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ABSTRACT 

The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the 
canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold 
M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true. 
 
Keywords: Cheeger-Gromoll Theorem; Busemann Function; Complete Riemannian Manifold; Ricci Curvature Decay 

to Zero 

1. Introduction 
   

In 1971, J. Cheeger and D. Gromoll [1] proved the fol-
lowing classical:  

Cheeger-Gromoll Splitting Theorem: Let M be a 
complete Riemannian manifold with  

0RicM  . 

If there is a line in M, then the isometrically splitting 
M R N 

 : 0,

 is true. 
The proof of Cheeger-Gromoll Splitting Theorem is 

based on the sub-harmonicity of the Busemann functions, 
we will give some details in what follows. Let M be a 
noncompact complete Riemannian manifold and 

M  

B

 

be a ray of M. Busemann function   is defined as 

  li
t

  m ,B x t d x t 

0t 


r 
          (1) 

For a given point x in M and an arbitrary , let 
: 0, l M 

 t
 be the normal shortest geodesic from x to 

 . Supposed that the ball  and the ex-
ponential mapping  

 0B  xT M

exp : 0x B M 

   exp : 0 exp 0x xB U B  

   

is embedding, so 

 

is a differential homeomorphic mapping. Thus for any 
y U  0Y B, there is   such that  expxy Y . Let 

 be the parallel vector field along  Y s  ,  0Y Y , 
and 

 1
exp 1 .y ss Y s

s    
 

 

  Thus : 0,1y s M   is a smooth curve which 
connects y with  t . Moreover,  . Now let x

  g y Lt y  and t tg t g . Then t g  is a smooth 
function defined in U. It is easily to know that tg  sup-
ports 

    , ,tB y t d y t y U     

at x, which means that 

       , ,t t
t tg y B y y U g x B x   

 

. 

By [2], one has 

    
2

1

20

1
1 , dt

n s
g x Ric s s s

ll
 

         
   

   . (2) 

The outline of the proof of Cheeger-Gromoll Theorem: 
1) It is able to show that 

     lim lim 0t
t

t t
SB x SB x g x  

   

B

, 

then,   is subharmonic function, where S is a operator 
generalized from Laplace operator , one can refer to 
[2] for details. 



L2) Since there is a line    
B

, by 1), one is able  
Bto prove that 

 
 and 

 
 are harmonic functions on 

M. 
dB df


3) Let  . By   

 2 21
, ,

2iX
i

D Ric          

 *

,    (3) 

*The paper is supported by NSF of Fujian province and Pan Jinlong’s 
SF of Jimei University, China. grad f df  is a unite parallel it can be proved that 
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vector field on M, where  is the couple tangential 
vector field of 


  induced by the Riemannian metric. 

4) By de Rham Partition Theorem, one has that 
M R N  . 

Cheeger-Gromoll Splitting Theorem and its proof are 
so excellent that there is few generalization can be found, 
the only result we known is in Cai’s paper [3], in which a 
local splitting theorem was got. In order to narrate our 
main result, we quote the following. 

Definition 1: Let M be a noncompact complete Rie-
mannian manifold. Suppose that there are two continuous 
functions ,  h s  f s ,  0,s  , satisfying 

   
0

d ,f s s
0

d 0h s s


   



,        (4) 

such that for any normal shortest geodesic : 0, l M 


, 
for any 0,s l  

        , ,Ric s s f s Ric s        , ,s h s 

   , 0s s   

 h s

 (5) 

then we say M is with Ricci curvature decay to zero. 
From the definition, according to (4), (5), it is clear of 

that 

lim
s

Ric


. 

A simple example of  satisfying (4) is defined as  

 
 

 2

sin s
, 2 π, 2 2 π , 0,1,2,

1
h s s k k k

k
     

  Then 

we have: 
Theorem 1: Let M be with Ricci curvature decay to 

zero. If there is a line included in M, then isometrically 
splitting M R N 

: 0.

is still true. 
By the way, when one discusses the relationship be-

tween a kind of curvature and topology of a Riemannian 
manifold, he generally assume that the sign of the kind of 
curvature is fixed, for examples, in [1] and [5], the au-
thors assumed that the manifolds is with nonnegative 
Ricci curvature. If without this assumption, the corre-
sponding problem seems more difficult, this is the reason 
we write out this short paper, though it is not easy to 
construct a manifold with Ricci curvature decay to zero 
for the time being. 

2. The Proof of Theorem 1 

Our argument follows closely that of Cheeger-Gromoll 
Splitting Theorem, but we should overcome some diffi-
culties, especially in how to prove grad f is a unite paral-
lel vector field of M. 

Lemma 1: Let M be a complete noncompact Rieman-
nian manifold with Ricci curvature decay to zero. Then 
the Busemann functions on M are subharmonic. 

Proof: Let  M  
t

 be a ray in M. Just like 
above discussion, we can construct a smooth g  sup-
ports 

    , ,tB y t d y t y U     

at x. So 

      

 

2
1

20

2

0

1
1 , d

1
1 d

t

l

n s
g x Ric s s s

ll

n s
h s s

l l

 
         

   

      
 





 

．

 (6) 

By the assumption (4) and L’Hospital Rule, it is obvi-
ous that 

 
0

lim 1 d 0
l

l

s
h s s

l

 
2

  
  ,         (7) 

By (6) and (7), we have 

  limSB x S    lim 0t
t

t t
B x g x 

    ,    (8) 

which means that B  is subharmonic. 
a complete non-


The proof of Theorem 1: Let M be 

compact Riemannian manifold with Ricci curvature de-
cay to zero. Then the Busemann functions on M are sub-
harmonic. If there is a line 

 : , M    , 

then  0,| 
  and    , 0,t t       are rays 
y t  that in M. It is easil o know

 B x B
     0,x   

      0.B t B t
 

     

By maximum principle, B
 

 and B
 

are harmonic  

fu he

 

nctions on M. By canonical Weyl T orem (c.f. [2]), 
we know that they are all smooth in M. In simplicity, we  
set B B

 
 . It is well known that 

dB gradB 1.             (9) 

Let  

     : , , ,tM x x M B x t t      . 

By (9), B has not critical point, this means Mt is 
smooth hypersurface of M. 

Supposed that X and Y are tangential vector fields on 
M, the Hessian of B satisfies 

 2 .D B X Y   2 ,D B Y X  

   2 2, . ,

,

X

Y

D gradB Y D B X Y D Y X

D gradB X

 


 

In particular, by (9), 

B

0 2 ,XD gradB g 2 ,gradBradB D gradB X . 

Since X is an arbitrary tangential vector field on e M, w
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ha

0gradBD gradB  . 

This means the integral curves of grad B are the ge-
od

ve 

esics in M. It is clear that grad B is unit normal vector 
field of Mt. By reviewing the definition of mean curva-
ture of the horizontal hypersurface Mt, we have 

21 1
0

1
H tracD B B

n n
   


.       (10) 

N gradB , by 1.5.8 of [4], Setting 

  2,
1

1
H Ric N N H

n
   


, 

which means that 

 , 0c N N  ,             (11) 

Let  l

Ri

s   be the shortest geodesic from x to 
 t  a where l is the length of  s before, s , without 

of the generality, we can assume that  

lim l x

loss 

l
 


  

is a ray emanating from x, which is asymptotic to  . By 
[2,5], we know that 

  B t  x B x   , 0,t t   , 

whic eans that h m x  is a inte radBgral curve of N g  
and x N  . 

No 4),w by (  (5) and (6), 

 

    

   

 

2

0

2

0

0

0

0 lim 1 )

lim 1

lim ,

lim d .

d

, d

d

l

l

l l
l

l

l l
l

l

l

h s s
l

s
Ric s s s

l

Ric s s s

f s s

 

 









  
 

   
 



  









 

 

      (13)

by Lebesgue Control Convergent Theorem, by (4), (5) 
and (13), we have 

 
0

, d 0Ric N N s


 ,           (14) 

By (11), (14), we have 

 , 0Ric N N  . 

By (3), it is easily know that N gradB  is a unit 
parallel vector field of M. By de Rham Partition Theorem, 
we have M R N  . Thus we get Theorem 1. 
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