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Abstract 
 
The composite implicit iteration process introduced by Su and Li [J. Math. Anal. Appl. 320 (2006) 882-891] 
is modified. A strong convergence theorem for approximation of common fixed points of finite family of 
k  strictly asymptotically pseudo-contractive mappings is proved in Banach spaces using the modified itera-
tion process. 
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1. Introduction and Preliminaries 
 
Let E  be an arbitrary real Banach space and let J  
denote normalized duality mapping from E  into 

*
2E  

given by  

   2 2 2*= : , = ; =J x f E x f x x f  

where *E  denotes the dual space of E  and ,   
denotes the generalized duality pairing. If *E  is strictly 
convex, then J  is single-valued. In the sequel, we shall 
denote single-valued duality mappings by j . A ma- 
pping :T K K  is called k-strictly asymptotically 
pseudocontractive with sequence   [1, )na   , 

1limn na   (see, for example [1]) if for all ,x y K , 
there exists    j x y J x y    and a constant [0,1)k   
such that  

 

      22

,

1 1
1 1

2 2

n n

n n
n

T x T y j x y

a x y k x T x y T y

 

       
 (1) 

for all n N . If I  denotes the identity operator, then 
(1) can be written in the form   

     

       
2 2

,

1 1
1 1

2 2

n n

n n
n

I T x I T y j x y

k I T x I T y a x y

   

       
 

(2) 

The class of k  strictly asymptotically pseudocon- 
tractive maps was first introduced in Hilbert spaces by 
Qihou [2]. In Hilbert spaces, j  is the identity and it is 
shown in Osilike [3] that (1) (and hence (2)) is equiva- 
lent to the the inequality  

    22 2n n n n
nT T y a x y k I T x I T y        (3) 

which is the inequality considered by Qihou [2]. 
A mapping T  with domain  D T  and range 
 R T  in E  is called strictly pseudo-contractive in the 

terminology of Browder and Petryshyn [4] if there exist 
0   such that  

    22
,Tx Ty j x y x y x y Tx Ty          (4) 

for all  ,x y D T  and for all    j x y J x y   . 
Without loss of generality we may assume  0,1  . If 
I  denotes the identity operator, then (1) can be written 
in the form  

          2
,I T x I T y j x y I T x I T y         

(5) 

In the Hilbert space ,H  (4) (and hence (5)) is 
equivalent to the inequality  

   
 

22 2

= 1 < 1

Tx Ty x y k I T x I T y

k 

      


  (6) 

and we can assume also that 0k  , so that [0,1]k  . 
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It is shown in [5] that a strictly pseudocontractive map 
is L-Lipschitzian ( Tx Ty x y   , for all  ,x y D T  
and for some 0L  ). It is also shown in [3] that a 
k  strictly asymptotically pseudocontractive mapping is 
uniformly L Lipschitzian (i.e. for some 0L  , 

n nT x T y L x y   , for all ,x y K  and n N ).  

The class of k  strictly asymptotically pseudocon- 
tractive mappings and the class of strictly pseudo-contra- 
ctive mappings are independent (see [1]). The class of 
k  strictly asymptotically pseudocontractive mappings 
is a natural extension of the class of asymptotically 
nonexpansive mappings (i.e. mappings :T K K  
such that  

1, ,n n
nT x T y a x y n x y K          (7) 

and for some sequence   [1, )na    such that 
1limn na  .) If = 0k , we have from (3)  (and hence 

(1) ) that T is asymptotically nonexpansive. In fact, an 
asymptotically nonexpansive map is 0  strictly asymp- 
totically pseudocontractive (see Remark 1 [6]). T  is 
called asymptotically quasi-nonexpansive if there exists 
a sequence   [1, )na    such that 1limn na  , and  

, 1n
nT x p a x p n              (8) 

for all x K  and    :p F T x K Tx x     
In [7], Xu and Ori introduced an implicit iteration 

process and proved weak convergence theorem for 
approximation of common fixed points of a finite family 
of nonexpansive mappings (i.e. a subclass of asympto- 

tically nonexpansive mappings for which 
Tx Ty x y   , ,x y K  ). In [8], Osilike extended 

the results of [7] from nonexpansive mappings to strictly 
pseudocontractive mappings. In [9], Su and Li introduc- 
ed a new implicit iteration process and called it 
composite implicit iteration process. Using the new 
implicit iteration process, they proved the results estab- 
lished by Osilike in [8]. In compact form, the composite 
iteration process introduced in [9] is the sequence  nx  
generated from arbitrary 0x K  by  

 
 

1

1

= 1

= 1

n n n n n n

n n n n n n

x x T y

y x T x

 

 




  


  
        (9) 

where { },{ } [0,1].n n    In [10] Sun modified the 
implicit iteration process of Xu and Ori and applied the 
modified iteration process for the approximation of fixed 
points of a finite family of asymptotically quasi-nonex- 
pansive maps. In compact form, the modified implicit 
iteration process of Sun is the sequence { }nx  generated 
from arbitrary 0x K  by  

 1= 1 , 1k
n n n n i nx x T x n           (10) 

where    1 , 1, 2, ,n k N i i I N      . 

In this paper, we modify (9)  as follows. Let K  be 
a nonempty closed convex subset of E ,   =1

N

i i
T  a finite 

family of k  strictly asymptotically pseudocontractive 
self-maps of K, then for 0x K  and    , [0,1]n n   .  
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N N N N N N Nn
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=
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Our iteration process can be expressed in a compact 
form as  

 
1

1

= (1 )
1

= 1

k
n n n n i n

k
n n n n i n

x x T y
n

y x T x

 

 




   
  

    (11) 

where    1 , 1, 2, ,n k N i i N      . Observe that if 

:T K K  is k  strictly asymptotically pseudocon- 

tractive mapping with sequence   [1, )na    such that 
1limn na  , then for every fixed u K  and 

  , 1 ,1t s L L  , the operator , , :t s nS K K  defined 

for all x K  by     , , = 1 1n n
t s nS x tu t T su s T x    

satisfies    2
, , , , 1 1t s n t s nS x S y t s L x y     , 

,x y K  . Since     21 1 0,1t s L   , it follows that 
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, ,t s nS  is a contraction map and hence has a unique fixed 
point , ,t s nx  in K . This implies that there exists a 
unique , ,t s nx K  such that 

    , , , ,1 1n n
t s n t s nx tu t T su s T x     . Thus our mod- 

ified composite implicit iteration process (11)  is 

defined in K  for the family   =1

N

i i
T  of N  k  strictly 

asymptotically pseudocontractive self maps of a 
nonempty convex subset K  of a Banach space pro- 
vided  , ,1n n    where  1L L    and 

 1max N iL L . 

The purpose of this paper is to study the convergence 
of the new modified averaging implicit iteration scheme 
(11)  to a common fixed point of a finite family of 
k  strictly asymptotically pseudocontractive maps in 
arbitrary Banach spaces. The results presented in this 
paper, generalize the result of Su and Li [9] and several 
others in the literature (see for example [8], [11], [10], 
[7]). 

In the sequel, we shall need the following:  
Lemma 1.1 OAA ([3], p. 80): 
Let { }na , { }nb  and { }n  be three sequences of 

nonnegative real numbers satisfying the inequality  

 1 1 , 1n n n na b a n              (12) 

If n    and nb    then limn na  exists. 
If in addition { }na  has a subsequence which converges 
strongly to zero, then 0limn na  .  

Definition 1.1 [12] A bounded convex subset K  of a 
real Banach space E  is said to have normal structure 
if every nontrivial convex subset C  of K  contains at 
least one nondimetrial point. That is, there exists 

0x E  such that  

    0 : < : , =sup x x x C sup x y x y C d C     

where  d C  is the diameter of C  
Every uniformly convex Banach space and every 

compact convex subset K  of a Banach space E  has 
normal structure. For the definition of modulus of 
convexity of E  and the characteristic of convexity 0  
of E , see [13].  

Theorem 1.1 ([13] Corollary 3.6) 
Let E  be a real Banch space with normal structure 
   0> 1,N E max  , 0 > 0,  K  a nonempty bounded 

closed convex subset of E  and :T K K  a uni- 
formly L  Lipschitzian mapping with <L  , > 1.  
Then T  has a fixed point.  
 
2. Main Results 
 
Lemma 2.1 Let E  be a real Banach space with normal 

structure    0> 1,N E max  and let K  be a nonempty 
closed convex subset of E . Let   =1

N

i i
T  be N  ik   

strictly asymptotically pseudo-contractive self-maps of K 
with sequences { } [1, )ina    such that 

 =1
1 <inn

a
   , and let  = iF F T   . Let { }n , 

 { } ,1n   be two real sequences satisfying the condi- 

tions: 

( )i   =1
1 nn

a
    , ( )ii   2

=1
1 <nn

   ,  

( )iii   =1
1 nn

    , ( )iv     21 1 < 1n n L   , 

where  1L L   and  1= max i N iL L  , iL  the 

Lipschitzian constants of   =1

N

i i
T . Let  nx  be the 

implicit iteration sequence generated by (11) . Then 

( )i  limn nx p   exists for all p F . 

( )ii   ,nd x F  exists, where 

 , inf p Fn nd x F x p   

( )iii  0liminf n n n nx T x   . 

Proof 
The existence of fixed point follows from Theorem 1.1. 

We shall use the well known inequality (see for example 
[7,14])  

 2 2
,x y x y j x y            (13) 

which holds for all ,x y E  and for all  
   j x y J x y   . Let p F , then using (11)  and 

(13)  we obtain  
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2 1 ,

= 2 1

, ,

2 1

2 1 ,

k
n n n n i n

k
n n n i n n

n n n

k k k
i n i n n i n n

n n n

n n n n

k
n n i n n

x p x p T y p

x p T y p j x p

x p

T y T x j x p T x j x p

x p

L y x x p x p

x T x j x p

 

 

 

 











    

     

  

      

   

      

   

  

(14) 

Since each :iT K K , i I , is ik  strictly 
asymptotically pseudocontractive, then  

     

     
2 2

,

1 1
1 1

2 2

n n
i i

n n
i i i im

I T x I T y j x y

k x T x y T y a x y
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[0,1)ik  . Let  1min i N ik k  . Then  

     

     
2 2

,

1 1
1 1

2 2

n n
i i

n n
i i im

I T x I T y j x y

k x T x y T y a x y

   

       
 

Thus it follows from (14)  that  

 
   

  

2 22
1

2

2

1

1 2 1

1 1

n n n n n n n

n n n

k
n n i n

x p x p L y x x p

x p

k x T x

 

 



      

      

   

 

(15) 
Observe that  

   11 1k k
n n n n i n n n n i ny x T y x x T x          

(16) 

   2
1 11 1k

i n n n n n nT y x L x p L x p          

(17) 

and 

 1k
n i n nx T x L x p             (18) 

Substituting (16)-(18) into (15), we obtain  

       

    
   

   

2 3

2

222
1

2

1

1 2 1 (1 ) 2 1 1 1

1 2 1

2 1 1

1 1

n n n n n

n ik n

n n n n n

k
n n n n i n

L L L

a x p

x p L L

x p x p k x T x

    



   







       

    

    

      

 

(19) 

Observe that    1 1ik ina a   , k n  , since 
 1n k N i   ,  1, 2, ,i I N    . Setting 

   
        

2 2

2

2 1 1

2 1 1 1 1 1

n n n n

n n n n

b L

L L a

  

  

  

      
 

then it follows from (19)  that  

 
 

   
 

2
2 2

1

2

1

2

1
1

1 2 1

2 1 1

1 2 1

(1 )(1 )

1 2(1 )

n n
n n

n n

n n n
n n

n n

kn
n i n

n n

b
x p x p

b

L L
x p x p

b

k
x T x

b




  









  
    

    
  
   

    
  

     

 

(20) 

Since  

 
   

       3

1 2 1

= 1 1 2 1

2 1 1 2 1 1

n n

n in

n n n n

b

a

L L L





   

  

   
      

 

and     ,1n n   , then we obtain that  

         
   

3

3

2 1 2 1 1 2 1 1

2 1 2 2 1

in n n n n

m

a L L L

a L L L

          

     
 

Setting  3
1 2 2 2 1M L L L    , then there must 

exist a natural number 1N , such that if 1n N  then 

 
1

2
1 2 1 n nb


  

, (since  2

=1
1 nn

     and 

 =1
1inn

a
    ). Therefore it follows from (20)  that  
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k
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(21) 

Observe that,  
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(22) 

Substituting (16)-(18) into (21) and simplifying this 
inequalities, we have  
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2

2

1

1 1 1 1

1 1 1

1 1

n n n n

n n n

n n n n n n

L L

L L x p
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n
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123
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n
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L
x p

L L L L

  

     


 
  
          

     (23) 

Now, we consider the second term on the right-hand 
side of (23) . Since     ,1n n   , then  

        
   

3

3

1 1 1 1 1

1 1

n n n n n

n

L L L L

L L L L

    



        
      

 

Set  3
2 = 1M L L L L    . Since  1 0limn n   , 

then there exists a natural number 2N , such that if 

2n N  then  

     

   

231 1 1 1

1
1 1 1

2

n n n n

n n

L L

L L

   

 

    

    
 

Again it follows from the condition     ,1n n   , 
that  
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n n n
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Therefore it follows from (23)  that   
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1

1

1 2 1 1 1

1 1

= 1

n n n

n n

n n

x p L L L

L L x p

x p

 









      

   
 

  (24) 

where 

        2 232 1 1 1 1 1n n n nL L L L L             

From conditions ( )ii , ( )iii  it is easy to see that  

         2 23

=1

2 1 1 1 1 1

<

n n n
n

L L L L L  


        



  

Thus using Lemma ,OOA  we have limn nx p   
exists, completing the proof of ( ).i  Also it follows from 
(24)  that      1, 1 ,n n nd x F d x F   , and it again 
follows from Lemma OOA  that limn  exists, this 

completes the proof of ( )ii . 
Now, we consider the second term on the right-hand 

side of (21). Since { }nx  is bounded,    ,1n  , 
then there exists a constant 3 0M   such that  

   

 

2

1

2

3

2 2 1 1

4 1

n n n n n

n

L L x p x p

M

  




     

 
 

Thus, it follows from (21)  that  
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3

1 2 1
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k
n n n i n

x p b x p

M k x T x



 


        

     
 

(25) 

Since { }nx  is bounded, then there exists a constant 

4 0M   such that 
2

4nx p M  . It follows from (25)  
that  
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k x T x
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     (26) 

Using condition ( )ii  and ( )iii , it follows from (26)  

that  
2

=1
1 <k

n n i nn
x T x    , and using condition 

( )i , = 0liminf
k

n n i nx T x  . Thus 

= 0liminf
k

n n n nx T x  . 

For all n N  we have n n NT T   so that  

1

k k
n n n n n n n n n n

k k
n n n n n n

x T x x T x T x T x

x T x L T x x
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Thus, = 0liminf n n n nx T x  , completing the proof  

of ( ).iii  
Theorem 2.1 Let E  be a real Banach space with 

normal structure    0> 1,N E max   and let K  be a 

nonempty closed convex subset of E . Let   =1

N

i i
T ,  n , 

 n  and  nx  be as in Lemma2.1. Then  nx  exists 

in K  and converges strongly to a common fixed point 

of the mappings   =1

N

i i
T  if and only if 

 , = 0liminf n nd x F  where 

 , = inf p Fn nd x F x p  . 

PROOF 
The existence of fixed point follows from Theorem 1.1. 

If  nx  converges strongly to a common fixed point of 

of the mappings   =1

N

i i
T , then = 0liminf n nx p  . 

Since  0 ,n nd x F x p   , we have 

 , = 0liminf n nx F . 

Conversely, suppose  , = 0liminf n nx F  then our 

Lemma implies that  , = 0limn nd x F . Thus for 
arbitrary 0  , there exists a positive integer 3N  such 

that  , < 4nd x F  , 3n N  . Furthermore 
=1 nn
    

implies that there exists a positive integer 4N  such that 

=
4

<
4jj n M

 , 4n N  . Choose  3 4= max ,N N N , 

then  , 4nd x F   and 
=

44jj N M

  . For all 

,n m N  and for all p F  we have  

4 4
= 1 = 1

4
=

2 2

n m n m

n m

n j N j
j N j N

N j
j N

x x x p x p

x p M x p M

x p M

 



 



    

     

  

 



 

Taking infimum over all p F , we obtain 

  4 =

2 2
2 , 2

4 4n m N jj N

M
x x d x F M

M

         

Thus  nx  is Cauchy. Suppose limn nx u  . Then 
u K  since K  is closed. Furthermore, since  iF T  
is closed for all i I , we have that F  is closed. Since 

 , 0limn nd x F  , we must have that u F . 
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