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ABSTRACT

Faith-Menal counter example is an example (unique) of a right John’s ring which is not right Artinian. In this paper we
show that the ring T which considered as an example of a right Johns ring in the (Faith-Menal) counter example is also
Artinian. The conclusion is that the unique counter example that says a right John’s ring can not be right Artinian is
false and the right Noetherian ring with the annihilator property rl(A) = A may be Artinian.
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1. Introduction

A ring R is called right John’s ring if it is right Noethe-
rian and every right Ideal A of R is a right annihilator i.e.
rl(A) = A for all right ideals A of R.

John’s ([1], Theorem 1) by using a result of Kurshan
([2], Theorem 3.3), showed that a right Noetherian ring is
right Artinian provided that every right ideal is a right
annihilator.

Ginn [3] showed that Kurshan result was false. Ginn’s
example does not provide a counter example to John’s
theorem. Therefore the validity of John’s theorem was
doubtful.

Faith-Menal counter example proved that there is an
example (unique) of a right John’s ring which is not right
Artinian.

Here in this paper we prove the false of the Faith-
Menal counter example by proving that the considered
non-Artinian right john’s ring is in fact right Artinian. So
the John’s theorem may be true see [1].

All rings considered in this paper are associative rings
with identity.

We recall the Faith-Menal counter example in Section
1 and we prove that it is false in Section 2.

2. Section 1: The Counter Example

Example 8.16 (Faith-Menal) [4]. Let D be any countable,
extentially closed division ring over a field F, and let R =
D ® ¢F(x). Then T(R, D) is a non-Artinian right John’s ring.

Proof

Cohn shows that R is simple, principle right ideal do-
main that is right V ring (Theorems 8.4.5 & 5.5.5 [4])
and D is an R-R bimodule such that Dy is the unique
simple right R module. Hence T(R, D) is a right John’s
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ring by Theorem 8.15 (in this book). But T(R, D) is not
Artinian because if it were then R would also right
Artinian and hence a field which is a contradiction.

Here

T=R®D and T/(0,d)=R

For more information about this example see [4].

3. Section 2: A Note on the Counter Example

Theorem
The right John’s ring T(R, D) defined in the counter ex-
ample is Artinian.

Proof

Recall the following (Exercises 10.7 [5]):

Let ¢p: D—R be a ring homomorphism and let M be a
right R-module (or left R-module) then

1) Via ¢ M is right D-module;

2) If Mp is Artinian or Noetherian then so is Mg;

3) If R is finite dimensional algebra (via @) over a field
D then the following is equivalent:

a) My, is Artinian and Noetherian
b) My is finitely generated
¢) Mp is finite dimension

1) Consider the ring homomorphism ¢: D — R defined
by ¢ (d) = d® 1. Every R-module homomorphism is a
D-homomorphism via ¢. Since D is a division ring so it
will be semisimple ring and hence every right D-module
is semisimple (Corollary 8.2.2 [3]).

2) Ifthering T=R @D is John’s ring (as in the coun-
ter example above) then it is Noetherian and hence R and D
are Noetherian. As D is right Noetherian ring then every
finitely generated right D module is Noetherian (6.1.3 [6]).

3) Every finitely generated right D-module M is semi-
simple so it is right Artinian.
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4) Since every finitely generated right D-module M is
Artinian and Noetherian then M is Artinian and Noethe-
rian as an R-module.

5) Now since R is simple principle ideal domain then
R is a finite dimensional k-algebra where k is a subring
of the center of R with identity 1z and hence R is a finite
dimensional algebra over the field Z (D) the center of D.

Applying the above equivalence we get that every
finitely generated right R-module is Artinian and hence
R is right Artinian and this imply that T is also Artinian.

4. Conclusion

The conclusion is that the unique example that says a right
John’s ring can not be right Artinian is false.
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