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Abstract

In this paper we are concerned with the integrability of the fifth Painlevé equation ( £, ) from the point of

view of the Hamiltonian dynamics. We prove that the Painlevé ' equation (2) with parameters
x, =0,x,=-0 for arbitrary complex & (and more generally with parameters related by Béclund

transformations) is non integrable by means of meromorphic first integrals. We explicitly compute formal
and analytic invariants of the second variational equations which generate topologically the differential
Galois group. In this way our calculations and Ziglin-Ramis-Morales-Ruiz-Simé method yield to the

non-integrable results.

Keywords: Differential Galois theory, Painlevé V equation, Hamiltonian Systems, Stokes Phenome-

nonAsymptotic Theory

1. Introduction

The six Painlevé equations (P, — B, ) were introduced
and first studied by Paul Painlevé [1] and his student B.
Gambier [2] who classified all the rational differential
equations of the second order

d’y _ dy

ar R(I’y’ dtj
free of movable critical points. The solutions of these
equations define some new functions, the so-called
Painlevé transcendents or Painlevé functions.

Although the Painlevé equations were discovered from
strictly mathematical considera-tions they have recently
appeared in several physical applications. Among field-
theoretical problems which can be solved in terms of the
considered below Painlevé V' transcendent we mention
the two-point correlation functions at zero temperature
for the one-dimensional impenetrable Bose gas (Jimbo,
Miwa, Mori, Sato [3]).

In the present article we deal with the fifth Painlevé
equation, Py,

2
.. 1 1 )., 1. (y-1 Ko
J’:{—+—jy2—‘y+( 2) (Kiy_—oj
2y y-1 t 2t y (1)

Z+5y(y+l)
t (y—l)

-(6+1)

Copyright © 2011 SciRes.

where teC and «,,x,,0,0 are arbitrary complex
parameters. It is well known that when 6 =0,0=-1
equation (1) can be solved by quadratures, [4]. If
f#—-1 and =0 the fifth Painlevé equation (1) is
equivalent to the third Painlevé equation P, . In this
paper we investigate the generic case of B, when
0 #0 . Hence, by replacing ¢ by +-2d¢t one can
normalize the constant as §=-1/2 [5], and so we
consider

2
-1 2
¥ —(—;y Jr—yl_l)y'2 —% y+ (yzzz) [Kiy——’(yo ]
(2)

_<g+l>%_;gjg

As the Painlevé equations can be written as time-
dependent Hamiltonian systems of 1+1/2 degrees of
freedom (see Malnquist [6] and Okamoto [5]) their
integrability should be considered in the context of
Hamiltonian systems. We recall that by this we mean the
existence of enough meromorphic first integrals (in our
case-two). In [7] Morales-Ruiz raises the question about
the integrability of the Painlevé transcendents as Hamil-
tonian systems. Later Morales-Ruiz in [8], and Stoya-
nova and Christov in [9] obtain a non-integrable result
for Painlevé II family. Non-integrability of the Painlevé
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VI equation for some particular values of the parameters
is proved by Horozov and Stoyanova in [10] and by
Stoyanova in [11]. In the present note we continue the
study of Painlevé transcendents with the fifth Painlevé
equation and obtain an analogous result for one family of
the parameters. Our method uses the differential Galois
approach to non-integrability of Hamiltonian systems [12]
which is an extension of the Ziglin theory [13, 14]. In
particular, studying the differential Galois group of the
first and second variational equations along a particular
rational non-equilibrium solution we can find non-
integrable results. It appears that the corresponding
variational equations have an irregular singularity and
new difficulty have to be overcome.

Our main result is the following theorem:

main Assume that x, =0,x,=-6 where 6 is an
arbitrary complex parameter. Then the fifth Painlevé
equation (2) is not integrable. We chose to investigate
B, (2) for these values of the parameters because then
the Hamiltonian system (11) possesses a simple rational
solution. The point is our method requires one single-
valued solution.

By Bicklund transformations of F, we can extend
the result of main for an infinite subfamily of £, (2):
genm Assume that «, +x, =+t8+m where m iseven
and at least one «,,x, is integer. Then the fifth
Painlevé equation (2) is not integrable.

The paper is organized as follows. In section 2 we
recall the main results of the Ziglin-Ramis-Morales-Ruiz
-Simé theory of non-integrability of the Hamiltonian
systems, of the differential Galois theory and asymtotic
theory for ordinary differential equations needed in the
proofs. In section 3 we prove the non-integrability of the
fifth Painlevé equation (2) for x, =0,x,=—6 and
0 ¢-N" (witt). In nl we prove the non-integrability of
B, (2) for x,=0,xk,=—6=1. In section 4 using
Bécklund transformations of Painlevé /' equation we
extend the results of section 3 to the entire orbit of the
parameters and establish the main results of this article.

2. Preliminaries

2.1. Non-Integrability and Differential Galois
Theory

In this section we briefly recall Ziglin-Ramis-Morales-
Ruiz-Sim6 theory of non-integrability of Hamiltonian
systems following [12] and [15].

Consider a Hamiltonian system

i= Xy (%) (3)

with a Hamiltonian H on a complex analytic 2n
-dimensional manifold M . Let x=x(r) be a parti-
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cular solution of (3), which is not an equilibrium point of
the vector field X, . Denote by I' the phase curve
corresponding to x = x (). We can write the variational
equations VE along T

ox,

= ox

(x(1)¢

We can always reduce the order of this system by one
restricting VE to the normal bundle of T" on the level
variety M, = {x|H (x)=h}. The new-obtained system
is called normal variational equation (NVE). In his
papers [13], [14], Ziglin showed that if system (3) has a
meromorphic first integral, then the monodromy group
M of the normal variational equations has a rational
integral.

Morales-Ruiz and Ramis generalized the Ziglin
approach replacing the monodromy group M by the
differential Galois group of NVE, [12]. Solutions of
NVE define the an extension K c— L, of the coefficient
field K of NVE. The group of all the differential
automorphisms of L, which leave fixed the elements of
K defines the differential Galois group Gal(L,/K)
of L over K (or of equations NVE). Then the main
result of Ziglin-Morales-Ramis theory is 0.1 (Morales-
Ramis) Suppose that the Hamiltonian system (3)
possesses n independent first integrals in involution.
Then the connected component G° of the unit element
of the Galois group Gal(L,/K) is Abelian.

The opposite is not true in general, that is, if the
connected component G° of the unit element of the
Galois group is Abelian it is not sure that the
Hamiltonian system is integrable. This means that we
need other obstruction to integrability. Already in [12]
Morales-Ruiz suggested the quite natural conjecture that
the higher Galois groups are also responsible for
non-integrability. In [7] he announced this result and
recently in a joint paper of Morales, Ramis and Simo [15]
it was proved. Let us recall the corresponding notions
and results.

Again we take a solution x(t) of the Hamiltonian
system (3). We write the general solution as x(z,z),
where z parametrizes the solutions near x(t) , with
z, corresponding to it. Then we write (3) as

x(,z)=X, (x(t,z))

Denote the derivatives of x(7,z) with respect to z
by x(1,z),x?(t,z)-+-, etc. Let us differentiate the
last equation with respect to z and evaluate it at z,.
The functions x* (t,z) satisfy equations of the type

x® (t,z) = X},]) (x(t,z))x(k) (t,z)

4
+P(x (6,2),34 (1,2)) @
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where P denotes polynomial term in the components
of its arguments. The coefficients depend on ¢ through
X (x(t,2)),j <k. One can show that the system of
non-homogene-ous equations for x* (z,z), (4), can be
arranged to a homogeneous linear system of higher
dimension. These recently built systems define succe-
ssive extensions of the main field K of the coefficients
the NVE, i.e. we have Kc L cL,---c L, where L

is as above, L, is the extension obtained by adjoining
the solutions of (4) for k=2, etc. We can define the
Galois groups Gal(L,/K),Gal(L,/K),---. Then the
theorem from [15] asserts that 0.2 (Morales-Ramis-Simo)
If the Hamiltonian system (3) is integrable then for each

meN the connected component (G, )  of the unit

element of the Galois group Gal(L,/K) is commu-
tative.

2.2. Galois Group and Irregular Singularities

In this section we review some definiti-ons, facts and
notations from the theory of the differential equations
with an irregular point, as well as, from the differential
Galois theory of such equations which is required to
prove our main theorem. For the basic facts on differential
Galois group at the irregular points we refer to Martinet
and Ramis [16,17], van der Put and Singer [18],
Morales-Ruiz [12], Mitschi [19], Singer [20]. For the
basic facts on the analytic theory (formal solutions,
formal power series, asymptotic and summability) we
refer to Ramis [21, 22], Balser [23], Wasov [24].

We consider a linear homogeneous differential equa-
tion

v +a, (x)y" P+t (x)y=0 4)

with coefficients a,(x) in C(x). From now on we
shall assume that equation (5) admits over CP' one
irregular point of rank one at zero and one or more
regular points. That is enough for our purpose. Classical
theory says, [24], that in this case equation (5) has a
formal fundamental matrix at 0

Y (x)=H(x)Tx' T2 (6)

where HeGL,,((C((x))), Legl,(C) is in Jordan

form, T is anon-singular constant matrix and

Q=diag(q, (1/x),--~,qn(1/x)) with ¢ (1/x)-polynomials.
In general case of rank one at zero the polynomials
q,(1/x) are of maximal degree 1 with respect to 1/x
but they could be polynomials in a fractional power of
1/x, [24]. Here we assume that the polynomials
q;(1/x) be monomials of degree 1 in 1/x some of
them being possibly zero. Then the matrix Q(I/x) in
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©)is 0= diag(i,m,q—”) with ¢, € C, not necessary
X X

distinct.

We now turn to the Galois group of equation (5) over
the field of formal Laurent series (C((x)) FGG ([18,
20]) The formal differential Galois group of equation (5)
over (C((x)) is the Zariski closure of the group
generated by the formal monodromy and the exponential
torus. FM ([17]) The formal monodromy matrix
y€GL, (C) relativeto Y(x) in (6)is defined by

Y(xezni)(x)~y

and the formal monodromy group is the closed subgroup
of the corresponding Galois group topologically gene-
rated by y. The formal monodromy group is inde-
pendent on the choice of the fundamental solution ¥ (x)
and it is a formal invariant of the differential equation (5).
ET ([20]) The exponential torus 7 relative to the
solution ¥ (x) (6) is the group of differential (C((x))—

automorphism 7 = Gal(E/(C((x))) where
E= (C((x))(eQ) = C((x))(eql/x,m,eq”/x). We may iden-

tify 7 with the subgroup of ((C*)n . Next lemma gives

the relationship between the formal monodromy y and
the exponential torus 7 . m-t ([19]) The formal mono-
dromy y acts by conjugation on the exponential torus
7T . Hence 7 is a normal subgroup of the differential
Galois group of equation (5) over (C((x)) .

Now we turn to the Galois group over the field of
convergent Laurent series (C({x}) The general theory
of summability ensures that the matrix H (x) in (6) is
multisummable along any non-singular ray d. In the
case when all non-zero polynomials ¢, (1/x)—g¢, (1/x) ]
have the same degree 1 this means that H (x) is either

convergent or 1-summable.

We need to recall some definitions and theoretical
results. All angular directions and sectors are to be con-
sidered on the Riemann surface of the (natural) loga-
rithm.

Section ([23]) 1. A sector is defined to be a set of the
form

S=S(d,a,p)= {x= re'

a (24
0<r<pd-—<p<d+—
paTy e 2}

where d is an arbitrary real number (bisecting direc-
tion of §), a is a positive real (the opening of §),
and p is either a positive real number or +oo (the
radius of S).

2. A closed sector is a set of the form

S= E(d,a,p) = {x =re"

o (04
0<r<pd-—<@<d+—
paTy e 2}
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with d and « as before, but p is a positive real

number (i.e. never equal to 4+ ). sd ([19]) A singular

direction for equation (5) relative to ¥ (x) in (6) is a

bisecting ray of any maximal angular sector where
q: —4;

Re(—]< 0 forsome i,j=1,--,n.
X

Following Balser [23] we define a Gevrey function
and a Gevrey series. ga Let f = f(x) be analytic in
some sector S(d,a,p) at x=0. We say that [ is

asymptotic to f(x) =Y f,x" € C[[x]]in Gevrey order]

sense, if for every closed subsector S of S there
exist positive constants Cg ,A; >0 such that for every
non-negative integer N and every x € Si one has

() B

We, according to standard, denote by A, (S) the ring
of all Gevrey functions of order 1 in .

Corresponding to the notion of a Gevrey function is
the notion of a Gevrey series. gal A formal power series

f an “x" is said to be of Gevrey order 1 if there
exist two positive constants C, A4 >0 such that
|fn| <CA"n! for everyneN

We denote by (C((x))1 the set of all power series of
Gevrey order 1.

R(Ramis) ([22]) 1. Let f e(C{x}] such that there
exists an open sector J whose opening >m and a
holomorphic function feA, (V) such that f s
asymptotic to f on V in Gevrey 1 sense. We will
say that f is 1-summable in the direction d (d
being the bisecting line of V' )and f isthe 1-sum of
f in the direction d . 2. If feC{x} is 1-
summable in all but a finite number of directions, we will
say that it is 1-summable. We will denote [ € C{x},.
This summability definition is very useful but it does not
say how to compute the sum. Another definition of 1-
summability is gives in terms of Borel and Laplace
transforms. In the next two definitions we follow Balser
[23], van der Put [18] and Singer [20].

Borel The formal Borel transform B oforder 1 toa
formal power series f(r)=)" fx" is called the
formal series

< Cy AN

B(Shw)=3 L ™
Then f e (C((x))1 € C((x))l = B(f) € C{é‘} (ie

convergent) [20].

The inverse of the Borel transform is the Laplace
transform: laplac Let f be analytic and of exponential
size 1, ie |f(§)|§Aexp(B|§|) along the ray 7,
from 0 to O indirection d . Then the integral
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L,f(x)= _[rdf(g")exp[—%jd(g) (8)

is said to be the Laplace complex transform £, of order
1 in the direction d of f . The following preposition
gives useful criteria for a Gevrey series of order 1 to be
1 -summable cri([18]) Let f e (C((x))1 andlet d bea
direction. Then the following are equivalent:

1. f is 1-summable in the direction d .

2. The convergent power series B ( f ) has an
analytic continuation % in a full sector

{¢eClo<|¢|<w.farg(¢)-d| <&} . In addition, this

analytic continuation has exponential growth of order
<1 at oo on this sector, i.e. |h(§)|£ Aexp(B|§|). In
this case, f =L, (h) is its 1-sum. The good is that the
two definitions R and cri are in fact equivalent [22].

To define the Stokes multipliers relative to the solu-
tion (6) we need the following fundamental result of
Ramis sum(Ramis, [22]) Let Ly=g be a linear non
homogeneous ordinary differenti-al equation of order #
with polynomial coefficients and g(x)eC{x}. We
suppose the Newton polygon at the origin admits only
one strictly positive slope 1. If the series f & C((x))
is a formal power series solution of Ly =g then f is
1 -summable or convergent. In this paper we will not
apply the theory of the Newton polygon. We note that
when ¢, (1/x)=q;/x,j=1,-n with ¢,eC the
Newton polygon of equation (5) admits only one strictly
positive slope 1. sum says that there exists a unique
holomorphic function f (x) in all but a finite number
of directions, solution of the differential equation
Ly =g such that asymptotic to f (x) in Gevrey-1
sense. Moreover f(x) can be obtained from f(x)
by a Borel-Laplace transform.

Let us assume that the matrix L in (6) is in a diago-
nal form, i.e. there are no logarithms in the solutions of
equation (5). Due to our assumption the fundamental set
of solutions of equation (5) is spanned by the functions

N
yj(x):xje"yj(x), j=1,-n 9
where /,,q,€C and )A/j (x)ex(C[[x]]. The formal
series JA/‘/.(x) are “in general” divergent. It is well

known fact that each of these divergent series y (x) s

a solution of a linear homogeneous differential equation
with polynomial coefficients

b, (x)y(") +b,, (x) y("’l) +:-4b, (x)y =0 (10)

9i79;

. L1, —L~
whose other solutions are x" “e * y, (x). Next, the

series )A/j (x), j=1+n lie at the first row of the matrix
H (x). We remark that the behaviour of the elements of
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the first row of the matrix H(x) (and from here of
their derivations) is enough for our purpose. This is
based on the important result that the set C{x} a of all
f(x) such that are 1-summable in a direction d is a
differential algebra over C (see Balser [23], Chapter
3.3, Theorem 2). We we will consider the equations (10)

(not equation (5)) and we will apply sum to equation (10).

In this way for any open sector V' with vertex 0, with
opening >m and bisected by non-singular direction d
to any series y; (x) we associate a unique holomorphic
function f; (x)solutions of the equation (10) and 1-sum

of the corresponding series y,(x) along d such that
f;(x) is asymptotic to )A/j (x) in Gevrey-1 sense (R).
Replacing the series ;/(x) (and their derivations)

in matrix H(x) by their l-sums we obtain a
holomorphic matrix H (x) on a sector with opening
> 7, bisected by a non-singular direction d , asymp-
totic to H(x) in Gevrey-1 sense on this sector and
denotes the 1-sum of H (x). The new-obtained matrix
Y (x)=H(x)x"¢®"™ is an actual fundamental matrix
of equation (5) and denotes the 1-sum of ¥ (x) along
any nonsingular ray d .

Further, following [18] and [20], relative to equations
(5), (10) and to the solution (6) (the matrix Q(1/x)) we
define:

q:—4;

1. Eigenvalues g, = of equation (10), where

q;/x, q,/x arethe eigenvalues of equation (5);

2. A Stokes direction d for g, is a direction such
that Re(q[/. ) =0;

3. Let d,,d, be consecutive Stokes directions. We
say that the pair (d,,d,) is a negative Stokes pair if
Re(q,.j ) <0 for arg(x)e(d,.d,);

4. A singular direction is the bisector of a negative
Stokes pair.

sdl Equations (10) have at least one zero eigenvalue,
this corresponding to the series y;(x). In this way the
singular directions corresponding to the series y, (x),
from here to equations (5) and (10) are exact these
defined by (4) (this defined more exactly the expre-
ssion “for some 7, j=1,---,n” in sd).

Let d be a singular direction for equations (10) at
x=0 and let d"=d+& and d =d-& where
£>0is small be two non-singular neighboring direc-
tions of d. Let Yd+ and Yd _ denote the 1-sums of

Y along d" and d~ respectively. st WitOh respect to
a given formal fundamental solution Y as in (6) the
Stokes matrix (or multiplier) St, e GL,(C) corres-
ponding to the singular line d at x=0 is defined by
Yd_ =Yd+ -St,. R (Ramis) ([16]) With respect to a
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formal solution Y given as in (6) the analytic
differential Galois group of equation (5) at 0 is the
Zariski closure in GL, ((C) of the subgroup generated
by the formal monodromy y, the exponential torus 7
and the Stokes matrices St, for all singular rays d . It
is possible to generalize the above theorem to a global
linear differential equation: Mi ([19]) The global Galois
group G of equation (5) is topologically genera-ted in
GL,(C) by the local Galois subgroup G, where a
runs over the set of singular points of (5).

2.3. P, as a Hamiltonian System

The fifth Painlevé equation, F,, is equivalent to the
Hamiltonian system, [25],

oH . _ oH

, 11
o p 24 (11)

with the Hamiltonian H ,
1
H=-[p(p+1)a(g-1)+aqt-apg-ap(g-1)](12)

In fact, putting
K, =,k =0a;,0=a,—a,—1 (13)

with
o, =1-a,-a,-a, (14)

we see that equation for y=1-1/g is nothing but B,
(2). The non-autonomous system (11) can be turned into
autonomous one with two degrees of freedom by
introducing new dynamic variables—¢ and the con-
jugate to it— F . The new Hamiltonian becomes

H=H+F

The symplectic structure @ is canonical in the
variables (g, p,t,F) , ie. @=dpAdg+dF ndt . In
what follows we denote by s the time variable.

3. Non-Integrability of P, for
k,=0,x,=-60

In this section we begin studying P, with the following
values of the constants: x, =0,x, =—6 where 6 is
an arbitrary parameter. The results of this part are the
base of the main theorems.

For these values of the constants the corresponding
autonomous Hamiltonian system becomes

q :%[(2p+t)q(q—l)+6’q]

b= —%[(Zq—l)p(p+t)+(0+1)t+l9p]
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=1
F:—%[pq(q—l)+(6’+l)q]

+tl2[p(p+¢)q(q—1)+(9+1)qz+9pq]

We choose as our non-equilibrium particular solutions
—q=0,p=—s,t=5,F=0.

As we plan to compute the second variational
equations it would be convenient to put

g=0+¢eq +&°q, +

p=-s+ep, +ep,+
t=s+et +et, +--

F=0+cF +&F, +--

It is easy to see that as a normal to the phase curves of
these solutions we can pick the (q, p)—plane in the
hypersurface H = Const, ie. the equations in normal
variations are just the equations for ¢, p -variables.
Because of the equation /=1 we can use ¢ as an
independent variable instead of s .

For the first variational equations we obtain the system

] 0
g, = 1+ 9> pl——1+ D

This system can be solved by quadratures and

¢ 0
O(t)=
0" 0]

is a fundamental matrix solution. Thus the differential
Galois group G of the first variatio-nal equation is
Abelian, it is conjugated to the diagonal matrices

oo 5)eec)

and there is no obstruction to integrability. Next, for the
second variational equations we obtain

0 2
1+ q-q; — P

0 1
p=—[l+ }p+ -pi+2pg,

where we have replaced ¢(¢):=q,(¢),p(1)=p, (7).

why As our approach uses the Stokes multipliers we find
that it is more suitable to study the second variational
equations as a scalar equation than a system. Further, as
the equation for ¢(r) does not depend on p(¢) it is
enough for our purpose to consider only the scalar
homogeneous equation corresponding to this equation.

Copyright © 2011 SciRes.

Furthermore, we find our problem will get more simple
if we write the equation for q(t) as a fourth order
linear homogeneous equation, not as a third order (the
natural method). Then the equations of q(t) will have
a Galois group contained in GL,(C) (notin GL;(C)).
This apparent complication preserves the non-commu-
tativity of the unit element of the corresponding diffe-
rential Galois group. The equation of q(t) can be
written as a fourth order linear homogeneous equation

L(q)—ﬂ—[s 56— 3}&

dr* ¢ Jdr
~11 20(40-3)]d’
{8 16611 (2 )}d_g
t dr
(60 7) 0(0-1)(20+1) |dgq
+ p—
£ £ d
F+ﬁ ‘929“)}1 0
(15)

As it said from here on we will study the differential
Galois group only of Equation (15).

Equation (15) has over CP' two singular points - the
point #=0 is a regular singularity and the point ¢ =0
is an irregular singularity of rank one. Furthermore, this
equation is reducible L=LL, and it is solvable in
terms of second order linear differential equation

Lq)=f(1), L =0 - [1+E}81—; (16)

t

The second equation L, (g)=0 is

[2(20-1) 7.
L(g)=q¢- f“‘ q

(17)
4(20-1) 20(20-1)
+| 4+ + > q=0
t t
and the system {twe” e } is a fundamental system
of solution of (17).

Let us consider the homogeneous equation L, (¢)=0.
Changing the dependent variable

q=yexp[%f(l+?jdt}

we transform equation L, (¢)=0 to the reduced form

1 6+1 6*-1
po| -+ =0 18
Y {4 % | ar }y (18)

Equation (18) is known as the Whittaker equation [26]
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(1 &k 4uP-1
B =0
Y [4 t 4¢? jy

with parameters x =—

and u= g Then we have

witt The identity component of the differential Galois
group of equation (18) is Abelian if and only if
fe-N".

It is well known from the work of Martinet and Ramis
[16] (see [12] too) that the identity component G° of
the differential Galois group of the Whittaker equation is

Abelian if, and only if, (K +u —%, K—u —%J belong

to (Nx(—N*))u((—N*)xN) (i.e. K+,u—%,1c—,u—%
are integers, one of them being positive and the other

. 1 1
negative). In our case K+,u—5= —1,K‘—,u—5 =-1-4.

Hence the identity component G° of the differential
Galois group of equation (18) is Abelian if, and only if,
—1-6 € N. This proves the lemma.

We finish with same notes. The fundamental set of
solutions of equation (18) is spanned by the set

o e o
y=tre,y,=t2e 2'foyc’o'le"”’d)c , i.e. only one of

the Stokes multipliers of the Whittaker equation (18) is
different from zero when @ ¢ -N'.

Observe that the identity component G°, as well the
Galois group G of equation (18) is a subgroup of
SL, (C). In particular, when 6 ¢ -N"

/1 *
GZGOZ{[O /{Jlj,ﬂ,e(c ,,ue(C}

and when 0 e-N"

:0:/1 0 .
G=G 0171,16((:

re Equation L, (g)=0 has a solution space that is
spanned by functions ¢, =t%',q, =1’ J.;x’g’le””’dx .

Therefore the identity component of its Galois group is
not a subgroup of SL,(C), i.e. equations L,(gq)=0
and (18) have different identity components of the
corresponding Galois groups. As in equation (18) only
one of the Stokes multipliers of equation L,(g)=0 is
different of zero when 6¢-N". Furthermore, the
identity components of the Galois group of both of the
equations L,(¢)=0 and (18) are Abelian (resp. not
Abelian) in the same way, as both of them depend on the

same integral J'(:x’g’le’“tdx. In particular, when
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0 e-N" for the Galois group of equation L,(q)=0

we have
0 A0 .
G=G = ,AeC
0 1

When 6¢-N" to define the identity component G°
of the Galois group is a complicated task. But even in the
worst case when

j./ *
GO_{(O ‘I‘J,zec ,,ue(C}

G’ is not Abelian group. However, as witt gives us
necessary and sufficient condition for Abelian diffe-
rential Galois group of equation (18) (and from above
remark of equation L,(g)=0), thus as a corollary we
have the following theorem. witt Assume that
Kk, =0,k, =—60 ¢ N . Then the Painlevé ¥ equation (2)
is not integrable in the Liouville sense.

Due to the reducibility of L,L = LL,, with equation
(15) one can associate a matrix equation

. (A4, C —0 19
2+ 4 0= (19)

where @ =(0,,0,), the matrix equation @, + 4,0, =0
is completely reducible and C may be taken to be the

. ( 0
matrix C =

0
0] , [27]. In this way the matrix

equation Q, + 40, =0 and the matrix A, may be taken
to be the corresponding matrix equation and the
corresponding matrix to the equation (17) in the standard
sense. Namely, if we put ¢' =¢,¢° =¢ then a function
q s a solution of the scalar eque}tion (17) if and only if
the column vector Q, = (q' ,qz) is a solution of the
following matrix equation

0/ +A40 =0
0 -1
4, = - _ _
1 4+4(2¢j 1)+2¢9(2;9 1) _2(2¢j D,
t

We will not fix on the equation Q'1 +40,=0 but
will note that its differential Galois group is Abelian.
Hence, there is no obstruction to integrability. Note that
the equation Q, +A4,0, =0 and the matrix A, may
be taken to be the corresponding equation and the corres-
ponding matrix to equation L, (q) =0 in the standard
sense, i.e.

0 -1
I I S |
t t

Next, the matrix
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(e uvg,
i) e

is a fundamental matrix solution of equation (19) if and
only if U satisfies U +(A4,U-UA)=-C, [27]. Fur-
thermore, the matrices @, and @, in (20) are the fun-
damental matrix solutions of equations @, + 4,0, =0
and Q'2 +A4,0, =0 respectively.

Now, it is ecasy to see that the identity component of
the differential Galois group of the equation (15) is not
Abelian for —0 ¢ N*. Indeed, let us denote G to be the
differential Galois group of equation (19). Then we have
that o(Q),0€G is again a fundamental matrix solu-
tion of equation (19), and a calculation shows that

(Q’IO'(Q))’ =0. Therefore o(Q)=QR(c) for some
R(o)eGL,(C). Expressing any such R(c) in block

notation,
G, G
R (0) = 7
G, G

let us write the equation O'(Q) =Q0R (0') explicitly

0. UQ)(G, G,
-5 2la )

_ [QZGZ +UQG, Q,G, +UQ1G1J

0G, 0G,
-[ole) o)

The last two equations imply G, =0 and
o(0,)=0,G,. Hence one can identify the matrix G,
with the representation of the differential Galois group of
equation (17) in GL, (C). Next, from G, =0 follows
that o(Q,)=0,G, and one can identify the matrix
G, €GL,(C) with the differential Galois group of
equation L, (¢)= 0. Now from witt and re it results that
for @¢-N" the identity component G, of the Galois
group G2 is not commutative and as a corollary the
identity component of the differential Galois group of
equation (21) is not Abelian. Thus from the Morales -
Ramis-Sim6 theorem [15] and why the corresponding
Hamiltonian system is not integrable. This proves witt.

3.1. Non-Integrability for 6 =-1

To prove non-integrability for ¢ -N" we will study
the matrix UQ, in the matrix solution (20). Let for
simplicity € = —1. In the last section from this particular
case, #=-1, we will extend the present results over
0 ¢ -N" by Bicklund transformations.

As we are going to apply the theory of irregular points

Copyright © 2011 SciRes.

at 1=0 we change the dependent variable ¢=-1/z.
Then for 6=-1 equations (15),L,(¢)=0 and (17)
become

d'q [4 5]d%¢ [2 3 8]d%q
L(‘]):_4+[___2}_3+ 2 72 A =
dz z z°|dz z z z" |dz (21)
2 8 40dg [2 8 4] _
R e q=0
z z z z z z
” 1 ’ — [ — d
BOTe ettty @
" 4 ! 2 4 4
L(q)=q +|:—__2:|q +[—2——3+—4}q_0 (23)
z z z z

Equations (22) and (23) have solution spaces spanned
by the sets {z,ze"/z} and

{(22’2 +z7! )e’z/z,(z’2 +z! )e’z/z} respectively. As a

formal fundamental set of solutions around the irregular
singularity at 0 of the equation (21) we can take the
fundamental set of solutions {% =z ,q, =z} of
equation L,(¢)=0 and

2 2

g, =z¢ 7p(z), q,=z¢ ()
where ¢(z) and w(z) are two formal series

p(z)=z-22+212° -31" ... = i(—l)n nlz""!

n=0

Then a formal fundamental matrix of equation (21) is

Q=H(z)z/ " (24)
where
R—diag(—l,o,—g,—gj, J =diag(1,1,-2,-2) (25)
z z z
and
1 1 Zo(z) Zy(2)
1 1
;+Z_2 ; h23 h24
H(z)= 26
( ) 0 0 2+z 1+z (26)
0 0 —1—%+i2 —1+£2
z z

The precise form of h,; and h,, are not important
for our purpose but we do note that they are elements of
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C((z)). We remark that the formal series ¢(z) and

w(z) are the result of formal operations that have
nothing to do with sectors.

We now turn to the Galois group of equation (5) over
C((z)). The formal Galois group over C((z)) is the
Zariski closure of the group generated by the formal
monodromy y and the exponential torus 7 . The last
ones on the other hand represent differential automor-
phisms of the extension F of the field C((z)) by the
entries of the matrix C((z))zjek(l/z) over (C((z)) ;
F=C((z))(e’l/z,e'z/2) in our case. Furthermore, the
formal monodromy y is trivial. Therefore
Gal (F / C((z))) is equal to the exponential torus 7~

c 00 0
01 0 0 .

Gal(F[C((z)))=T = 00 & o |ce(C @7)
00 0 ¢

Let now F be the Picard-Vessiot extension of
(C({z}) for the equation (21). To determine the
convergent Galois group at z=0 over (C({z}) we
will need to compute the Stokes matrices at z=0 rela-
tive to the solution Q(z), (24).

Let us focus now on ¢(z)=) _a,z"" and
w(z)= b z"*'. The first series

>0"n

p(z)=>." (-1)"nlz"" is the so called Euler series,

the second is a modified Euler series. The properties of
the Euler series and the corresponding Stokes
phenomenon are well studied, for example in a paper of
Ramis [22] and in a paper of Singer [20]. In the next
following these two papers we will compute the Stokes
matrix relative to the series ¢(z) and y(z).

These series are divergent and they obviously satisfy a
Gevrey-1 growth condition. Then we can consider the
formal Borel transforms of ¢(z) and w(z)

o(¢)=Bo(z)= ;%: log(1+¢)
(//({)=B,1//(z):§:%=10g(2+§)—1n2

The Gevrey-1 growth condition ensures that ¢(¢)
and () are analytic in the neighborhood of the
origin of the ¢ plane. For any ray d=R™ the
functions log(1+¢) and log(2+¢) have analytic
continuations along d . For such a ray their Laplace
transforms (see Example 1.4.22 in [20])

9, (2)= £, (log(1+¢))(2)

i L)Lt
_Llog(1+§)e d(;j—jdme dg

Copyright © 2011 SciRes.

v, (2)=L, (log(2+;’)—ln2)(z)
=Llog(2+§)e_id(£J

=-In 2Jdefgd (ij

z

£

= e °d
12+ ¢

define the corresponding 1-sum of the series go(z) and

w(z) in the direction d . We note that functions
2 2

g,(z)=ze “p,(z) and gq,(z)=ze “y,(z)
satisfy equation (21). Indeed, one can complete the set

again

{% =z q, = z} to the fundamental set of solutions

of equation (21) by the particular solutions of equations

"—%q’+%q—(%+lje_z/z (28)
z z ¢z

" 1 ’ 1 1 1 -2/z
-——4q +—3q: —2+— (5]
z z z z

Looking for such solutions of the form
q(z)=ze"p(z) and q(z)=zey(z) respectively,
we obtain the following non homogeneous differential
equations with polynomial coefficients

2 +(22° +32° ) + 20 =22+ 2 (29)
241//"4-(223 +32° )l//'+2(// =z+7°
respectively with unique formal solutions
-1)" n!
P()= T ne T and p(5) =5 L

respectively. Further, solving equations (29) by the
variation of constants we get a particular solution

. efl/x

o) =c"]

of the first equation and a particular solution

dx

X

of the second equation, where for convenience the

integrals are taken in the direction R". Next, let
—1/x+1/z

z€
o(z)=],—
+o0 e—(/z

—{)z=-1/x+1/z gives (P(Z):J.o 1+¢

—2fu+2/z

dx and define a new variable ¢ by

d¢ . In the

e
same manner let y (z)= ,

du and setting
u

APM



T. STOYANOVA 179

+aoe

—{[z==2/u+2/z gives y(z)= J'O o gdg More
general, these integrals exist if d # R~ . Therefore,

applying to equations (29) Ramis’ sum, for any ray d
except the negative real axis, we are able to canonically
associate unique functions ¢, (z) and y, (z), analytic
in a large sector around this ray, with the divergent series

2(=1)'n

these series are l-summable and ¢, (z) and y,(z)

1z"*" and Z( DI z”+1 respectively and so

n+]

are their 1-sum. Furthermore the functions
2 2

4,(z)=ze ¢, (z) and gq,(z)=ze “y,(z) will satisfy
equations (28) respectively and from here the equation
(21). In this way the matrix =

Q(z) = H(z)zJeR(fl/z)

with z7 and e as before but
1 1 Z9,(z) Zw,(2)
1 1 1
—t= = hys hy
H(z)= z z° z
0 0 2+z 1+z
0 0 —1—2+i2 —1+i2
z z z
_ (1,2 de, (2)
where h,, =z K;JFZ_Z ®, (Z)+T and

hy, =2 Kl—k%)yjd (z)+dv/d—(z)} is an actual funda-
z z dz

ntal matrix of equation (21). The matrix H(z) is
holomorphic in an open angular sectort at z=0 of
opening angle 2n (-m<argz<m ) and H(z) is
asymptotic to H(z) (26) on this sector in Gevrey-1
sense.

We are now in a position to describe the analytic
elements which, together with the formal Galois group

(27) determine the analytic Galois group of equation (21).

As the Stokes multipliers depend on the functions ¢(z)
and y(z) (resp. on ¢,(z) and w,(z)) we consider
the following homogeneous ODE equation with poly-

mial coefficients obtained from equation (21) by
1.2/z

changing ¢(z) to ¢(z)=z"e?"¢q(z)
2°q¥ (z)+ (8ZS+3Z4)qW(Z)+(14Z +6Z3+222)q”(z)
+(42° —42)q'(2)+4q(2) =0
(*)
The functions ¢(z) and w(z) are its formal

solutions. The other entries of the fundamental set of
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iz . So the

solutions of equation (*) are e’* and e?

. . . 12
eigenvalues of this equation are {0,0,—,—} .
zZ Z

Now we are almost ready to compute the Stokes
constants corresponding to the singular direction R~
(d = m). Relative to equation (*) we define:

- eigenvalues of equation (*): {O 0, 1 g}
z

- the Stokes direction d = {g,%} such that

SERCR

- the negative Stokes pair [%,%} such that
2
Re [—j <0;
z
- the singular direction d =m as the bisector of the
negative Stokes pair (g,%) .

We select two directions d, and d_ which are
respectively slightly to the left and to the right of the
critical direction d =nw=R". Let

. 1 -< ~ 1 -<
o, = d+1+;e dg and @, = d71+§e 2dd
+ 1 7% - _ 1 Tz
v f'[d+2+§e 2d¢ and fjd_me 2d¢

be the associated Laplace transforms of ¢ and y of
the directions d, and d_. The difference between
them amounts to integrate on a path coming form infinity
along the critical line on the right till the origin and then
doing to infinity by following the critical line on the left.
As there is no singularity between 0 and -1, and no
other between —1 and oo, Cauchy’s formula imme-

diately implies that the difference
2miRes,__, (e'g/z/(1+ ;’)) =2mie'* . In the same manner,

@, —¢, is given by

the difference between , and y, is given by

2miRes 1 (e’g/"/(2+g")) = 2mie¥*
eRU/) =H z'e R(Yz) St
where St, e GL,(C) is the Stokes matrix in the

Next, we must have H,_,

direction d = r. Furthermore,
q; — (god o, )ze ¥ =2mize™

for the Stokes matrix St, we have (st, )13 =2mi. In

=2mig, (z) . Then

the same manner,
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g, —q; = (l//; —!//;)ze’z/z = 2miz = 2mig, (z) . Then we
have that (st,),, =2mi .

From the above reasoning for the Stokes matrix St_
we obtain

1 0 2m O
01 0 2m
St_= (30)
0 0 1 0
0 0 O 1

Thus we have nl Assume that «, =0,x, =1, =-1.
Then the Painlevé V'  equation (2) is not integrable in the
Liouville sense.

By a theorem of Schlesinger [28] the local differential
Galois group of equation (21) at infinity is generated
topologically by the monodromy group at . We note
that the actual monodromy around oo and around O of
equation (21) are the same. Therefore the local diffe-
rential Galois group of equation (21) at infinity can be
interpreted as a subgroup of the local differential Galois
group at the origin. Next, observe that the differential
Galois group of equation (21) is a connected group. As
the formal monodromy J is trivial then by the Ramis’
theorem the Galois group is topologically generated by
the exponential torus 7 and the Stokes matrix St .
The Zariski closure of the subgroup 7",neZ is the
same 7 andtheelements f of 7 is

c 0 0 O

01 0 O .
1= 00 & 0 where ceC

00 0 ¢

The matrix (Stn)n,neZ is of the kind 7+nX
where [/ =1d and X is a unipotent matrix. Denote by
S the Zariski closure of the subgroup (Stn )" ,LMEZL
then the elements s, , of S, are

1 0 2midA O
01 0 2mi
Se, = where AeC
’ 00 1 0
00 O 1

When A is different from zero and c¢#+l1 the
commutator of f, and s, is

10 2m'/1(c-‘—1) 0
fs st <[00 0 2mid(c? 1)
P Al e n,A
0
0 1

(€2))
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which is not identically equal to 1d .

The case c=1 implies that G(e’l/z) =e¢* for any
aeGal(L(q)ZO) , ie. ¢ eC(z),, which is an
obviously contradiction. In the same manner c¢=-1
implies that e° is invariant under any morphism
GeGal(L(q)=0) , ie e e(C(z) . From these
remarks, formula (31) and the fact that Gal (L(q) = 0)
is a connected group follow that the identity component
of the differential Galois group of equation (21) is not
Abelian. Thus from why and 0.2 we have that for
x,=0,x,=1,0=—-1 the corresponding Hamiltonian
system does not possess two meromorphic first integrals.
This proves nl. galois We will not determine precisely
the differential Galois group of equation (21). But we
can say that this group is not finite and it coincides with
its connected component G° of the unit element. Fur-
thermore the differential Galois group of equation (21) is
conjugate to the following matrices

c 0 d 0
1
Gal(L(q)=0)= g 0 02 c#0,a,d eC} (32)
C
00 0 ¢

4. Generalization

In this paragraph we will extend the results of the
previous section to the entire orbits of the parameters
using the Béacklund transformations of the Painlevé fifth
equation, given by the following list of restriction of this
group on the parameter space, [29]

s;(a)=—a;,, s|a)=a +a,(j=itl),
(@)= s(a)a "

si(aj)=aj,(j¢i,iil)

Tc(aj)=aj+1, 6(0!0)=O!0, 0'(0:1)=a3,
G(a2)=a2, 0'(053)=051

We note that the Bécklund transformations group of
the fifth Painlevé equation is isomor-phic to the extended
affine Weyl group of A" type, [5]. It is well known
(see Okamoto [5]) that the group of Bécklund
transformations of the P, equation is represented as the
group of birational canonical transformations of the
Painlevé system (that is the corresponding non-auto-
nomous Hamiltonian system) associated with the fifth
Painlevé equation. In particular the Bécklund trans-
formations remain the property non-integrability.

We define (following Masuda ef al. [29]) the trans-
lation operators 7, (i=0,1,2,3) by

T = ms;8,8), Ty = 5,783, T3 = 8,578, Ty = 535,510 (34)
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These operators acts on parameters «; as
T(a.)=o+1.T,(a)=a -1T, (aj) =a,(j#i-1,i)
(33)

4.1. Generalization of the Results of the
Paragraph 3

In n1 we have proved that for x, =0,x,=—6=1 the
Painlevé V' equation (2) is not integrable. Let us recall
that these values of the parameters are particular case of
the family x, =0,x, =—6 taken at #=-1. In the
following proposition using the operators 7, (34), (35),
we will show that the result of nl can be extended for
0e-N". pl Assume that x, =0,x,=-60=m where
meN . Then the Painlevé ¥ equation (2) is not
integrable.

We will prove the statement by building the appro-
priate transformations which extend the initial parameter
family x, =0,x, =-0=1 or (¢,,,,a,,0;)=(0,0,0,1)
to this of the proposition.

The Bécklund transformation 7,7,7, (starting from
T, ) maps the parameter family (e,,o,,a,,a;) to
(ay,0,,a, —1,0, +1). Now, applying m—1 times T,T,T;
to the initial parameter family we obtain
(ay,0,0, —m+1,0, +m—1)=(0,0,1-m,m) . If we re-
call that #=a, -, —1 then we obtain that =-m.
The proof follows from the fact that the Bécklund
transformations are birational canonical transformations
[5] and n1.

As a corollary from witt and p1 we have the following
generic non-integrable result: gl Assume that
k,=0,k,=—6 where ¢ is an arbitrary complex
parameter. Then the Painlevé 7 equation (2) is not
integrable.

The next lemma describes the orbit of the vector
a’ = (ay,a,,a,,a;) =(0,0,1+6,-6) under the Biclund
transformation group of the fifth Painlevé equation. orbit
Let (g,p)=(0,—t) be a rational solution of the
Hamiltonian system (11), (12) with parameters
a”=(0,0,1+6,-6). Then beginning with «’ by the
Bécklund transformations (33) we obtain a rational
solution of (11), (12) with new «;,j=0,1,2,3 as at
least two of them are integer and at least one of these
integeris @, or a,.Furthermore the parameters satisfy
either o +a, +a;—a,-1€2Z or
o, +a,+a,—a,+1€2Z relations.

Let o' =(a),a],a),a;) be the vector of parameters
obtained by i successive transformations s;,m,0
from «”. We will prove the statement inductively. At
first for a” the statement is true.

Let i=1, i.e. we have applied on «” some of the
transformations (33). Under s, and s, the vector o’
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does not change, i.e. o' =a’ and the statement is true.

Letus denote S| = ¢ +a) +a; -, —1 and

Si=al+a +ai,—al+1.Under s,,a’ becomes

a' =(0,1+0,-1-6,1) and S| =0€27Z. Under s,,a’

becomes «' =(-6,0,1,0) and S, =027 . Under

m,a’ becomes ' =(0,1+6,-6,0) and S =0e2Z .

Under o,a” becomes a'=(0,-6,1+6,0) and

S| =0€27 . Hence for i=1 the statement is true.
Suppose that the statement is true for i. We will

prove that it is true for i+1. Let us recall (14), that is

(4) ay+al +ay+al =1 foreveryi
Observe that the conditions {Sf € ZZ,A} imply that
@} €7 . In the same manner {S; € ZZ,A} imply that

ay €Z . Under s, the vector a' becomes

o' =(~a),a] +ay,a,a +a)) and for the sums S|
and S)"' we obtain: S/*' =2¢;,8)" =2-2a) . So if
S/ €27 then S™' €27 andif S;e2Z then S."' €2Z.

Next, it {o] €25 e2z({ai €2,/ 22}) then
o' eZ(a)" eZ). Similarly, if
{af €Z,S; e 2Z} ({aé €Z,S; e 22}) then o' €Z

i+1

from 4 (o €Z from A). Hence the statement is

true.

We leave the proof of the statement for i+1 app-
lying on o' the rest of the transformations of (33) as an
easy exercise similar to the case of s, .

The following corollary, by virtue of orbit turns out to
be a natural generalization of gl. g2 For values of the
parameters satisfying orbit the Painlevé V' equation (2)
is not integrable.

The proof follows from orbit, gl and the well-known
fact that the Bécklund transformations are birational
canonical transformations on ¢, p and ¢ [5].

If we recall that O0=a,-a,-1,x, =0, kK, =05 ,
(13), then «)—a,—1,a/,a; show how the initial
0,x,,k, change under the Béicklund transformation
group (33). Hence as a corollary we obtain: M Assume
that x, +x,=+0+m where m is even and at least
one k; €Z,j=»,0. Then the fifth Painlevé equation (2)
is not integrable.

5. Concluding Remarks

We prove non-integrability of one parameters’ family of
the fifth Painlevé equation as a Hamiltonian system. The
main tool to identify obstruction to complete integrability
of this Hamiltonian system is Ziglin-Morales-Ramis-
Simo theory reducing the question to differential Galois
theory. We explicitly compute formal and analytic
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invariants of the second variational equation (in fact of
the part of it) by a method based on the asymptotic
analysis of its irregular singularity at zero. From these
results we compute the Galois group of our differential
equation.

We consider here only the case «, =0,x, =—-6 with
6 an arbitrary complex parameter. It is tempting to use
the methods of Galois theory for B, with other values
of the parameters, as well as, for other Painlevé
transcedents P, and P, , where the variational
equations along each particular solution will have an
irregular singularity at zero. We can hope that in the case
of Abelian differential Galois group of the first
variational equation and one irregular singularity at 0, the
reducibility of the second variational equation, consi-
dered as a linear homogeneous scalar differential equa-
tion, could be an efficient tool to write down the
corresponding solution space expressly and therefore to
compute formal monodromies, exponential tori and
Stokes multipliers.
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