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Abstract

In this work, we introduce a class of Hilbert spaces ]—“q of entire functions on the disk D(O, ! J,
Ji-q
0<qg <1, with reproducing kernel given by the g-exponential function €, (Z); and we prove some proper-
ties concerning Toeplitz operators on this space. The definition and properties of the space 7, extend
naturally those of the well-known classical Fock space. Next, we study the multiplication operator Q by z
and the g-Derivative operator D, on the Fock space F ; and we prove that these operators are ad-

joint-operators and continuous from this space into itself. Lastly, we study a generalized translation operators
and a Weyl commutation relations on 7, .

Keywords: g-Fock Spaces, g-Exponential Function, g-Derivative Operator, -Translation Operators,
g-Toeplitz Operators, g-Weyl Commutation Relations

1. Introduction associated to the g-exponential function and we give
some applications.

In 1961, Bargmann [1] introduced a Hilbert space F In the first part of this work, building on the ideas of

of entire functions f(z)=)" a,z" on C such that Bargmann [1], we define the g-Fock space F, as the

space of entire functions f(z)=)" a z" on the disk

[ = e " nt<co. .
n=0 of center 0 and radius

D {o,
On this space the author study the differential operator V-4 V-4
D=d/dz and the multiplication operator by z, and that

, and such

proves that these operators are densely defined, closed R PR (q;q)
and adjoint-operators on F (see [1]). Next, the Hilbert 1] =>|an - <00
space F is called Segal-Bargmann space or Fock 4 n=0 (1_ q)
space and it was the aim of many works [2,3]. Let f and g bein £, such that
In thi ider the g- ial function: . N e :
n this paper, we consider the g-exponential function ¢ (Z) _ anoanzn and g (Z) _ Zn:()bnzn . the inner pro-
n
e (Z):= N (l_q) ", duct is given by
o (a:9), = (g;q)
— n
where <f,g>f°‘ ngoanbn(l—Q)n.
n-1 )
(a:09), = (l—q'“), n=1,2,---,00. The g-Fock space F, has also a reproducing kernel
i=0 K, given by
We discuss some properties of a class of Fock spaces 1
"Author partially supported by DGRST project 04/UR/15-02 and /Cq (W’ Z) & (WZ); w,zeD [0’ - q J

CMCU program 10G 1503.
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Thenif f e F, » we have

1
<f,ICq (W,.)>qu =f(w), we D[o,ﬂ}

Using this property, we prove that the space F, is a
Hilbert space and we give an Hilbert basis.

Next, we define and study the Toeplitz operators of
the g-Fock space 7.

In the second part of this work, we consider the
multiplication operator Q by z and the g-Derivative
operator D, on the Fock space F,, and we prove that
these operators are continuous from 7, into itself, and
satisfy:

ot <

J— =l Iefl;, < J— ——Ils,-

Then, we prove that these operators are adjoint-ope-

rators on ,7-; :

(Qf,g)fq =<f,Dqg>fq; f.ge 7,

Next, we define and study on the Fock space F, the
g-translation operators:

and the generalized multiplication operators:

1
M, f(w):=¢,(2Q)f(w); wze D{o,ﬂ].

Using the previous results, we deduce that the ope-

ous from F, into itself, and satisfy:

e 1, e <2 |1,
F q /_1_ F
1L, <o e

Lastly, we establish Weyl commutation relations be-
tween the translation operators z, and the multipli-

relations are realized on the Fock space 7 .

7, f(w):= eq(qu) f(w); wze D[o

rators 7, and M,, for ze D[o are continu-

cation operators M, , where a,be D(O These

Copyright © 2011 SciRes.

2. The g-Fock Spaces F, and the Toeplitz
Operators

2.1. Preliminaries

Let a and g be real numbers such that 0<q <1 ;the
g-shifted factorial are defined by

(a;q), =1, (&;q), =

Jackson [4] defined the g-analogue of the Gamma
function as

n-—

(1 aq ) =1,2,++,00.

i
S

)i (Q'Q)

(1 a)”

, x#0,-1,-2,---

It satisfies the functional equation
Fy () =[x, Ty (0, To()=1,

where
1 _ X
(=g
q 1-— q
and tends to I'(x) when g tends to 1°. In particular,
for n=1,2,---, we have

(q,q)nn o],
(1-a)

The Q-combinatorial coefficients are defined for
neN and k=0,---,n, by

The g-derivative D, f ofa suitable function f (see
[5]) is given by

D, (x) =)= (@)
(1-q)x
and D, f(0)=f'(0) provided f'(0) exists.
If f is differentiable then D, f(x) tendsto f'(x)
as q—o>1.
There are two important (-analogues of the expon-
ential function [5]:

L (n+1)=

x =0,

Note that the first series converges for |Z| <oo and

1
the second series converges for | | < —_—

-q°
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Therefore the function I'; has the g-integral repre-
sentation [6]:

1
Ty (x)=[iar~E, (-ar)d,r, x>0, (1)

where the Q-integral (introduced by Jackson [4]) is
defined by

T (x)dx= (1—q)§aQ” f(ag").

Lemma 1. The function e, (1.), A€ D[o,;} is

the unique analytic solution of the g-problem:
D,Y(2)=4y(z). y(0)=1. )

Proof. Searching a solution of (2) in the form

y(z)=> 2,2". Then
qu(z)=gan[n]qz -

Replacing in (2), we obtain

Thus,
a,[n], =4a,,., n=12,
We deduce that
a, = A a
n "~ 1.7 9n-l
[n],
We get
ﬂﬂ
a, =
!
[n]q °
Therefore,

which completes the proof of the lemma. [

2.2. The g-Fock Spaces F,

We denote by
e H (D(o,%}] the space of entire functions on
—q

D(O,LJ.
1-q

Copyright © 2011 SciRes.

e m, the measure defined on D(O,LJ by

q /1_q

dm, (2) :=2LEq (-ar)d,rdg, z= Jre®.
T

. L{D{ \/ll—}qu the space of measurable

functions f on D[ J satisfying

||f||[[ ]] ofe. ]l

Definition 1. We define the prehilbertian space F,
to be the space of functions in

e e e

with the inner product

(f.0), :ID[O,%]f (2)g(z)dm, (2),

f( |2 qu(z)<°°

and the norm

MﬁhmﬂWWmﬂ-

Remark 1. If q— 1", the space F, agrees with the
Segal-Bargmann’s space (see [1]).
Proposition 1. 1) Forall f e such that

f(z)=>"@a,2", wehave
115 = n§0|an|2[n]q ) 3)
2) For all f,geZ such that f(z)= zno n
and g(z)=)" b,z", wehave

(f.0),, = 2ab ]! @
3)For f,g e, wehave
(f.9), = 1(D,)9(0). G(2)=9(2)
Proof. Given f(z)=)" a"eF, and

()ZbZe]:

1) By dominated convergence theorem’s, we have

|f||f I[ IJZ "z dm, (2).
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Weput z=+/re?, then we deduce
o s
I, = S | e, (ana.
But from (1), we have

1
.[Olfqr”Eq (—ar)d,r

Thus,

=1, (n+1)=[n], .

[15, = Xfa[ In], "
n=0

2) We obtain the result from (1) by polarization.
3) Since

D,z :[k]q ' k=1,

then
D'z* = [k, " k=n 5)
4 [k—n]q! o
and
D“g(z):i [kl b, "
4 k=n[k—n]q!
Thus,
o~ Da9(0)
[n],!
and
= Dyg(0) .
g(z)=>— ()z (6)

Thus

which gives the desired result. []

The following theorem prove that F, is a repro-
ducing kernel space.

Theorem 1. The function K, given for

w,zeD o,; , by
N
K, (w.2) = e, (2),

is a reproducing kernel for the g-Fock space 7 , that is:

Copyright © 2011 SciRes.

1) forall weD {O J, the function

1
5 '—l_q
z— K, (w,z) belongsto F,.
1
) ,—1_q
<f,ICq (W,.)>fq = f(w).

Proof. 1) Since

2wz
’Cq(W,Z):Z !'

2)Forall we D[O } and f eZ,, wehave

then from (3), we deduce that

e, f, -3 m_e () <=0

which proves 1).

) If f(2)=)"a

deduce

> N 1
<f,ICq (W,.)>fq :n;)anw =f(w), we D(O’ﬁ}

This completes the proof of the theorem. [J
Remark 2. From Theorem 1 (2), for f € 7, and

we D[o,—\/ll_qu , we have
1/2
w) <oy (w171, = e (o)) 7L, - ®

Proposition 2.
inner product ()f

{&, }neN given by

& (2)=

2" ey, from (4) and (7), we

The space 7, equipped with the
is an Hilbert space; and the set

z zeDjo !
\/@ b b \/ﬁ b
forms an Hilbert basis for the space 7, .

Proof. Let {&} . be a Cauchy sequence in 7.
We put

neN

f =1imf,, in Fy

n—o0

From (8), we have

fp (W), (w)] <[, ()|

This inequality shows that the sequence {f,}  is
pointwise convergent to f . Since the function

foo,—f

n+p n

Fq

1/2
w— [eq (|W|2 )} is continuous on D{O then
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{f.}, convergesto f uniformly on all compact set

Consequently, f isan entire

of D 0,L .
V1=
. 1
functionon D|0,— |,
[ V1-4 J
space F.
On the other hand, from the relation (4), we get

<§n9§m>}-q =

then f belongs to the

where &, is the Kronecker symbol.
This shows that the family {(,‘n}
setin F .

H(2)=2, @7

is an orthonormal
neN

be an element of ]{] such

that
(f.&), =0, VneN.
q
From the relation (4), we deduce that
a,=0, VvnelN

This completes the proof. [
2.3. Toepliz Operatorson F
In this paragraph we study the Toeplitz operators on F, .
These operators generalize the classical Toeplitz opera-

tors [2].
First we define the orthogonal projection operator P

from L?| D 0,L ,m, | into F,,by
1—q q q

Pf (w):=(f,K, (W’-)>L2[D[o,h],mq] :

weD|o, ! ,
Ji-q
where K, is the reproducing kernel given by (7).
Definition 2. Let ¢ be a measurable function on

o

given by

The Toeplitz operator T, is the operator

=P(¢f),

for every

fe D(T¢):={f eF;: ofe LZLD[O, ll_qJ,qu}.

Copyright © 2011 SciRes.

1
Remark 3. Let ¢ L”| D| o, .
[ [ vi-q J]
1) The operator T, is bounded and ||T¢ " < ||¢||oc .

2) By derivation under the integral sign and using (2),
we have T, =D, .

Theorem 2. If g L”{D[o,%}] has compact
—q

support, then T, is a compact operator.

Proof. For ¢eL” [D {O,ﬁD , we have
(Tién& )LZ[D[Oﬁ}mq]
—J[ e w) £, (w)dm, (w).
Since

T¢(§n (W)

:JD[O,ﬁy(z)fn(z)

Applying Fubini's theorem and Theorem 1, we obtain

)t

= <¢§n N >L2{D[°’\/11,_q}mq] .

K, (W,Z)dm, (z).

Thus,

(el i

n,k=0 hfq

2

0
n,k=0

<¢§n"§k >L2[D[o,ﬁ],mq]

Since ¢el” [D{o,%}j with compact support,
-q

there are positive constants a and K so that
|¢(Z)| <K,ae. and ¢(z)=0, for all |z|>a. Then for

k,ne N, we get
! m
NECPR

(#2050
_; o
g )

Ekqu (2).
Thus,
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‘<¢§n Sk >L2{D{o,\/117_q}mq ]

K n+k
SWL@M dm, (2)
a’ (02 d
W‘ e
n+k
n] '[k I ~E, (-qr)d

But from (1), we have
L
Iol-QEq (-ar)d,r=_r,(1)=1.
Hence
K a.n+k )

[n], k],

<¢§n - Sk >L2[D[o,ﬁ],mq] <

Thus, we obtain
2

n,

(Wi lafo | <K@ <

Then, T, is an Hilbert-Schmidt operator [7], and
consequently it is compact. []

0

3. The Multiplication and Translation Operators
on F,

3.1. The Derivative and Multiplication
Operatorson F,

On F

q b
given by

we consider the multiplication operator Q

Qf (z):=f (z).

By straightforward calculation we obtain.
Lemma 2. [Dq,le D,Q-QD, =A,, where A,
is the g-shift operator given by

A, f(2)=f(az).

This lemma is the g-analogous commutation rule of
[1]. When q— 1, then [Dq,Q} tends to the identity
operator | .

We now study the continuous property of the ope-
rators A,, D, and Q on F.

Theorem 3. If feF then A f,
belong to 7, , and we have

Dt <Ifls,

D,f and Qf

Copyright © 2011 SciRes.

2 [ouf],

sl
D 1, <l

Proof. Let f(z)=)" az"eF,.
1) We have

f(az)=>a,a"z",

A f(2)=

a
and from (3), we obtain

Zla o[

It

o' Zla [
2) We have
D, f(z)= 261” [n],2"" =
Then from (9), we get
[o. f"; - nZ:;|<’31n+1|2 (In+1], )2 [n], &
Since
[n+1],1=[n+1], [n], 1,
we obtain
[ouf[}, = e [0+, [0+,
and consequently,

[,

= fanf [n},[n],

Using the fact that [n] < L , we obtain
—q

2.t <

3) On the other hand, since

Qf (2)=Ya,.,2

then
jor, = Sla [0l -
By (10), we deduce

ot = Saf [n+1) 0],

Using the fact that [n+ 1]q < %, we obtain

iaml [n+1], 2"
n=0

nZ(‘;|an|2 [n+1]q 1.

=171, -

q

®

(10)

(1n

| " 172 |
ﬁ{;‘ﬁnr[”]ﬁ} :ﬁ"f”fq-

(12)

(13)
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Iof1l,

J—Ilfllfq

We deduce also the following norm equality.
Theorem 4. 1) If f eF, then

I, =121, + |t

2) The operator Q: 7 —>}'q is injective on .
Proof. Let f(z)=)"

e R,
1) By (13) and using the fact that [n +1]q = [n]q +q",
we obtain

0 2
ot [, = §)|an|2 [[n], +a" ][n], 1=[2, ¢ ||2fq +HAﬁfoq
2) From (1), we have

) 2
otk 2 5],

Therefore Qf =0 implies that f =0. Then

Q:F, — F, is injective continuous operator on F, . [

Proposition 3. The operators Q and D, are ad-
joint-operatorson 7 ; and forall f,ge 7, we have

(Qf,g)qu :<1‘,Dqg>fq
Proof. Consider f(z)=3)" az

9(z)=2, b7"
of (z):ianflz”,

=1

in F, . From (9) and (12),

D,0(z)= nZ:(:)bM [n+1], 2"

>

Thus from (4), we get

which gives the result. []
3.2. The Translation Operators on F,

In this section we study a generalized translation ope-
rators on F, . We begin by the following definition.

we define the g-translation operators on F_ , by

G (qu) f(w)= g’)D: f (w)[ z

n]q!'

Definition 3. For feF and wze D[o

T f(W):=

z

(14)

Copyright © 2011 SciRes.

For w,ze D(O the function e, satisfies

L
5 (—1 — q B
the following product formula:

7.8, (W) =€, (2) € (W).

Proposition 4. Let f(z)=)" az"eF, and
L
J-q )
7, f(w)= Za Z( j VAR AN
q

n=0 k=0

z,weD]|o, Then

Proof. Let f(z)=)"
have

7, f(w)= ni;o D(Er:]("N) ", w,ze D(o,ﬁ].

But from (5), we have

z" e F, . From (14), we

nOn

O

L
e )
we define:

* The generalized multiplication operators on F, by

sz(w):—eq(zQ)f(w)—nioQ”f(W)[r?]n 1

Definition 4. For f €F, and W,ze D[o

* The generalized shift operators on F, , by

)()ZAf()

S, f(w)=¢,(zA [n] -

According to Theorem 3 we study the continuous
property of the operators 7,, M, and S, on F.

r,f, M,f and S,f belongto Z, ,andwe have

z
D e 1], <e [ H]nfnqu

Theorem 5. If f SV and ze D{o then

APM
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2) Il < < il
z Ty q l_q 7q
3) [8.fl,, <e (2],
Proof. From (14) and Theorem 3 (2), we deduce

s I
S

I7. 1, <

Therefore,

12|
el < il

which gives the first inequality, and as in the same
way we prove the second and the third inequalities of
this theorem. []

From Proposition 3 we deduce the following results.

Proposition 5. For all f,g e 7, we have

(M. f.0), =(f.7,0), .

(r.f.9), =(f.M,9),.

We denote by R, the following operator defined on
F, by

q
R, =7;M,-M_z,
e, (1D, )e, ()¢, (10)e, (1D, ).

Then, we prove the following theorem.
Theorem 6. Forall f e Fy > We have

M, =l FE, +{1.R,1),
Proof. From Proposition 5, we get
”Mz f||_27~"q :<f»T;sz>]_.q :<f,(|\/|grz +RZ) f>f

q
:||rzf||;q +(f.R1),

3.3. The Weyl Commutation Relations on F,

Let a,be D{O ] In this paragraph we establish

1
b l_q
Weyl commutation relations between the translation
operators 7, and the multiplication operators M, .
These relations are realized on the Fock space F .

q
b
B (—l_q
1) [D,Q"]=[n], Q™A n=1,2,-.

Lemma3. For a,be D(o ) we have

Copyright © 2011 SciRes.

2) [D,.M, |=bM,A,.
Proof. 1) From Lemma 2, for n=1,2,---

[Dq,Q”J _ ng I:Dq’Q:IQn—k—l _ :Z:;QkAankl.

, we deduce that

Since
A,Q=0QA,,
we get
[D,,Q"]=[n], Q""A,.

Which proves the first equality.
2) We have

[DQ’Mb]:nZZ

b" n
it

Using (1), we obtain

o b"
I:DQ’M:| ZQ lAq [n 1]
o) bn
=b)Q"A, —=DbM A_.
22 g
O
1
Theorem 7. For a,be D(o,—] , we have
Ji-q

,M, =M,7,S

a“ab*

Proof. From Lemma 3 (2), we have
D,M, =M, (D, +bA,).
Then, for n=0,1,2,---, we deduce
n _ n
DiM, =M, (D, +bA,) .
n

[n],!

7,M, = Mg, (aD, +abA, ).

Multiplying by and summing, we get

Since DA, =qA,D,,
e, (aD, +abA,)=e, (aD, )e, (abA, ) =17,S,.

from [5] we get

which completes the proof of the theorem. [
Remark 4. If q — 1", we obtain the classical commu-
tation relations [8]:

[D.Q]=1, e =e"e™e®; abeC.
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