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ABSTRACT

In this work, a new class of variational inclusion involving 7T-accretive operators in Banach spaces is introduced and
studied. New iterative algorithms for stability for their class of variational inclusions and its convergence results are

established.
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1. Introduction

Variational inequality theory provides us with a simple,
natural, general and unified framework for studying a
wide range of unrelated problems arising in mechanics,
physics, optimization and control theory nonlinear pro-
gramming, economics, transportation, equilibrium and
engineering sciences.

In recent years, variational inequality has been ex-
tended and generalized in different direction. A useful
and important generalization of the variational inequality
is called variational inclusions see [1-7].

Suppose E is a real Banach space with dual space E”,
norm || and dual pairing (..}, 2° is the family of all
nonempty subsets of E, CB(E) is the family of all non-
empty closed bounded subset of £ and the generalized
duality mapping J, : E —> 2" is defined by

Jq(u):{f* cE :<u,f*>=|f*
17 = [}, v u e,

where g > 1 is a constant. In particular, J, is the usual
normalized duality mapping. It is known that, in general
J, (u)=|lu]" 7, (u) for all u=0 and J, is simple
single valued, if E is strictly convex. The modulus of

smoothness of E is the function p, :[0,00)—>[0,0)
defined by

1
po()=sup 3 sl efu—vl) -l <1 <

A Banach space E is called uniformly smooth if

B

g
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n — 0. E is called g-uniformly smooth, if there
1— t

exists a constant o >0 such that
pp(t)<pt?, g>1.

Note that J, is single valued, if £ is uniformly smooth.
Xu and Roach [8] and Xu [9] proved the following re-
sults.

Lemma 1.1. Let E be a real uniformly smooth Banach
space. Then E is q-uniformly smooth if and only if there
exists a constant ¢, >0 such that for all u,ve E

vl <+ (v, 7, () +, M

Definition 1.1. [10] Let T:E — E be a single-valued
operator and M :E — 2" be a multivalued operator.
M is said to be T-accretive if M is accretive and
(T+pM)(E)=E holdforall p>0.

Remark 1.1. 1) From [11] it is easily establish that if
T =1 (the identity map on E), then the definition of I-
accretive operator is that of m-accretive operator.

2) Example 2.1 in [11] shows that an m-accretive
operator need not be T-accretive for some 7.

Let T:E—E, N:ExE— E Dbe two single valued
mappings. Let M : ExE — 2 be a set-valued mapping
such that for each fixed te £, M(.,t):E—2" be a
T-accretive operator. For given f,g,p:E — E are map-
pings, consider the following problem of finding u € E
such that

0e f(u)—N(uu)+M(pu,gu), (1)

APM
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which is called the generalized nonlinear implicit quasi
variational inclusions.

Special Cases:

1) If E is a Hilbert space, then problem (1) is equiva-
lent to finding « € E such that

pueDom (M (.,gu))
OEf( ) (u u)+M(pu gu)

which is called the generalized nonlinear implicit quasi
variational inclusions, considered by Ding [12] and Fang
etal [13].

2) If M(u,t)=M (u) for all u,reE, then problem
(2) is equivalent to finding u € E such that

pu € Dom (M)
Oef( ) (u u)+M(pu)

where M :E — 2" is a maximal monotone mapping.
The problem (3) was considered by Huang [14].

3) If M (u,t)=0¢(u,t) for each teE, then prob-
lem (2) is equivalent to finding u € E such that

pu eDom(@go(.,gu))
(f (u)=N(uu),v—pu) = p(pu,gu)-p(v.gu),

where @:ExE — Ru{+oo} such that for each re€ F,
@(..t): E—> RU{+} is a proper convex lower semi-
continuous function with

Range(p)mDom(@go(.,t)) 40} %)

@

3)

“

The problem (4) was considered by Ding [15] for g to
be an identity mapping.

4)If f =0 and g is the identity mapping, then prob-
lem (1) is equivalent to finding u € £ such that

pue Dom(M(.,u))

(6)
0e—N(uu)+M (pu,u),

which is called the generalized strongly nonlinear im-
plicit quasi variational inclusions, considered by Shim et
al. [16].

Remark 1.2. For a suitable choice of f, g, p, N, M and
the space E, a number of classes of variational inequali-
ties, complementarity problems and the variational in-
clusions can be obtained as special cases of the general-
ized nonlinear implicit quasivariational inclusions (1).

Let T:E— E be a strictly monotone operator and
M :ExE —2" be a T-accretive operator. Fang and
Huang [11] defined the resolvent operator

T (v)=(T+pM (1)) (v), Wwe B (D)

By Theorem 2.2 in [11], we know that if T:E > E
is a strictly accretive operator and M :ExE —2° isa
T-accretive operator, then the operator J;'\*':E —E

Copyright © 2012 SciRes.

is a single valued. From the proof of Theorem 2.3 in [11],
it is easy to obtain the following result.

Lemma 1.2. [10] Let T:E — E be a strictly accre-
tive operator with constant A >0 and for each fixed
teE, M:ExE —2" be a T-accretive operator then
the operator J?ﬁ'”) :E — E is Lipschitz continuous with

I .
constant — , 1.e.,
A

[0 ()= T35 (v ”S%"u—v” VuveE.  (8)

Lemma 1.3. Let a and b be two nonnegative real
numbers. Then
(a+b)" <27(a" +b7). ©)
Proof.
(a+b)" < (Zmax{a,b})q
<20 (a" 7).

=21 (max {a,b})q

Definition 1.2. Let {M" and M be a maximal mono-
tone mappings for n=0,1,2,---. The sequence {M"}
is said to be graph converges to M (write. M" —S— M)
if for every (u,v) € Graph (M ), there exists a sequences
(u,,v,) € Graph (M") such that u, >u and v, >v

as n-—»o.
Lemma 1.4. [3] Let M" and M be the maximal mono-
tone mappings for n=0,1,2,---. Then M"—<>M if

and only if
I () = T (u), (10)

forevery ue £ and p>0, where J;’I =(I-|—,0M)7l
Lemma 15. Let {a,}, {b,} and {c,} be three se-

quences of nonnegative numbers satisfying the following

condition. There exists a positive integers n, such that

a,, <(1-t,)a, +b,t, +c,, for n>n, (11)

0

where ¢, €[0,1], > ¢, =40,

limb, =0 and

n—o0

> ¢, <+o.Then a, >0 as n—>oo.
n=0

Proof. Let o =inf{a, :n>n,}. Then o>0. Sup-
pose that o >0. Then a,20c>0 for all n=n, It
follows from (11), that

<a,-ot,+tb, +c,
1 12
=a,—| —o—b, tn—latn+cn (12)
2 2

for all n>n,. Since b, >0 as n— oo,
n, 2 n, such that

a

n+l

there exists

foralln > n,.

no

lO'Zb
2
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Combining (11) and (12), we have

1
a,,<a, _Eo-t" +c,

n+l

for all n 2> n,, which implies that
1 o0 o0
—O'Z t,<a, + z ¢, <+oo.
ﬂ:"l n:nl
This is a contradiction. Therefore, o =0 and so there

exists a subsequence {an}c {a,} such that a, —0
J

as j — oo, It follows from (11) that

a,. <a, +bn]_ L, +c,

Myl

and so a, —0 as j—oo. A simple induction leads
to a —)0 as j— oo for all k>1 and this means

that a+ — 0 as n— . This completes the proof.

Lemma 1.6. Let T :E — E be a strictly accretive op-
erator and for a fixed teE, M:ExE—2" be a
T-accretive operator in the first variable. If u is a solu-
tion of the problem (1) if and only if

g(u) =75 [T (pu)=pf (u)+ pN (u,u) ]
where p >0 isa constant and
J%;"g“) = (T + oM (.,gu))71

Proof. ue E isasolution of (1)

<:>Oef( ) (uu)+M(pugu)

< 0epf(u)—pN(uu)+pM(pu,gu)

< 0e-T(pu)+pf(u)-pN(uu)+T(pu)
+pM(pu gu)

< 0e- [T pu)—pf(u )+pN(uu)}
+(T+pM (., gu))(pu

@puEJK;"g”)[T pu —pf(u)+pN(u,u)1.

2. Existence and Uniqueness Theorems

In this section, we show the existence and uniqueness of

solutions for the problem (1) in terms of Lemma 1.6.
Definition 2.1. Let E be a real uniformly smooth Ba-

nach space and T,g:E — E be two single valued op-

erators; T is said to be
1) Accretive if
<Tu—Tv,Jq (u—v)> >0, Yu,vekE
or, equivalently
<Tu -Tv,J, (u —v)> >0, Yu,vek,

2) Strictly accretive if T is accretive and

Copyright © 2012 SciRes.

<Tu—Tv,Jq (u—v)>=0,ifu=v;

3) Strongly accretive if there exists a constant » >0
such that

<Tu—Tv,Jq(u—v)>2r||u—v||q, Vu,ve E
or, equivalently
<Tu—Tv,J2(u—v)>2r||u—v||2, Yu,ve E;

4) Lipschitz continuous if there exists a constant s > 0

such that
||Tu —Tv" < s||u —v", Yu,veE,

5) Strongly accretive with respect to g if there exists a
constant y >0 such that

<Tu—Tv,Jq(gu—gv)>2y||gu—gv||q, Yu,ve E
or, equivalently
<Tu—Tv,J2 (gu—gv)>_ Yu,veE.

Definition 2.2. Let N:ExXxE —>FE and g:E—E
be the maps, then

1) N(..) issaid to be strongly accretive with respect
to first argument if there exists a constant « >0 such
that

<N(u,.)—N(v,.),Jq(u—v)>2a||u—v||q, Yu,ve E
or, equivalently
<N(u,.)—N(v,.),J2(u—v)>2a||u—v||2, Yu,veE;

2) N is said to relaxed accretive with respect to g if
there exists a constant & >0 such that

(N () =N (v.).7, (gu-gv)) 2 ~¢[gu-o".
Yu,vekE,

3) N is Lipschitz continuous in first argument if there
exists a constant 77 >0 such that

”N(u,.)— N(v,.)" < 77||u —v", Yu,vekE.

Theorem 2.1. Let E be a g-uniformly smooth Banach
space and T:E —>FE be a strongly accretive and
Lipschitz continuous with positive constants y and O
respectively. Let p:E — E be the strongly accretive
and Lipschitz continuous with positive constants « and
P respectively. Let f,g:E—E be Lipschitz con-
tinuous with positive constants u and o respectively.
Let N:EXE — E be relaxed accretive with respect to
p, in the first and second arguments with constants
>0 and >0 respectively, where p, :E—>E s
defined by p,(u)=(Top)(u)=T(pu) for all uekE.
Assume that N is Lipschitz continuous with respect to
first and second argument with constants ©>0 and

APM
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E>0 respectively. Let M :ExE —2" be a T-accre-
tive operator with second argument. If there exist con-
stants p>0 and n>0 such thatforall u,v,w,e E

"JM( g“) JM( gv) )"S?]"gu—gv" (13)
and
1
Q+ZP<L (14)
where
0=(1-ga+C,p")" +no <1
and

"F(u) - F(v)" =

(-

+

S"u—v—(pu—pv)||+%"T(pu)—T(pv)+pN(u,u)—pN(v,v)||+%"pf(u)—pf(v

< "u—v—(pu—pv)||+%||T(pu)—T(pv)+p(N(u,u)—N(V,v))||+§||f(u)—f(v

u—pu-i—Jﬂ”g“)[T(pu)—pf(u)—i—pN(u,u)] {v pv+JT

T[T (pv)=pf (v)+ AN (v0) =S [T ()= pf () + N (v0) ]|

Vg

P=(8" —ap(¢ +o)y'a’ +20C,p! (¢ +£))
+pu<l.

Then the problem (1) has a unique solution u" € E .

Proof. By Lemma 1.6, it is enough to show that the
mapping F:E — E has a unique fixed point u € E
where F'is defined as follows.

F(u)=u—pu+Jy = [T(pu)—pf(u)+pN(u,u)]
(15)
forall u e E . From (13) and (15), we have

D[T(pv)-ps (v)+ pN (o) ]

Tpgu[T (pu)-pf(u )+pNuu} er [T (pv)-pf(v )+pva]”

Now since p is strongly accretive and Lipschitz continuous, we have

"u—v—(pu—pv)"q £||u—v||q —q<pu—pv,Jq (u—v)>+Cq ||pu—pv||q

:”u—v—(pu—pv)"S1"/l—qa+Cq,Bq ||u—v||

By the strong accretivity of p with constant « , we have

o= plll =l == o[, (=) 2 (= o, (u =) 2 o]

1
= Ju=v|<—|pu=p

that is
(18)

Similarly, by the strong accretivity of 7" with constant
¥ we have

lpu = p| 2 afju—.

(16)
)+ nllgu -
I+ nefe=-

< fu=A" = gafu v + €, fu [

a7
< (l—qa+Cq,Bq)||u—v||q
"N(u,u)—N(v,u)”ST"u—v". (20)
[V ()= N ()] < =], @1
Since f'is Lipschitz continuous, we get

OGB! 22

(19)

By 7 -Lipschitz continuity of N with respect to first
argument and ¢ -Lipschitz continuity of N with respect
to second arguments, we have

"T(pu)—T(pv)" 2}/||pu—pv||.

Copyright © 2012 SciRes.

Since N:ExE — E is a relaxed accretive with re-
spect to p in the first and second argument with constant
>0 and ®>0 respectively, from (18) and (19), we
have
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<N(u,u)—N(v,u),Jq (T(pu)—T(pv))>
> —.{"T(pu)—T(pv)"q 23
> =¢y" | pu—p|’

>—Cyial ||u - v"q

"T(p”)_T(PV)+P(N(u,u)_N(v’v))”‘f

and similarly
<N(V,u)—N(v,v),Jq (T(pu)—T(pv))>
(24)
> —wy'a|u—|".

From (23) and (24), Lipschitz continuity of 7,p,
Lemma 1.1 and Lemma 1.3, we have

:"T(pu)—T(pV)"q +qp<N(u,u)—N(v,v),Jq (T(pu)—T(pv))>+quq "N(u,u)—N(v,v)”q

(25)

< ||T(pu)—T(pv)||q —qpsy’a’ u—v|" —gpwyial |u-v|" +27 p'C, (z’q + &1 )||u -

< [ﬂ"d" —qp(§+a))}/”aq +24pC, (z’q +& )J"u —v||q .

Now from (16), (17), (22) and (25), we have

"F(u)—F(v)" < {(1—qa+Cq,b’" )l/q +%(5"/§’q —qp({+o)yla’ +21C p° (rq + &1 ))l/q +%+7]0‘}"u—v"

S[Q+%P}"u—v"$ Ol -],

where Q=(l—qa+Cq,6")l/q+770' and

(26)

P=(5qﬂq—qp(é'+a))}/qaq +2chpq (z_q+§q))l/q+pﬂ

1
and 6=0+—P.
© A

From (14), we know that 0 <@ <1. Therefore, there
exists a unique u" € E such that F(u*) =u" . This
completes the proof.

3. Perturbed Algorithms and Stability

In this section, we construct some new perturbed iterative
algorithms with errors for solving the problem (1) and
prove the convergence and stability of the iterative se-
quences generated by the perturbed algorithms with er-
TorS.

Definition 3.1. Let T be a self mapping of E and
X, =f(T,x,) define an iterative procedure which
yields a sequence of point {xn} in E. Suppose that
{xeE:Tx=x}#Q and {x,} converges to a fixed
point x* of T. Let {y,} < E and let

Yus _f(T:yn)

1) If limg, =0 implies that limy, =x", then the

n—o

g, =|

Copyright © 2012 SciRes.

iterative procedure {x,} defined by x,,, =/ (T,x,) is
said to be 7-stable or stable with respect to 7.
2) If Y &, <+ implies that limy, =x", then the
n=0 e
iterative procedure {x,} is said to be almost T-stable.
Some stability results of iterative algorithms have been
established by several authors [17-19]. As was shown by
Harder and Hicks [20], the study on the stability is both
of the theoretical and numerical interest.

Remark 3.1. 4n iterative procedure {x,} which is T-
stable is almost T-stable and an iterative procedure
{x,} which is almost T-stable need not be T-stable [21].

Algorithm 3.1. Let f,p,g,T:E — E and
N:ExE — E be the five single valued mappings. Let
{M"} of M be the set-valued mapping from ExE into
the power set of E such that for each te E, M" (.,t)
and M (.,t) are T-accretive mappings and
M" (.,t)—G)M(.,t). For any given u, € E, the per-
turbed iterative sequence {u,} with errors is defined as
follows:
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un+] = (l_an)un +an |:Vn _pvn +J7/_V’I;('vg"n){ (pvn) pf( ) (vn!vn )}:|+anen +ln
= (1=, ), + B, | w, = pw, + 2 (T (pw, )= o (,) = pN ()} |+ B, @7
w, =(1-7,)u, +7n[ = pu, +J3" T (pu,) = pf (u,)- pN (1,1, )}}nsn

for n=0,1,2,---, where {an} , { ,Bn} and { 7/”} are From Algorithm 3.1, we obtain the following algorithm
three sequences in [0,1], {e,}, {r,}, {s,} and {/} for the problem (3).

are four sequences in E satisfying the following condi- Algorithm 3.2. Let f,p,T:E —> E and
tions: N:ExE —E be four single valued mappings. Let
11m||s " _ hm”e ” _ 11m||r " _ {M”} and M be T-accretive mézppings from E into the
10 n—0 = power of E such that M"———M . For any given
Za i Z" / " < 400, (28) u, € E , define the perturbed iterative sequences {un}

with errors as follows:

un+1 :(l_an)un +an |:V" —an +J74/,[; {T(pvn)_pf(vn)+pN(Vn9vn)}:|+anen +ln

Vi, + B, = P, + 2 (T (p, )= p f (w,)+ N (o, )} |+ B, (29)
w, =(1-7,)u, +}/n[u pu, +JM ( un)—pf(un)—pN(un,un)}J+}/nsn

n=0,1,2,---, then {a”} s {ﬂn} , {7,,} , {en} , {r”} s exists constants p>0 and n>0 such that for each
{s,} and {I,} aresame as Algorithm 3.1. u,v,ze E and n>0

Remark 3.2. For a suitable choice of T, f,g,N,M"

and M, Algorithm 3.1 reduces to several known Algo-
rithms [22-24] as special cases.

Theorem 3.1. Let f,p,g,T and N be the same as in
Theorem 2.1. Suppose that {M "} and M are set-valued
mappings from ExE into the power set of E such that and the condition (13) holds. Let { yn} be a sequence in
for each teE, M"(.,t) and M(.,t) are T-accretive  E and define a sequence {s,} of real numbers as
mappings and M (1) —2>M (.,t). Assume that there follows:

725 (2) =25 (=) < mllu =
(30)

iy (2)= I3, ()| < =]

g, = yn“—{(l—an)y [x —px, +J (g‘n){T(pxn)—pf(xn)+pN(xn,xn)}]+enan+1"}H

—(1=5,) 2, + B[ 2= b2, + TN T (p2,) = p 1 (2,)4 PN (2,02,)} |+ B, (3D
z,=(1-7,) 5, +7, [y,, Py + T (py,) - pf (3,)+ PN (3,9, )}}nsn

where {an} b {IB}'[} > {7/}1} > {en} > {rn} b {Sn} and hmA —O then llmy’ —u .
{1,} are same sequences defined in Algorithm 3.1. Then now

n

the following holds: 3)If limy, =u" implies that lime, =0.
1) The sequence {u,} defined by Algorithm 3.1 con- nro e
verges strongly to the unique solution u" of the prob- Proof. Let u" € E be the unique solution of the prob-
lem (1). lem (1). It is easy to see that the conclusion (1) follows
DIf & =a A +y, with i 2, <+o and from the conclusion (2). Now we prove that (2) is true. It

follows from Lemma 1.6 that

Copyright © 2012 SciRes. APM
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u'=(1-a,)u" +a, [u* —pu’ +Jﬁ()"gu*) {T(pu*)—pf(u*)+pN(u*,u*)}}. (32)

From (27), (31) and (32), we have

*
yn+1_u ||:

e P L o e |

< yn+| _{(1_an)yn +an |:xn _pxn +J;"”;("gxn) {T(pxn)_pf(xlz)+pN(xn’xn )}:|+anen +ln}“

=g, [ v+ 2 1 ()1 (5 (1,08, )]

_{(l_an)u*mn [u*_pu*+J;f§g“’){T(pu*)—pf(u*)+pN(u*,u*)}}}

<g, + "y —-u ||+a “x —u —(px —pu )”

+a, e, +[]

+a, J%:("gx”) {T(pxn )=pf(x,)+pN(x,.x, )} - Jfﬁ"g”*) [T(pu* ) - p(u* ) + pN(u*,u* )} +a, e, | +|IL |

<g, +(l-a "y —u |+a ”x —u —(px - pu )”

v [ [T(px,)= 21 (35,) N (5,0, =255 [T (pu )= pf () pN (a0 )

%,)]-
o, |10 [T (pu )= pf (u )+ pN (u'u') |- 7, [ ' )-pf(u )+pN(u*,u*)]H
)]

a1y ()= ()« o (o)

+a, Jf;(»,gu*)[ ( ) pf +pN u +an||e,,||+||l,,||
<eg, +(1 a, "y —u ||+a “x —u —(px —pu )”

# el ()1 ()= (1 ()= £ () # £V (30,) N () |

+ anr]"gxn —gu*||+ a,G, +a, e[|+ ||

Sgn+(1—an)||yn—u*||+an“xn—u*—(pxn—pu*)”

+%“T(pxn)—T(pu*)+p(N(xn,xn)—N(u*,u*))“

+ 2| ()= £ ()] + o, —u |+ 0,6, + e [+ 1]

S(l—an)"yn —u*||+an Hxn —u —(px,, —pu*)”-i—%”T(pxn)—T(pu*)+p(N(xn,xn)—N(u*,u*))“

+ anfﬂ ||Xn —u" + anna"xn —u" +a,(G, +e,|+A,)+(|L]+ 7.)-
(33)
where
G, = J;Mp(gu) [T(pu*)—pf(u*)+pN(u*’u*)]_Jf£.,gu*) [T(pu*)—pf(u*)+pN(u*,u*)]H 0. (34)

It follows from (17) and (25), that

Copyright © 2012 SciRes. APM
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s{imar- ol -l

“T(pxn)—T(pu*)+,o(N(xn,xn)—N(u*,u*))u < (5"ﬂ" —qp(&+o)yia’ +21pC, (rq + & ))]/q "xn —u*". (35)

Hxn —-u’ —(px" —-pu’ )‘

Substituting (35) into (33), we have ”xn —u*" <(1-5, )”J’n —u*"

| )t Y M Y B

ta, (Gn + "en ” +A4, )+ ("ln " 2 )’ and again
where ||Zn —u*" <(1-y, )"yn —u*”
9=Q+%P andQ=(1—qa+Cqﬂq)l/q +no, +]/n0||yn_u*||+;/nGn+}/n ”Sn" (39)
P=(5"8"=qp(¢ +@)y'a’ +29 p'C, (2" +&* ))l/q+Pﬂ. <(1=7, (=0~ |+ 7.6+ 7 s
(37) <[y, =l +7.(G, +ls.])
From (14), we know that 0<@<1. Similarly, we where (1—}/,, (1—9)) <1.

have From (38) and (39), we get

"xn —u" < (1—/5’,,)||yn —u*||+/5’n6’||yn _u*||+ﬁn7/ne(Gn +[s. )+ 8, (G, +|Ir)
<(1=8,0-0)y, —u'|+ £,7,0(G, +[s.1)+ 5,(G, +]1.]) (40)
<l —w |+ 870G, +ls. )+ £,(G, 1),
since (1 -5.(1 —49)) <1. From (36) and (40), we get
Vot —u*” < (l—an)"yn —u*||+an¢9||yn —u*||+anﬁn;/n6’2(Gn +|s, ) +,8,0(G, +|r,[) + . (G, +]e ||+ A, )+ (L] + z.)
<(1-a0-0)p 4|+ 1-0)e A6, )26, ) +(6. e o 2.)
(41)

Let a,, <(1-1,)a, +b,t, +c,.
4 - "y,, —u*", ¢ - "In "+ 4 1, =a,(1-6) From the assumption, we know that {a,}, {b,}, {c,}
. and {r,} satisfy the conditions of Lemma 1.5. This im-
b, =——[B,7,0° (G, +[s,[)+ B,0(G, +|n]) 42)  pliesthat a, >0 andso y,—u’.
1-6 Next, we prove the condition (3). Suppose that
+(G, +le | +]A.[)- lim y, =u" . It follows (28), (38) and (39) that z, —>u’

We can write (42) as follows: and x, —>u". From (31), we have

oo ={(1=@ )3, v [, 4 (T ()= 0 (3, 49N ) [ 41|

" @3)
<=l 1=, )0, v, 5, =, + 25 (T (x,) = pf (5,) PN (5,05,)) =0
As in the proof of (36), we have
(1-a,)y, +a, [xn = p, + I (T ()= pf (v, )+ pN(xn,xn))}—u* "
<(1-a,)|y, -]+ @8]}, -+ ,G,.
It follows from (43) and (44) that
&y <y —u |+ e, Je. |+ ]+ (1=, )|, —u" |+ 2,0, —u" |+ 2,6, (45)

Copyright © 2012 SciRes. APM
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This implies that lim &, = 0. This completes the proof.

Theorem 3.2. Let f, p, N and T be the same as in Theo-
rem 3.1. Let {M"} and M be T-accretive mappings

&, =

xf’l

Vit —{(l—an)yn +a, [xn - px, +JK; (T(pxn)—pf(xn)+pN(xn,xn))}Lenan +ln}

from E into the power set of E such that M" —S—M .
Assume that there exists constant p >0 such that (14)
hold. Let {yn} be a sequence in E and define {8n} as
follows:

>

(1= 83, + B, 2, = p2, + I AT (p2,) = pf (2,)+ PN (2,02,)} |+ B, (46)

Zn :(1_7/11))}11 +7n |:yn_pyn +J71!/[; {T(pyn)_pf(y;1)+pN(yl1’yl1)}:|+}/nsn

where {an}’ {lgn}’ {7/,,}» {en}’ {rn}’ {Sn} and {ln} are
same in Algorithm 3.2, then

1) The sequence {u,} defined by Algorithm 3.2, con-
verges strongly to unique solution " of the problem (3),

DIf &, =a,A, +y, with Z %, <+o and
n=0

limA, =0, then limy, =u’,

n—o0

3) limy, =u" implies that lime, =0.

n—o0

4. Conclusions

The objective of this paper is to establish existence and
uniqueness results of generalized nonlinear implicit quasi
variational inclusion problem in Banach spaces. We de-
veloped the 7-resolvent operator with T-accretive map-
ping by using the concepts of Fang and Huang [11] and
Peng [10] and proved that the problem (1) is equivalent
to a fixed point problem. On the basis of fixed point
formulation we suggested perturbed iterative algorithm
with errors and by the theory of Hick and Harder [20] we
proved the convergence and stability of iterative se-
quences generated by algorithms.

A further attention is required for the study of varia-
tional inclusions that might provide useful mathematical
tools to deal with the problems arising in mathematical
sciences.
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