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ABSTRACT

The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the
canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold
M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R % N is true.
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1. Introduction

In 1971, J. Cheeger and D. Gromoll [1] proved the fol-
lowing classical:

Cheeger-Gromoll Splitting Theorem: Let M be a
complete Riemannian manifold with

RicM >0.
If there is a line in M, then the isometrically splitting
M =RxN is true.

The proof of Cheeger-Gromoll Splitting Theorem is
based on the sub-harmonicity of the Busemann functions,
we will give some details in what follows. Let M be a
noncompact complete Riemannian manifold and

7 :[0,40) > M

be a ray of M. Busemann function B, is defined as
B, (x) =lim(t—d (x.(t)) (1)

For a given point X in M and an arbitrary t>0, let
¢:[0,]] > M be the normal shortest geodesic from X to
7(t). Supposed that the ball B, (0)cT,M and the ex-
ponential mapping

exp, 1B, (0) > M
is embedding, so
exp, : B, (0) >U =exp, B, (0)
is a differential homeomorphic mapping. Thus for any
yeU, thereis Y € B,(0) such that y=exp, (Y). Let

Y (s) be the parallel vector field along ¢, Y (0)=Y,
and
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5 (s) =e><pg(s)(1—gjv(s).

Thus ¢,(s):[0,1]] > M is a smooth curve which
connects y with y(t). Moreover, ¢, =¢ . Now let
g,(y)= L(gy) and g, =t—0,. Then g, is a smooth
function defined in U. It is easily to know that g, sup-
ports

Bl (y)=t=d(y.7(1)),y eV
at X, which means that
9. (Y)<B(y), yeU, g (x) =B, (x).
By [2], one has
2
1l n-1 S .. .
Ag, (x) = J'O{_I—ZJF[I—TJ RIC(g(S),g(S)):|dS .(2)
The outline of the proof of Cheeger-Gromoll Theorem:
1) It is able to show that
SB, (x)= l1i_>r£O1SB; (x)= lim Ag, (x)=0,
then, B, is subharmonic function, where S is a operator
generalized from Laplace operator A, one can refer to
[2] for details.

2) Since there isaline L=y"Uy ", by 1), one is able
to prove that By+ and B _ are harmonic functions on

M.
3) Let godef =df . By
1 Y
<A¢),¢>=Z|Dxi¢|2 +EA|(p|2 + RIC((p N ), 3)

it can be proved that grad f =(df )* is a unite parallel
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vector field on M, where (0* is the couple tangential
vector field of ¢ induced by the Riemannian metric.

4) By de Rham Partition Theorem, one has that

M =RxN.

Cheeger-Gromoll Splitting Theorem and its proof are
so excellent that there is few generalization can be found,
the only result we known is in Cai’s paper [3], in which a
local splitting theorem was got. In order to narrate our
main result, we quote the following.

Definition 1: Let M be a noncompact complete Rie-
mannian manifold. Suppose that there are two continuous
functions h(s), f(s), se[0,+x), satisfying

I:|f(s)|ds<oo,_[:|h(s)|ds=0, 4)

such that for any normal shortest geodesic ¢:[0,1]—> M,
forany se[0,1]

|Ric(g’(s),g‘(s))| < f(s), Ric(¢(s).¢(s) = h(s)). (%)

then we say M is with Ricci curvature decay to zero.
From the definition, according to (4), (5), it is clear of
that

lim Ric(¢(s),¢ (s)) = 0.

A simple example of h(s) satisfying (4) is defined as

h(s):&s’)z, s e[2kn,(2k+2)n], k=0,1,2,--- Then

(k+1
we have:

Theorem 1: Let M be with Ricci curvature decay to
zero. If there is a line included in M, then isometrically
splitting M = Rx N is still true.

By the way, when one discusses the relationship be-
tween a kind of curvature and topology of a Riemannian
manifold, he generally assume that the sign of the kind of
curvature is fixed, for examples, in [1] and [5], the au-
thors assumed that the manifolds is with nonnegative
Ricci curvature. If without this assumption, the corre-
sponding problem seems more difficult, this is the reason
we write out this short paper, though it is not easy to
construct a manifold with Ricci curvature decay to zero
for the time being.

2. The Proof of Theorem 1

Our argument follows closely that of Cheeger-Gromoll
Splitting Theorem, but we should overcome some diffi-
culties, especially in how to prove grad f is a unite paral-
lel vector field of M.

Lemma 1: Let M be a complete noncompact Rieman-
nian manifold with Ricci curvature decay to zero. Then
the Busemann functions on M are subharmonic.

Proof: Let y:[0.+)—>M be aray in M. Just like
above discussion, we can construct a smooth g, sup-
ports
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B! (y)=t-d(¥.7(t)),yeU

at X. So
Ag, () = j;{_”l_gh[l_ﬂz Ric(g‘(s),g‘(s))}ds

> —nT_1+j;(1—|§jz h(s)ds.

By the assumption (4) and L’Hospital Rule, it is obvi-
ous that

(6)

2
. I S
llgg 0[1—|—j h(s)ds=0, @)
By (6) and (7), we have
SBy(x):}LIESB;(x)z}ggAgt(x)zo, (8)
which means that B, is subharmonic.
The proof of Theorem 1: Let M be a complete non-
compact Riemannian manifold with Ricci curvature de-

cay to zero. Then the Busemann functions on M are sub-
harmonic. If there is a line

7:i(—o,40) > M,

then y" =y |[0,+w) and y = y(—t), te [0,+oo) are rays
in M. It is easily to know that

By+ (x)+ By, (x) <0,

8. (r(1)+8, (r()=0.

By maximum principle, By+ and By, are harmonic
functions on M. By canonical Weyl Theorem (c.f. [2]),
we know that they are all smooth in M. In simplicity, we
set B= By+ . It is well known that

|dB| =|gradB| =1. )
Let
M, :{X|:Xe M,B(X):t},te(—oo,+oo).

By (9), B has not critical point, this means M; is

smooth hypersurface of M.

Supposed that X and Y are tangential vector fields on
M, the Hessian of B satisfies

D*B(X.Y)=D’B(Y,X)
(DygradB,Y)=D’B(X.Y)=D’B(Y,X)
= (D, gradB, X )
In particular, by (9),

0=2(D, gradB, gradB) = 2<D gradB, X> )

gradB

Since X is an arbitrary tangential vector field on M, we
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have
DyraegradB =0.

This means the integral curves of grad B are the ge-
odesics in M. It is clear that grad B is unit normal vector
field of M. By reviewing the definition of mean curva-
ture of the horizontal hypersurface M;, we have

H =LtrachB:lAB=O. (10)
n-1 n

Setting N = gradB, by 1.5.8 of [4],
H'< -1 Ric(N,N)-H?,
n-1
which means that
RiC(N,N)SO, (11)

Let ¢ = g(s) be the shortest geodesic from X to
7(t) as before, where | is the length of ¢(s), without
loss of the generality, we can assume that

Ihm gl = gx

is a ray emanating from X, which is asymptotic to y . By
[2,5], we know that

B(s, (t))=B(x)+t, vt €[0,4w),

which means that ¢, is a integral curve of N = gradB
and ¢, =N.
Now by (4), (5) and (6),

ozllggj;(l—%j)zh(s)ds
S}LIEJJ(I—IEJZRiC(g’,(S),g'l (s))ds 03

 lim [!Ric(¢, (). (5))ds

sgﬂ“f (s)|ds<oo.
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by Lebesgue Control Convergent Theorem, by (4), (5)
and (13), we have

I:Ric(N,N)ds=0, (14)

By (11), (14), we have
Ric(N,N)=0.

By (3), it is easily know that N =gradB is a unit
parallel vector field of M. By de Rham Partition Theorem,
we have M =Rx N . Thus we get Theorem 1.
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