS = {U  Y | U is open, U   

and U*  ℰ*
t } and ℒT = Åt, the basic open DC  -filter 

generated by Vt. Since ℰ *
t  is a filter, clearly, by Lemma 

3.14, ℒS is an open filter on Y.  

Y

W
TY *

tV
W
TY

Lemma 3.19 ℒS is an open -filter on Y. D

Proof. For any H  [D]< ,  > 0, let H* ={f*|f  H}, O 
= fHf−1((tf* − , tf* + )) and P = f*H*f*

−1((tf* − , tf* + 
)). Then   P  t   ℰ*

t . By Lemmas 3.13, 14 and 
Prop. 3.16 2), P  O*,   O*  ℰ*

t , O   and O  ℒS. 
This implies that Vt  ℒS.  
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
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* W

WY
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WY W

W
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W

WY
WY

W W

W
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

C

Theorem 3.20 (Y , k) is a compactification of Y. S

Proof. Case 1: If ℒS converges to a point p in Y. Let U 
be any open set in Y such that k(p)  U*  ℬ. By Lemma 
3.18 1), p  U = k−1(U*), thus U  ℒS; i.e., U*  ℰ*

t . This 
implies that ℰ t  converges to k(p) in SY . Case 2: If ℒS 
does not converge in Y, then ℒS  S . For any U* in ℬ 
such that ℒS  U*, U  ℒS and therefore U*  ℰ t . This 
shows that ℰ*

t  converges to ℒS in S . By Cor. 2.10, SY  
is compact and by Lemma 3.18 3), (Y , k) is a compac- 
tification of Y.  

Lemma 3.21 For each open set U  ℒT = Åt, U*  ℰ *
t . 

Proof. If U  Åt, then there exist a H  [D]< , an  > 0 
such that E = fHf−1((tf* − , tf* + ))  Vt and E  U. 
Lemma 3.14 and Prop. 3.16 2) imply that F = f*H*f*

−1 

((tf* − , tf* + ))  E*  U* and F  ℰ*
t . Thus, U*  ℰ*

t . 
 
Theorem 3.22 (Y , k) is a compactification of Y. T

Proof. Case 1: If ℒT = Åt converges to a point p in Y, 
let U be any open set in Y such that k(p)  U*, Lemma 
3.18 1) implies that p  U, thus U  ℒT = Åt. So by 
Lemma 3.21, U*  ℰ*

t . This implies that ℰ*
t  converges to 

k(p) in T . Case 2: If ℒT = Åt does not converge in Y, 
then ℒT = Åt  T . For any U*  ℬ such that Åt  U*, U 
 Åt and by Lemmas 3.21, U*  ℰ*

t . Thus ℰ*
t  converges 

to ℒT = Åt in TY . Cor.2.10 implies that TY  is compact 
and by Lemma 3.18 3), (Y , k) is a compactification of Y. 

 

4. An Arbitrary Hausdorff Compactification 
of a Tychonoff Space 

For an arbitrary Hausdorff compactification (Z, h) of a 
Tychonoff space X, let D = {f|f = ˚f o h, ˚f  ˚D = C(Z)}. 
Then D  C*(X), D separates points of X and the 
topology on X is the weak topology induced by D. For 
each x  X, let Vx, as the Vx defined in Section 2, be the 
open D

 -filter base at x induced by D. Obviously, we 
can easily get Lemma 4.21 as follows: 

Lemma 4.21 GD = {Vx|x  X} is a base for the 
topology on X and for each x  X, Vx is an open nhood 
base at x. 
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Let XW = {Å|Å is a basic open D -filter on X}. For 
each År  XW, let Vr, as the Vr defined in Sec. 1, be the 
open D -filter base that generates År. If År converges to 
an x  X, then for each f  D, x  Cl(f−1((rf − /2, rf + /2)) 
 f−1([rf − /2, rf + /2])  f−1((rf − , rf + )) for all  > 0; 
i.e., rf = f(x) for all f  D, so Vr = Vx and År = Åx. Thus XW 
= XE  XF and XE  XF = , where XE = {Åx|x  X} and 
XF = {Å|Å is a basic open D -filter that does not 
converge in X}. Similar to what we have done in Section 3, 
we can get the similar definitions and results for XW in the 
following: 

C 

C 

C 

C 



C 


D

C 
 *

tV

C

C

4.22-1. For each open set U   in X, define U* = {Å  
XW|U  Å}. 

4.22-2. 1) for any open set U in X, U    U*  ; 2) 
U = X  U* = XW; and (c) for any Å in XW, any open set 
U  , Å  U*  U  Å. 

4.22-3. For any two nonempty open sets S and T in X, 1) 
S  T iff S*  T*, and 2) (S  T)* = S*  T*, if S  T  
. 

4.22-4. ℬ ={U*|U  , U is an open set in X} is a base 
for a topology on X. 

4.22-5. For each f  D, f*: XW   is defined by f*(År) 
= rf, if f

−1((rf − , rf + ))  Vr  År for all  > 0. Then 
f*(Åx) = f(x) for all x  X. 

4.22-6. For each f in D, let t  Cl(f(X)). For any ,  
with 0 <  < , 1) [f−1((t − , t + ))]*  f*−1((t − , t + )), 
2) f*−1((t − , t + ))  [f−1((t − , t + ))]*.  

4.22-7. For each f in D, f* is a bounded real-valued 
continuous function on XW.  

4.22-8. Define k: X  XW by k(x) = Åx, then 1) k is 
well-defined, one-one, and U = k−1(U*) for all open set U 
  in X and all U*  ℬ; i.e., k is continuous, 2) f* o k = f 
for all f in D and 3) k(X) is dense in XW. 

4.22-9. Let D* = {f*|f  D}. Then D*  C*(XW). 
Lemma 4.23 D* separates points of XW. 
Proof. For Ås, Åt  XW, let Vs = {fHf−1((sf − , sf + 

))|fHf−1((sf − , sf + ))   for any H  [D]< ,  > 0} 
be the open D -filter base that generates Ås and similarly 
for Vt. Since Ås = Åt, Vs = Vt and that sf = tf for all f in D 
are equivalent, thus Ås  Åt, Vs  Vt and that there is a g in 
D such that sg  tg are equivalent. So, if Ås  Åt, then g*(Ås) 
= sg  tg = g*(Åt) for some g*  D*.  

Lemma 4.24 The topology on XW is the weak topology 
induced by D*. 

Proof. For each År  XW, let Vr, as the Vr defined in 
Sec. 1, be the open D -filter base that generates År and 
let U*  ℬ such that År  U*, then U  År. So there exist 
a H  [D] , an  > 0 such that fHf−1((rf − , rf + ))  U, 
where fHf−1((rf − , rf + ))  Vr  År for all  > 0. By 
4.22-2 (c), 4.22-3 and 4.22-6 2), År  [fHf−1((rf − /2, rf 
+ /2))]*  f*H*f*

−1((rf − , rf + ))  [fHf−1((rf − , rf 
+ ))]*  U*; i.e., År  f*H*f*

−1((rf − , rf + ))  U*. 
 
For any open -filter ℰ  on XW, let  = {f*H* 

f*−1((tf* − , tf* + ))|f*H*f*
−1((tf* − , tf* + ))   for 

any H*  [D*]< ,  > 0} be the open 
D -filter base that 

is contained in ℰ*
t . Since f* o k = f for all f  D, k is one- 

one and k(X) is dense in XW, so k(fHf−1((tf* − , tf* + ))) 
= f*H*f*

−1((tf* − , tf* + ))  k(X)   for any H*  
[D*]< , H = {f  D|f*  H*}) and any  > 0. Thus Vt = 
{fHf−1((tf* − , tf* + ))|fHf−1((tf* − , tf* + ))   for 
any H  [D]< ,  > 0} is a well-defined open D

*
t

 -filter 
base on X. Let Åt be the basic open C -filter on X 
generated by Vt. 

D


*V

C



Lemma 4.25 For any open set U  Åt, U*  ℰ*
t . 

Proof. For any U  Åt, there exist a H  [D] , an  > 0 
such that fHf−1((tf* − , tf* + )) = S  Vt and S  U. By 
4.22-3 and 4.22-6, T = f*H*f*

−1((tf* − , tf* + ))  S*  
U* and T  . Thus U*  ℰ*

t . t

Theorem 4.26 (XW, k) is a Hausdorff compactification 
of X. 

Proof. We show that the open 
D -filter ℰ*

t  converges 
to Åt in XW. For any open set U in X such that Åt  U*, by 
4.22-2 (c), U  Åt, by Lemma 4.25, U*  ℰ*

t . This implies 
that ℰ *

t  converges to Åt in XW. By Cor. 2.10, XW is 
compact. Thus, by 4.22-8 3) and Lemma 4.23, (XW, k) is a 
Hausdorff compactification of X.  

5. The Homeomorphism between (XW, k) and 
(Z, h) 

For each basic open DC  -filter År  XW, let Vr, as the Vr 
defined in Sec. 1, be the open D-filter base that gener- 
ates År. Since h−1: h(X)  X is one-one, f = ̊ f o h and h(X) 
is dense in Z, so h−1(˚f˚H˚f

−1((rf − , rf + ))) = fHf−1 

((rf − , rf + ))   for any ˚H  [˚D]< , H = {f|˚f  ˚H} 
and any  > 0. Thus, ˚Vr = {°f°H˚f

−1((rf − , rf + ))| 
˚f˚H˚f

−1((rf − , rf + ))   for any ˚H  [˚D] ,  > 0} is 
a well-defined open D

C 

C  -filter base on Z. Let ˚År be the 
basic open D

C -filter on Z generated by ˚Vr. Since Z is 
compact, ˚År clusters at a zr  Z. For each ˚f  ˚D, zr  
Cl(˚f−1((rf − /2, rf + /2)))  ˚f−1([rf − /2, rf + /2])  
˚f−1((rf − , rf + ))  ˚Vr for all  > 0; i.e., ˚f(zr) = rf for all 
˚f  ˚D. So ˚Vr = ˚Vzr and ˚År = ˚Åzr. The zr is called the 
w- point in Z induced by År such that ̊ f(zr) = rf = f*(År) for 
all ˚f  ˚D and f*  D*. ˚Vzr and ˚Åzr are called the open 

D
C -filter base and the basic open D

-filter at zr in Z 
induced by Vr or År, If zs  zr in Z, there is a ˚f  ˚D such 
that ˚f(zs)  ˚f(zr) = rf = f*(År), so zr is the unique w-point 
in Z induced by År. If Åt  År, let zt be the w-point in Z 
induced by Åt. By Lemma 4.23, there is a g*  D* such 
that ˚g(zt) = g*(Åt)  g*(År) = ˚g(zr); i.e., zt  zr. So, if ℋ: 
XW  Z is defined by ℋ(År) = zr, where zr is the w-point 
in Z induced by År, then ℋ is well-defined and one-one. 
For any z  Z, let ˚Åz be the basic open D

-filter at z  
Z generated by ˚Vz = {°f°H˚f

−1((˚f(z) − , ˚f(z) + ))|˚H 
 [˚D] ,  > 0}. Since h is one-one, f = ˚f o h and h(X) is 
dense in Z, so h(fHf−1((˚f(z) − , ˚f(z) + ))) = °f°H˚f

−1 

C

C
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







C t © 

((˚f(z) − , ̊ f(z) + )))  h(X)   for any H  [D]< , ̊ H = 
{˚f|f  H},  > 0. Thus Vz = {fHf−1((˚f(z) − , ̊ f(z) + ))| 
fHf−1((˚f(z) − , ̊ f(z) + ))   for any H  [D]< ,  > 0} 
is a well-defined open DC -filter base on X. Let Åz be the 
basic open DC -filter on X generated by Vz. If zo is the 
w-point in Z induced by Åz. Then ̊ f(zo) = ̊ f(z) = f*(Åz) for 
all ˚f  ˚D and f*  D*. This implies that z = zo in Z. So, 
for any z  Z, there is a unique Åz in XW such that ℋ(Åz) 
= z. Hence, ℋ is well-defined, one-one and onto.  

Theorem 5.27 (XW, k) is homeomorphic to (Z, h) 
under the mapping ℋ such that ℋ(k(x)) = h(x). 

Proof. Since the topologies on Z and XW are the weak 
topologies induced by ˚D and D*, respectively, to show 
the continuity of ℋ, it is enough to show that for any ˚f  
˚D (or f*  D*), any  > 0, ℋ−1(˚f−1((tf − , tf + ))) = 
f*−1((tf − , tf + )). For each Ås in XW, let Vs = 
{fHf−1((sf − , sf + ))|fHf−1((sf − , sf + ))   for any 
H  [D]< ,  > 0} be the open DC -filter base on X that 
generates Ås. Let zs be the w-point in Z induced by Ås, 
then ̊ f(zs) = sf = f*(Ås). Thus (a): [Ås  f*−1((tf − , tf + ))] 
iff (b): [˚f(zs) = f*(Ås) = sf  (tf − , tf + )]. Since ℋ(Ås) = 
zs, so (b) iff (c): [ℋ(Ås) = zs  ˚f−1((tf − , tf + ))] and (c) 
iff (d): [Ås  ℋ−1(˚f−1((tf − , tf + )))]; i.e., f*−1((tf − , tf 
+ )) = ℋ−1(˚f−1((tf − , tf + ))). So, ℋ is continuous. 
Since ℋ is one-one, onto and Z, XW are compact Haus- 

dorff, by Theorem 17.14 in the Ref. [1, p. 123], ℋ is a 
homeomorphism. For that ℋ(k(x)) = h(x) is obvious from 
the definitions of k and h.  

Corollary 5.28 Let (X, h) be the Stone-Čech 
compactification of a Tychonoff space X, D = {f|f = ˚f o h, 
˚f  C(X)} and ℋ:X

W  X is defined similarly to ℋ 
as above. Then (X, h) is homeomorphic to (XW, k) such 
that ℋ(k(x)) = h(x). 

Corollary 5.29 Let (X, h) be the Wallman compactifi- 
cation of a normal T1-space X, D = {f|f = ˚f o h, ˚f  
C(X)} and ℋ:X

W  X is defined similarly to ℋ as 
above. Then (X, h) is homeomorphic to (XW, k) such that 
ℋ(k(x)) = h(x). 

REFERENCES 

[1] S. Willard, “General Topology,” Addison-Wesley, Read- 
ing, 1970. 

[2] H. J. Wu and W. H. Wu, “An Arbitrary Hausdorff Com- 
pactification of a Tychonoff Space X Obtained from 

DC  -Base by a Modified Wallman Method,” Topology 

and its Applications, Vol. 155, 2008, pp. 1163-1168.  
doi:10.1016/j.topol.2007.05.021 

[3] J. L. Kelly, “General Topology,” Van Nostrand, Princeton, 
1955. 

 
 

http://dx.doi.org/10.1016/j.topol.2007.05.021

