Advances in Pure Mathematics, 2011, 1, 204-209

d0i:10.4236/apm.2011.14036 Published Online July 2011 (http://www.SciRP.org/journal/apm)

o5 Scientific
(> )
+* Research

A Modified Averaging Composite Implicit Iteration Process
for Common Fixed Points of a Finite Family of k-Strictly
Asymptotically Pseudocontractive Mappings

Donatus Igbokwe, Oku Ini
Department of Mathematics, University of Uyo, Uyo, Nigeria
E-mail: {ighokwedi, inioku}@yahoo.com
Received April 4, 2011; revised June 3, 2011; accepted June 10, 2011

Abstract

The composite implicit iteration process introduced by Su and Li [J. Math. Anal. Appl. 320 (2006) 882-891]
is modified. A strong convergence theorem for approximation of common fixed points of finite family of
k —strictly asymptotically pseudo-contractive mappings is proved in Banach spaces using the modified itera-

tion process.
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1. Introduction and Preliminaries

Let E be an arbitrary real Banach space and let J
denote normalized duality mapping from E into 2F
given by

I(x)={t B 1 (x 1) =3 =] [}

where E° denotes the dual space of E and ()
denotes the generalized duality pairing. If E” is strictly
convex, then J is single-valued. In the sequel, we shall
denote single-valued duality mappings by j. A ma-
pping T:K —>K is called k-strictly asymptotically
pseudocontractive with sequence {an} c[1,),
limns@, =1 (see, for example [1]) if for all x,yeK,
there exists j(x—y)eJ(x—y) and aconstant k e [0,1)
such that

<T”x—T”y, j(x—y)>

1)
S%(:L-ipan)")(— y||2 _%(1_k)HX_TnX_(y—Tny) 2

forall neN. If | denotes the identity operator, then
(1) can be written in the form

(117 )
o1 L —opcot

@)
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The class of k- strictly asymptotically pseudocon-
tractive maps was first introduced in Hilbert spaces by
Qihou [2]. In Hilbert spaces, | is the identity and it is
shown in Osilike [3] that (1) (and hence (2)) is equiva-
lent to the the inequality

? san||x—y||2+k“(l —T”)x—(l —T”)y”2 (3)

which is the inequality considered by Qihou [2].

A mapping T with domain D(T) and range
R(T) in E is called strictly pseudo-contractive in the
terminology of Browder and Petryshyn [4] if there exist
A >0 such that

=Ty, j(x=y)) <x=yf = 2|x-y-(x-Ty)[" @

for all x,yeD(T) and for all j(x-y)eJ(x-y).
Without loss of generality we may assume A e(0,1). If
I denotes the identity operator, then (1) can be written
in the form

(=-T)x=(1=T)y, i(x=y)) 2|0 -T)x=(1 =T)y[
©)
In the Hilbert space H, (4) (and hence (5)) is
equivalent to the inequality
ey <yl +kl(-T)x-0-Thf
k=(1-4)<1

-I-n _Tﬂy

and we can assume also that k >0, sothat k €[0,1].
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It is shown in [5] that a strictly pseudocontractive map
is L-Lipschitzian ([Tx—Ty| <[x—y|, forall x,y e D(T)
and for some L>0). It is also shown in [3] that a
k —strictly asymptotically pseudocontractive mapping is
uniformly L —Lipschitzian (i.e. for some L >0,

|T”x—T”y <L|x-y|, for all x,yeK and neN).

The class of k- strictly asymptotically pseudocon-
tractive mappings and the class of strictly pseudo-contra-
ctive mappings are independent (see [1]). The class of
k —strictly asymptotically pseudocontractive mappings
is a natural extension of the class of asymptotically
nonexpansive mappings (i.e. mappings T:K - K
such that

|

and for some sequence {a,} < [l,00) such that

limnse@, =1.) If k=0, we have from (3) (and hence
(1)) that T is asymptotically nonexpansive. In fact, an
asymptotically nonexpansive map is 0 - strictly asymp-
totically pseudocontractive (see Remark 1 [6]). T is
called asymptotically quasi-nonexpansive if there exists
asequence {a,}c[l0) suchthat |im,,.a,=1,and

|T”x—p||gan||x—p||,Vn21 (8)

forall xeK and peF(T)={xeK:Tx=x}

In [7], Xu and Ori introduced an implicit iteration
process and proved weak convergence theorem for
approximation of common fixed points of a finite family
of nonexpansive mappings (i.e. a subclass of asympto-

T"x-T"y

<a [x-y|vn=1,vxyeK (7)

X = X, +(1-a )Ty,
X, = a, % +(1-a,)T,Y,,
Xy = oy Xy + (1= )Ty Yas
_ 2
Xya  ~= Ay Xy +(1_0‘N+1)T1 YN
_ 2
Xz = Qg XN+1+(1_aN+2 )Tz Yni2s
_ 2
oy = sy X2N—1+(1_a2N )TN Yons
_ 3
Xonu = OhnuaXon +(1_a2N+1)T1 Yono1s
_ 3
Xons2 = a2N+2X2N+1+(1_a2N+2 )Tz Yons2:

Our iteration process can be expressed in a compact
form as

X, =a X +(1-a,)T
n an n-1 ( an) i yn n>1 (11)
yn :ﬂnxn—l+(l_ﬂn)Tian
where n=(k-1)N +i,i={1,2,--,N}. Observe that if

T:K—>K is k- strictly asymptotically pseudocon-
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tically nonexpansive mappings for which
[Tx=Ty|<[x-y|. ¥x,yeK).In[8], Osilike extended
the results of [7] from nonexpansive mappings to strictly
pseudocontractive mappings. In [9], Su and Li introduc-
ed a new implicit iteration process and called it
composite implicit iteration process. Using the new
implicit iteration process, they proved the results estab-
lished by Osilike in [8]. In compact form, the composite
iteration process introduced in [9] is the sequence {xn}
generated from arbitrary x, € K by

Xn = anxn—l +(1_an )Tn yn}
yn = ﬁnxn—l +(1_ﬂn)Tan

where {a,}{4,}<[0,1]. In [10] Sun modified the
implicit iteration process of Xu and Ori and applied the
modified iteration process for the approximation of fixed
points of a finite family of asymptotically quasi-nonex-
pansive maps. In compact form, the modified implicit
iteration process of Sun is the sequence {x,} generated
from arbitrary x, € K by

©)

X, = @ X, +(1-a, ) T%,,n21 (10)

where n=(k-1)N+i,iel ={1,2,---N}.

In this paper, we modify (9) as follows. Let K be
a nonempty closed convex subset of E, {Ti}iN:l a finite
family of k—strictly asymptotically pseudocontractive

self-maps of K, then for x, e K and {a,},{f,} =[0.1].

Y1 = BiX +(1_ﬂ1)T1X1

Y, = ﬂle"'(l_ﬁz)-rzxz

Yn = By XN—1+(1_ﬁN )TN Xy
yN+l = ﬁN+1XN +(1_ﬁN+1)T12XN+1
Ynee = PriaXn +(1_ﬁN+2 )TNZXN+2
Yon T ﬁZNXZN—l+(1_ﬂ2N )Tl\fXZN
Yonsr = BonsrXon +(1_IBZN+1)T13X2N+1

_ 3
Yonsr = ﬂZN+2X2N+l+(1_ﬂ2N+2)T2X2N+2

tractive mapping with sequence {a,} = [1,:0) such that
limn.@, =1, then for every fixed ue K and

t,se{L/(1+L),1}, the operator S, :K — K defined
X=tu(1-t)T" (su+(1-s)T"x)
satisfies [S,,,x—S,,,y[|<(1-t)(1-s)L*[x—y],

vx,yeK . Since (1-t)(1-s)L® (0,1), it follows that

for all xeK by S

t,s,n
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S.sn IS a contraction map and hence has a unique fixed
point x .. in K. This implies that there exists a
unique X, € K such that

X on =tU+(1-t)T" (su +(1—s)T”xt,Syn) . Thus our mod-
ified composite implicit iteration process (11) is
defined in K for the family {Ti}iN=l of N k-—strictly
asymptotically pseudocontractive self maps of a
nonempty convex subset K of a Banach space pro-
vided «,, /3, €(n,1) where 7=L/(1+L) and

L = maxaen { L }-

The purpose of this paper is to study the convergence
of the new modified averaging implicit iteration scheme
(11) to a common fixed point of a finite family of
k — strictly asymptotically pseudocontractive maps in
arbitrary Banach spaces. The results presented in this
paper, generalize the result of Su and Li [9] and several
others in the literature (see for example [8], [11], [10],
[7D).

In the sequel, we shall need the following:

Lemma 1.1 OAA ([3], p. 80):

Let {a,}, {b,} and {5,} be three sequences of
nonnegative real numbers satisfying the inequality

<(1+b,)a, +5,,n>1 (12)

n+1

If 6, <o and Y'b <o then [im,,.a, exists.
If in addition {a,} has a subsequence which converges
strongly to zero, then lim,_.a, =0.

Definition 1.1 [12] A bounded convex subset K of a
real Banach space E is said to have normal structure
if every nontrivial convex subset C of K contains at
least one nondimetrial point. That is, there exists
X, € E such that

sup{||xO -x]:x eC} < sup{||x— y|:x,yeC= d(C)}

where d(C) isthe diameter of C

Every uniformly convex Banach space and every
compact convex subset K of a Banach space E has
normal structure. For the definition of modulus of
convexity of E and the characteristic of convexity &,
of E,see[13].

Theorem 1.1 ([13] Corollary 3.6)

Let E be a real Banch space with normal structure
N(E)>max(1,s), & >0, K a nonempty bounded
closed convex subset of E and T:K —>K a uni-
formly L - Lipschitzian mapping with L<a, a>1
Then T has a fixed point.

2. Main Results

Lemma 2.1 Let E be a real Banach space with normal

Copyright © 2011 SciRes.

structure N (E)>max(1,&,)and let K be a nonempty

closed convex subset of E . Let {Ti}iN: , be N k-

strictly asymptotically pseudo-contractive self-maps of K
with sequences {a,, } [1,) such that

> (a,—1)<ow,and let F=nF(T)%J. Let {a,},
{B.}=(n,1) be two real sequences satisfying the condi-
tions:

(i) Y (1-a)=o, (i) Y (1-a,) <o,

(i) Y7 (1-8)<w, (V) (1-a,)1-8,)L <L,
where 7=L/(1+L) and L=maxwen{L} ., L the
Lipschitzian constants of {Ti}iN: .- Let {x,} be the
implicit iteration sequence generated by (11). Then

() limas.[x,

(i) d(x, F) exists, where
d(%,,F)=inf pee [X, = P|

(iii) Iiminfn%”Xn— T.%|=0

Proof

The existence of fixed point follows from Theorem 1.1.

We shall use the well known inequality (see for example
[7,14])

—p| existsforall peF.

Iyl < +(ys i (x=y)) (13)

which holds for all x,y € E and for all
j(x—y)eJ(x—-y). Let peF, then using (11) and
(13) we obtain

b, 0lF = (5,1~ B+ (12, ) (T, ~ )
<al |- p|| +2(1- an)<T Yo = Py i (%, = p))
= [~ ol +2(1-,)
Ly =100 =)+ (T, (%, )
<a .- off +2(1-a,)

Lo =Ml = pl+ 1%, ~ ol |

—2(1—arn)<xn —T%,, § (%, - p)>

n

(14)

Since each T,:K—>K , iel , is k — strictly

asymptotically pseudocontractive, then
<(I “T)x=(1=T") v, i (x- y)>

S L () ETCH
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ki €[0,1). Let k =minicn{k;} . Then

<(I—'I'i”)x—(I—Ti”)y,j(x—y)>

1 n n 1
ZE(l_k)“X_Ti X_(y_Ti y)”z_g(aim —1)||x—y||2
Thus it follows from (14) that
%, - ol <ovzllxnl P + (@-a, )Ly, =, =

(1-a,)[2+(a, 1)) - p[°

—(1-k)(1-a,)[x,

(15)
Observe that
"yn_xn"Sﬂn(l_an) ik — X1 +(1_ﬂn) X Tkx
(16)
"Tikyn X || S (Lﬂn +1)||Xn—1 - p"+ L (1_ﬂn)||xn - p"
17)
and
<(L+1)|x%, - p| (18)

Substituting (16)-(18) into (15), we obtain
[1—2(1—% ) BB,(1-B8,)-2(1-a,)(1- B,)L(L+1)
~(1-a,)(2+(ay —1))J||x - p||2
<a? % —p[ +2(1-a,) LB, (LB, +1)

xecs = Pl = Pl = (2-k) (2= ) x,

(19)

Yk =n, since

Observe that (a, —1)<(a, —1)
={1,2,---,N}. Setting

n=(k-1)N+i,viel
b, =2(1—an) L’B, (1—/3n)
+2(1-a, )’ (1- B, )L(L+1)+(1-a, )(a, -1)
then it follows from (19) that
}II =PI

I - o] { Loa) +

1-2(1-a,)-b
2(1-a,) LB, (LB, +1)
| Ao AL oo

[La-a)a-w |,
1-2(1-a,)—b, I

(20)

Copyright © 2011 SciRes.

Since
1-2(1-a,)-b,
=1-(1-a,)[ 2+(a, -1)
+2(1-a,) BB, (1- B,)+2(1- 4, )L(L+1)]
and {a, }{A} < (n

2+(a, -1)+2(1-a,) LB, (1-8,)+2(1- B,)L(L+1)
<2+(a, -1)+2° +2L(L+1)

1), then we obtain that

Setting M, =2+2L°+2L(L+1) , then there must
exist a natural number N, , such that if n> N, then
1

o ap, <2 (e Xo(-e) <o and

- (&, —1) < o). Therefore it follows from (20) that
[~ o’ <[1+2{(1-a, )" +b,} [Ix, - pf
+2[2(1-a, ) LA, (LA, +1) s = pllx,
~(L-an ) (1-K)]x,
~(L-a ) (1-K)]x,

(21)
Observe that,
I, = bl = (%, ~ p. i (%, p))

=q, ( -p. (% —p)>+(1—an)

(T Y, = p. i (% - p))

=a, (X%a— P, (% - p))+(1-2,)

<T Yo —Ti%,, § (X p)>+(1—an)

<T X, =P (X, — )>

< &y %, = Pl - P+ L(1-e)

{1y = xalll, = pll+ (1= ) LI, ~ pff
(22)

Substituting (16)-(18) into (21) and simplifying this
inequalities, we have

[1-(t-a,) L(1-4,)
~L(t-a)(@-4) (L) ]|, - pff
<[ e, +L(t-a,) £ (LA, +1) [ - pllx, - ol

L-C(1-a,) B

(
)
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a, +L(1-a,)? B, (LB, +1)

"X"_p"Sl_(l IL-L(l-a,) B,(L-5)-

% =l

L(1-«,)(1-4,)(L+1)

_l; B(1-a,) B (1-B)+L(1-a,)1-B)(L+1)+L(1-a,) B, (LB, +1)—(1-«
o 1-(1-a,)L-C(l-a,)? B, (1-B,) -

) i
L(1-a,)(1-5,)(L+1) }" i P (23)

g[u U (1=, ) £y (1= o) L) (1= A)(L+D)+ L (1=, 4, (LA, +1)]uxn_l— o

1-(1-a,)L-LC1-a,) B,(1-5,)-

Now, we consider the second term on the right-hand

side of (23).Since {,}{f,}<=(n.1), then
(1-a,)[ L+ (1-a,) B, (1-B,)+L(1-B,)(L+1) ]
<(l-a,) L+ +L(L+1)]

Set M, =[L+L*+L(L+1)] Since lim,..(1-a,)=0,

then there exists a natural number N,, such that if
n>N, then

1-(1-a, ) L-LC(1-a,) B, (1- B,)
L(1-a,)(1-B)(L+D) 22

2
Again it follows from the condition {a,}{A,}<=(n.1),
that

C(l-a,) 8,1-8,)+L(1-a,)1-5,)(L+1)
+L(1-a,) B, (LB, +1)
<LP(1-a,) +L(1-B,)(L+1)+L(1-a,)’ (L+1)
Therefore it follows from (23) that
[, - pll< f1+2 © (-, +L2-5,)(L+1)
+L(1-a,)" (L+D) ]}~ (24)
= (1+6,) %1 - o]
where
5, =2 U (1-a,) +L(1-4,)(L+D)+L(1-a, )’ (L+1)]

From conditions (ii), (iii) itis easy to see that

0

> {2 (t-a, ) L= ) (L D)+ L(-a, ) (L+D)]

n=1
< +00

Thus using Lemma OOA, we have lim_..|x, - p|
exists, completing the proof of (i). Also it follows from
(24) that d(x,,F)<[1+6,]d(x,, F), and it again
follows from Lemma OOA that |im,.. exists, this

Copyright © 2011 SciRes.

-a,)(1-8,)(L+1)

completes the proof of (ii).

Now, we consider the second term on the right-hand
side of (21). Since {x,} is bounded, {8 }<(n.1),
then there exists a constant M, >0 such that

2| 2(1-a, )" LA, (LA, +1) |[ps = ol .~ |
<4(l-a,) M,
Thus, it follows from (21) that

[~ pff <[ 2+2{(t-a, ) +b,} |, - pf
+2(1—an) Ms—(l—an)(l—k) X,

(25)

Since {x,} is bounded, then there exists a constant
M, >0 suchthat |x, — p|| <M,. It follows from (25)
that

(1-K)(1-a, )%, ~Tx, [
<2M, {(1—% ¥ +bn}+4M3(l—an y

+Hxoos =0l =l — oI

Hence,
Ll 2
(1- )ZN: (1-a ) =T
<oM, Y {(1—051.)2+bn}+4|\/|3 Y (1-a,) ()
J=N+1
+lx = <0
Using condition (ii) and (iii), it follows from (26)
that >~ (1-a, )|[x,
(|), ”minfnaw Xn

liminf o [, ~Ta% | =
Forall n>N wehave T, =T, _,

%

2 M -y
Tian" < oo, and using condition

=0. Thus

so that

T2, =%,
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Thus, liminf o, |X, —T,%,| =0, completing the proof
of (iii).

Theorem 2.1 Let E be a real Banach space with
normal structure N(E)>max(1l,&) and let K be a

nonempty closed convex subset of E . Let {T, }IN: -

{B,} and {x,} beasinLemma2.1. Then {x | exists
in K and converges strongly to a common fixed point
of the mappings {Ti}.N if and only if

i=1

liminf n.d (%,,F)=0 where

d(X,,F)=inf pee X, = | -
PROOF

The existence of fixed point follows from Theorem 1.1.

If {xn} converges strongly to a common fixed point of
of the mappings {T,}IN:l then liminf o[, — p|=0.
Since 0<d(x,,F)<|x, - p|,we have

liminf oo (X, F)=0.

Conversely, suppose [iminf .(X,,F)=0 then our
Lemma implies that [im,..d(x,,F)=0 . Thus for
arbitrary &> 0, there exists a positive integer N, such
that d(x,,F)<e&/4, VnxN, Furthermore )" 5 <o
implies that there exists a positive integer N, such that

Z T: néj <

0 g
then d(x,,F)<e/4 and Zj:Néjgm

, ¥n=N,. Choose N =max{N;,N,},
AM,

For all

n,m>N andforall peF wehave
% =%all < = Pl = P

<l =P+ M 3 6+ = pl+M. 2 4
j=N+

j=N+
<2|x - p||+2M, D5,
i=N
Taking infimum over all p € F, we obtain
o 26 2M¢g
"Xn _an < 2d (XN ! F)+2M4Zj:N§j ST-'_ 4M =€

Thus {x,} is Cauchy. Suppose lims X, =U . Then
ueK since K is closed. Furthermore, since F(T;)
is closed for all iel, we have that F is closed. Since
limn_.d (x,,F)=0, we must have that ueF.
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