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Abstract 
This paper addresses the problem of the interpretation of the stochastic diffe-
rential equations (SDE). Even if from a theoretical point of view, there are in-
finite ways of interpreting them, in practice only Stratonovich’s and Itô’s in-
terpretations and the kinetic form are important. Restricting the attention to 
the first two, they give rise to two different Fokker-Planck-Kolmogorov equa-
tions for the transition probability density function (PDF) of the solution. 
According to Stratonovich’s interpretation, there is one more term in the 
drift, which is not present in the physical equation, the so-called spurious 
drift. This term is not present in Itô’s interpretation so that the transition 
PDF’s of the two interpretations are different. Several examples are shown in 
which the two solutions are strongly different. Thus, caution is needed when 
a physical phenomenon is modelled by a SDE. However, the meaning of the 
spurious drift remains unclear. 
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1. Introduction 

From the beginning of the last century evidence became clear that a determinis-
tic vision of the physical phenomena it is insufficient to describe them, and to 
foresee future occurrences as large uncertainties are always involved in real 
world phenomena. This line of thought has to be ascribed to Einstein [1], who 
gave an explanation to the Brownian motion. A few years after Einstein Lange-
vin applied Newton’s law to a Brownian particle [2], obtaining the same results 
as Einstein in a more straightforward way. In Langevin’s study the resultant 
force caused by the collisions and acting on the particle was idealized as an ex-
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tremely irregular random force, the so-called white noise, a Gaussian process 
because of the central limit theorem. In this way, the displacement X(t) of the 
particle is a random process. Fokker, Planck, and Kolmogorov independently 
found the partial differential equation that governs the time evolution of the 
probability density function (PDF) of X(t) [3] [4] [5]. From then, this equation 
was called Fokker-Planck-Kolmogorov equation (FPK). Among the numerous 
other contributions on this subject we quote Wiener and Chandrasekhar [6] [7]. 
We shall call this line of thought as Langevin’s description. 

The other line of thought is quantum mechanics. In both lines the outcome of 
an experiment or of a phenomenon can no longer be foreseen precisely, but only 
the probability that it belongs to a set of events is calculable.  

From the fifties, Langevin’ description was applied in broad and broad fields 
of Physics, Engineering, Natural sciences and Medicine. When uncertainties are 
considered in studying a physical problem, the agencies entering the phenome-
nological equation are considered stochastic processes so that the equation be-
comes a stochastic differential equation (SDE). However, in the scientific and 
technical literature the name SDE is used to denote an equation which is acted 
by white noise stochastic processes, that is processes having a power spectral 
density constant on the frequency axis. Clearly, this is a mathematical idealiza-
tion as it causes the independence of the values of the process in two instants tj 
and tk how much small the interval k jt t−  may be. incorporating the applicable 
criteria that follow. 

For simplicity’s sake, reference is made to a scalar SDE in which the excitation 
is a Gaussian white noise process. Writing down its solution, integrals involving 
the Brownian motion appear: this process is the parent of the Gaussian white 
noise as the latter is the derivative in the sense of the mathematical distributions 
of the former. If the Gaussian white noise acts externally (or additively), these 
integrals have a unique value. Unfortunately, in the case of a parametric (multip-
licative) Gaussian white noise excitation the integral has infinite values depend-
ing on the position of the point in the discretization interval. Itô chose the infe-
rior point of the interval [8], while Stratonovich chose the midpoint [9]. In the 
so-called kinetic interpretation the superior point is chosen [10] [11] 

The coefficients of the FPK equation are named first and second derivate 
moment. The second derivate moment is the same in both Itô’s and Stratono-
vich’s interpretations, but the first is not so that two different FPK equations 
arise (for the computation of the derivate moments see Lin and Cai, [11], pages 
127, 128, Cai and Zhu, [12], pages 117, 120). In general, the first derivate mo-
ment depends on the interpretation of the stochastic integral with respect to the 
Brownian motion. 

The debate on which interpretation is preferable has been live, and it be con-
sidered to stand still today: [10] [11] [13]-[32]. Analyzing the literature, the fol-
lowing conclusions can be drawn: 1) It is confirmed that the solution of an SDE 
depends on how the stochastic integral is interpreted. 2) Itô’s interpretation 
gives rise to simpler calculations because of the non-anticipating property (see 
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Section 2). 3) Stratonovich’s interpretation has sounder mathematical and phys-
ical bases: a) the ordinary rules of calculus are preserved; b) it is invariant with 
respect to a time reversal and guarantees the condition of detailed balance [29]; c) 
in the case of a dynamical system it respects the law of the energy conservation 
[32]. 4) The kinetic interpretation is the only that agrees with the law of the 
thermodynamic [11] [27]. 5) The experiments are in accord with Stratonovich’s 
interpretation [20] [21]. 6) The FPK equation deriving from Stratonovich’s in-
terpretation has one more term in the drift, the so-called spurious drift that does 
not originate from a physical reason (it is recalled that this term coincides with 
the Wong-Zakai-Stratonovich corrective term [33] [34], which makes Itô’s solu-
tion of the FPK equation equal to Stratonovich’s one). In [16] it is supposed that 
the spurious drift is caused by the infinitely fast fluctuations of the Gaussian 
white noise. No attempt is made here to give a meaning to the spurious drift. 

In writer’s thought nothing new in theory can be discovered, but a systematic 
comparison among the solutions of SDE’s according the two points of view lacks 
in literature. Thus, after introducing the problem in Section 2, in the present re-
search several stochastic dynamic systems with parametric excitations are ana-
lyzed comparing Itô’s solution with Stratonovich one’s. Even if the set of dy-
namic systems that are analyzed cannot be considered exhaustive, the deep dif-
ferences in the response statistics are revealed. 

2. Position of the Problem 

Consider the following scalar SDE (generalized Langevin equation) 

( ) ( )( ) ( )( ) ( ) ( )0 0, , ,X t a X t t g X t t W t X t x= + =� ,          (1) 

where W(t) is a stationary Gaussian white noise with autocorrelation function 
( ) ( ) ( ) ( )WWR E W t W tτ τ δ τ= + =   . The transition probability density function 

(PDF) Xp  of the response X(t) is governed by the following FPK equation 

( ) ( )
2

1 2 2
1
2

X X
X

p pm x p m x
t x x

∂ ∂ ∂
= − +  ∂ ∂ ∂

.              (2) 

where ( )1m x  and ( )2m x  are the first and the second derivate moment, re-
spectively, which are defined as 

( ) ( ) ( ) ( ){ }1 limt sm x E X t X s X s x↓
 = − =  ,             (3) 

( ) ( ) ( )( ) ( ){ }2
2 limt sm x E X t X s X s x↓

 = − =
 

.            (4) 

Once the derivate moments are computed, Equation (2) can be solved. The 
equilibrium solution is 

( ) ( )
( )
( )

1
2 2
2 2

2
exp dX

m xCp x x
m x m x

 
= ⋅  

 
∫ ,                  (5) 

where C is a normalization constant. In order Equation (5) to be effectively a 
PDF, its integral must be finite on the existence domain. 

Now, we show that Equation (5) give rise to different solutions according to 
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the way in which Equation (1) is interpreted. Recast it in integral form: 

( ) ( ) ( )( ) ( )( ) ( )
0 0

0 , d , d
t t

t t
X t X t a X t t t g X t t B t= + +∫ ∫ ,          (6) 

where B(t) is a Brownian motion, and formally or in the sense of the mathemat-
ical distributions ( )d dB t W t= . The serious problem that arises is that the 
second integral in the right-hand-side is not valuable as a Riemann, Stieltjes or 
Lebesgue integral because the Brownian motion has unbounded variations in a 
finite interval of time. 

For simplicity’s sake let ( ) ( )( ),G t g X t t= , which is a stochastic process, and 
consider the integral Y(t): 

( ) ( ) ( )
0

d
t

t
Y t G s B s= ∫ .                      (7) 

We divide the time interval [ ]0,t t  in sub-intervals 1i it t t −∆ = − , and we try 
to obtain the integral (7) as the limit of the integral sum: 

( ) ( ) ( )1
1

n

n k i i
i

S G t B t B t −
=

′= −  ∑ ,                  (8) 

where [ ]1,k i it t t−′ ∈ . Taking the limit of Sn for 0n∆ → , it should be 

( ) ( ) ( )
0 0

d lim
n

t
nt

Y t G s B s S
∆ →

= =∫ .                  (9) 

Unfortunately, the limit depends on the choice of the point kt′  [35]. In other 
words, the integral (7) can take infinite values. Itô [8] selected 

1k it t −′ = .                            (10) 

The important consequence of this choice is that any non-anticipating func-
tion G(X(t)) of the response is uncorrelated with the increment dB of the Wiener 
process, that is  

[ ] [ ] [ ]d d 0E G B E G E B= ⋅ = .                  (11) 

On the contrary, Stratonovich [34] adopted the midpoint of the interval as kt′ , 
say 

1

2
i i

k
t tt − +′ = .                         (12) 

Clearly, the non-anticipating property does not hold any longer. 
Returning to the derivate moments (3, 4), the interpretation of the stochastic 

integral (7) causes an important difference. We renounce to report their deriva-
tion, which is long and tedious, referring to [12] [13].  

The final expressions are: 
( ) ( )1
Im a x= .                         (13) 

( ) ( ) ( ) ( )
1

1
2

S g x
m a x g x

x
∂

= +
∂

.                  (14) 

( )2
2m g x= ,                         (15) 

where (I) and (S) in the above equations stand for Itô and Stratonovich, respec-
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tively. Comparing Equations (13) and (14), it can be concluded that: 1) the equi-
librium solutions (5) are different according to the two interpretations; 2) if the 
SDE in Equation (1) is modified as 

( ) ( )( ) ( ) ( )( ) ( )1, ,
2

gX t a X t t g x g X t t W t
x
∂

= + +
∂

� ,          (16) 

its Itô’s solution equates the Stratonovich’s solution. This result was obtained 
separately by Wong and Zakai [33] and by Stratonovich [34]. 

By putting ( ) ( )11 0 1k i it t tα α α−′ = − + ≤ ≤  in Equation (8), infinite prescrip-
tions for the stochastic integral are obtained, and so infinite FPK equations [29] 
[30] [31]. For brevity’s sake, only the cases 0α =  (Itô) and 1 2α =  will be 
considered here. 

3. Examples 

In this section the equilibrium PDF’s of some scalar SDE’s and of one two-state 
SDE will be computed according Itô’s and Stratonovich’s prescrition. The dif-
ferences among the two solutions will be enlightened. 

3.1. System with Cubic Nonlinearity and Nonlinear Parametric  
Excitation 

We analyze the following nonlinear system 

( ) ( ) ( ) ( )3 2d d dX t aX t bX t t c X t Bσ = − + + +  ,          (17) 

where a, b and c are real positive constants, and B(t) is a standard Brownian mo-
tion. X(t) is allowed to assumed positive values only. According to Equations (13, 
14) the first derivate moments is 

( ) 3
1

Im ax bx= − − .                        (18) 

( )
2

3
1 4

Sm ax bx σ
= − − + .                     (19) 

in Itô’s and Stratonovich’s prescriptions, respectively. The third term in Equa-
tion (19) equates the Wong-Zakai-Stratonovich corrective term. The second de-
rivate moment is 2c xσ+  in both cases.  

According to Itô the equilibrium PDF is 

( ) ( )

( )

3 2 2

2 2 4 2 6

3
2

4 8

2 2 2exp
3

2 ln ,

I I
X

C bx cbx ax bc xp x
c x

ac bc c x

σ σ σ σ σ

σ
σ σ


= ⋅ − + − −+ 

 
+ + +  

  

         (20) 

where CI is a normalization constant. According to Stratonovich it is obtained 

( ) ( )

( )

3 2 2

2 2 4 2 6

3
2

4 8

2 2 2exp
3

12 ln .
4

S S
X

C bx cbx ax bc xp x
c x

ac bc c x

σ σ σ σ σ

σ
σ σ


= ⋅ − + − −+ 

 
+ + + +  

  

         (21) 
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The two PDF’s are plotted in Figure 1, where the continuous line is the solu-
tion according to Itô and the dashed line the solution according to Stratonovich. 
The parameters take the values 1, 0.5, 1, 1a b c σ= = = = . In this case, the differ-
ences are not remarkable though there are. However, the variances are more dif-
ferent: 0.439473 according to Itô, 0.519702 according to Stratonovich. The larger 
variance of Stratonovich’s solution is caused by the extra-term in Equation (19), 
which has opposite sign to the drift term. 

3.2. Cubic System with Double Well Potential and Nonlinear  
Parametric Excitation 

We analyze the following nonlinear system 

( ) ( ) ( ) ( )3 2d d dX t aX t bX t t c X t Bσ = − + +  ,           (22) 

where a, b and c are real positive constants, and B(t) is a standard Brownian mo-
tion. X(t) is allowed to assumed positive values only. This system has been ana-
lyzed in many and many papers, but in most cases the excitation was additive. 
The restoring force derives from the potential function 2 42 4ax bx− , which 
has unstable maximum for 0x =  and two stable minima in 2a b± . 

According to Equations (13, 14) the first derivate moments is 
( ) 3
1

Im ax bx= − .                         (23) 

( )
2

3
1 4

Sm ax bx σ
= − + .                      (24) 

in Itô’s and Stratonovich’s prescriptions, respectively. As in the previous case, 
the third term in Equation (24) equates the Wong-Zakai-Stratonovich corrective 
term, and the second derivate moment is 2c xσ+ . 

If the excitation is external, this system is known to have a bimodal PDF. With 
the parametric excitation of Equation (22) the PDF’s are 

( ) ( )

( )

3 2 2

2 2 4 2 6

3
2

4 8

2 2 2exp
3

2 ln ,

I I
X

C bx cbx ax bc xp x
c x

ac bc c x

σ σ σ σ σ

σ
σ σ


= ⋅ − + + −+ 

 
+ − + +  

  

        (25) 

( ) ( )

( )

3 2 2

2 2 4 2 6

3
2

4 8

2 2 2exp
3

12 ln .
4

S S
X

C bx cbx ax bc xp x
c x

ac bc c x

σ σ σ σ σ

σ
σ σ


= ⋅ − + + −+ 

 
+ − + +  

  

        (26) 

according to Itô and Stratonovich, respectively. With respect to Equations (20, 
21) the terms with a change their signs. The two PDF’s are plotted in Figure 2 
(Itô continuous line, Stratonovich dashed line): the parameters take the values 

1, 0.5, 1, 1a b c σ= = = = . The two density functions look very different: the bi-
modal characteristic is almost lost in Itô’s solution, while is marked in Stratono-
vich’s one. The variances are 1.56060 and 1.81564 in the two cases, respectively 
with a notable difference. 
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Figure 1. Equilibrium PDF’s of the system (17): Itô’s solution 

continuous line (___), Stratonovich solution dashed line (- - - -). 
 

 

Figure 2. Equilibrium PDF’s of the system (22): Itô’s solution 

continuous line (___), Stratonovich solution dashed line (- - - -). 

3.3. Cubic System with Double Well Potential and Strong  
Nonlinear Parametric Excitation 

The dynamical system of Section 3.2 now has a parametric excitation with a 
stronger nonlinearity: 

( ) ( ) ( ) ( )3 2 2d d dX t aX t bX t t c X t Bσ = − + +  ,         (27) 

where a, b and c are real positive constants, and B(t) is a standard Brownian mo-
tion. X(t) is allowed to vary on the whole real axis. The first derivate moments is 

( ) 3
1

Im ax bx= − .                        (28) 

( )
2

3
1 2

Sm ax bx xσ
= − + .                     (29) 

in Itô’s and Stratonovich’s prescriptions, respectively. As in the previous case, 
the third term in Equation (29) equates the Wong-Zakai-Stratonovich corrective 
term, and the second derivate moment is 2 2c xσ+ . 

In this case the PDF’s are 
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( ) ( ) ( )
2

2 2
2 2 2 2 4exp lnI I

X
C bx a bcp x c x

c x
σ

σ σ σ σ
  = ⋅ − + + +  +   

,      (30) 

( ) ( ) ( )
2

2 2
2 2 2 2 4

1exp ln
2

S S
X

C bx a bcp x c x
c x

σ
σ σ σ σ

  = ⋅ − + + + +  +   
.    (31) 

according to Itô and Stratonovich, respectively. 
The PDF’s are plotted in Figure 3 for the following values of the parameters: 

1, 0.25, 1a b c= = = ; the strength of the white noise σ varies. When the excitation 
is external, this dynamical system has a bimodal PDF. The behaviour is different 
with the parametric excitation of Equation (27), as one can see in the plots: the 
look of the PDF depends on the value of σ. For values of σ lesser than one the 
PDF is bimodal in both approaches (Figure 3(a)). When 1σ =  (Figure 3(b)), 
the PDF is unimodal according to Itô, while it is bimodal according to Stratono-
vich. Hence, according to Stratonovich the system has undergone a phase transi-
tion. Raising σ to 3 , both PDF’s are bimodal: thus, the phase transition in 
Itô’s interpretation is shifted to values of σ a bit larger. Because of the not simple 
expressions of the PDF’s, it is probably impossible to express the zeros of the 
first derivatives as functions of σ, but they can be found numerically. 

 

 

Figure 3. Equilibrium PDF’s of the system (27) for 1 2σ =  (a), 1σ =  (b), and 

3σ =  (c): Itô’s solution continuous line (___), Stratonovich solution dashed line 
(- - - -). 
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The differences in the PDF’s are notable especially in the last case in which 
they have a maximum only. However, the differences are really deeper as one 
can see in Table 1, where the variances are reported. In the Stratonovich’s ap-
proach the variances are much larger than in Itô’s one. Moreover, they grow 
with σ, while according to Itô they diminish. It is concluded that in this case the 
two interpretations of the SDE’s lead to opposite behaviours of the system.  

3.4. A Two-State System: Nonlinear Oscillator with Parametric  
Excitation 

Now we consider a nonlinear two-state oscillator with parametric excitations 
that has been already considered in literature according to the Itô’s interpreta-
tion of the stochastic integral only [12] [13]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
0 1 2 3,X t f X X X t X t X t W t X x W t W tω+ + = + +�� � � � ,   (32) 

where ( ),f X X�  is a deterministic function of the two states of the oscillator. 
W1, W2 and W3 are stationary independent Gaussian white noises with intensi-
ties ( )1,2,3jjK j = , and auto-correlations ( ) ( )

j jW W jjR Kτ δ τ= . The FPK equa-
tions associated with Equation (32) are 

( ) ( ){ }

( )

1 2
1 2 1 2

2
0 1 1 2 2

1 2
2

2 2
11 1 22 2 332

2

,

,

X X
X X X X

p
x p f x x x p

t x x

K x K x K
x

ω
∂ ∂ ∂

= − −  ∂ ∂ ∂

∂  + π + + ∂

         (33) 

( ) ( ){ }

( )

1 2
1 2 1 2

2
0 1 1 2 2 22 2

1 2
2

2 2
11 1 22 2 332

2

,

,

X X
X X X X

p
x p f x x x K x p

t x x

K x K x K
x

ω
∂ ∂ ∂

= − − + π  ∂ ∂ ∂

∂  + π + + ∂

     (34) 

according to Itô and Stratonovich, respectively. Equation (34) differs from Equa-
tion (33) because of the term 22 2K xπ  in the derivative with respect to x2. 

In both cases the equilibrium PDF, if existent, has the form 

( ) ( )
1 2 1 2 1 2, exp ,X Xp x x C x xφ= ⋅ −   .                (35) 

In Equation (35) ( )1 2,x xφ  is the probability potential that is solution to the 
first order ODE 

( ) ( )
( )

1 2 22
2 2

11 1 22 2 33

,d
d

f x x K
K x K x K

φ
λ

+ π
=
π + +

.                 (36) 

 
Table 1. Variances for the system (27). 

σ  Itô Stratonovich 

1 2  5.6363 7.2070 

1 5.0122 7.6866 

3  3.9604 9.6512 
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In Equation (36) the term in parenthesis in the numerator is absent in Itô’s 
interpretation; λ is a value of the mechanical energy Λ of the oscillator, that is 

2 2 2
0 1 2

1 1
2 2

X XωΛ = + . An admissible solution can be found if and only if the fol-

lowing conditions hold [12] [13] 

( ) ( ) 2
1 2 11 0 22, ,f x x f K Kλ ω= = .                 (37) 

The second condition in Equation (37) imposes a rather restrictive relation-
ship among the intensities of two excitations and a system parameter. Assuming 
that the conditions of Equation (37) are satisfied, the resulting PDF’s are 

( ) ( ) ( )
( )1 2 1 2

22 33

, exp d
2

I
X X I

f
p x x C

K K
λ

λ
λ

 
= ⋅ − π + 

∫ ,            (38) 

( ) ( ) ( )
( )1 2 1 2

22 3322 33

, exp d
22

S S
X X

fCp x x
K KK K

λ
λ

λλ

 
= ⋅ − π ++  

∫ ,       (39) 

according to Itô and Stratonovich, respectively. 
For brevity’s sake, only the case ( )f aλ λ=  is presented. The integral in the 

exponentials is evaluated as 

( )
( )33 22 33

22 33 22 22

ln 2
d

2 2 4
aK K Ka a

K K K K
λλ λλ

λ
⋅ +

= −
π + π π∫ .        (40) 

I n  t h e  nu mer i c a l  a na l y se s  t h e  p ar a met er s  t ake  t he  va l u es :  

0 220.1, 2 , 0.1a Kω= = π =  in the first case, and 22 1.0K =  in the second (K11 
comes from the second of Equations (37)). The results of the first case are plot-
ted in Figure 4 and Figure 5. Figure 4 shows the two-dimensional PDF given by 
Equation (38), say Itô’s interpretation and the two-dimensional PDF given by 
Equation (39) (Stratonovich’s). One can note that Itô’s PDF is rather flat around 
the maximum, while Stratonovich’s one is much more peaked. This fact is con-
firmed by considering the sections ( )

1 22 00, I
X XX p ==  or ( )

1 2 0
S

X Xp =  and  
( )

2 11 00, I
X XX p ==  or ( )

2 1 0
S

X Xp =  that are shown in Figure 5. It is recalled that, strict-
ly speaking, these functions are not PDF’s as they are not normalized: however, 
the normalization could be easily obtained numerically. A measure of the dis- 
persion is the mean square value, that is ( )

1 2

2
1 10dX Xx p x⋅

=∫  or ( )
2 1

2
2 20dX Xx p x⋅

=∫ .  

The dispersions of the section 1 0X =  are 0.030817 and 0.027244 according to 
Itô and Stratonovich, respectively. The dispersions of the section 2 0X =  are 
7.644173 and 6.757889 according to Itô and Stratonovich, respectively. These 
values are not so different, and partly disavow the visible impression. However, 
on the whole the two PDF’s are different even if less than in other cases. 

The results of the second case are in Figure 6, Figure 7: in Figure 6 there are 
the 3D plots of the joint PDF’s, while the sections 2 10, 0X X= =  are in Figure 
7. As expected, the differences between the two interpretations of the stochastic 
differential Equation (32) are more marked in this case. In fact, the strengths 

11 22,K K  of the parametric excitations are definitely larger: in this way, the term 

22 2K xπ  in Equation (34) becomes more and more important (this term is ab-
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sent in Itô’s interpretation). Even the mean square values are notably different: 
for the section 2 0X =  they are 0.080475 and 0.055596 according to Itô and to 
Stratonovich, respectively. For the section 1 0X =  the mean square values are 
19.9617 and 13.7905, respectively. Performing the normalization, the variances 
are 2 1.6038Xσ =  and 0.8817 according to Itô and Stratonovich, respectively 
with more notable differences. 

 

 
(a)                                        (b) 

Figure 4. Two-dimensional PDF of the system (32) according to Itô, first case, Equation 
(38) (a), and according Stratonovich, Equation (39) (b). 

 

 
(a)                                    (b) 

Figure 5. Sections 2 0X =  (a) and 1 0X =  (b) of the two-dimensional PDF’s of the 

first case: Itô’s solution continuous line (___), Stratonovich solution dashed line (- - - -). 
 

 
(a)                                        (b) 

Figure 6. Two-dimensional PDF of the system (32) second case 22 1.0K = , according to 
Itô, (Equation (38) (a) and according to Stratonovich (b). 
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Figure 7. Sections 2 0X =  (a) and 1 0X =  (b) of the two-dimensional PDF’s of the 

second case, 22 1.0K = : Itô’s solution continuous line (___), Stratonovich solution 
dashed line (- - - ). 

 
Another important aspect of the behaviour of a dynamic system is the mean 

upcrossing rate function ( )X bν , that is the function that counts the times a 
stochastic process overpasses a given threshold b with positive velocity. For a 
second order system this function is given by Rice’s formula [35]: 

( ) ( )
1 2 1 2 20

, dX X Xb p x b x xν
+∞

= =∫ .                 (41) 

If one is interested in the outcrossings of the double barrier b±  and the PDF 

1 2X Xp  is symmetric, it is sufficient to double the result of Equation (41). In gen-
eral, this is to be evaluated numerically. 

In the case of high barriers, the upcrossings are rare events so that they can be 
considered independent and are assumed to constitute a homogeneous Poisson 
process. Thus, the cumulative distribution function of the first time ( )T b  at 
which the process X(t) crosses b firstly is given by 

( ) ( ) ( )1 e X b
TP T b F ν ττ τ −≤ = = −   .                (42) 

From the usual laws of the probability it is obtained the important result 

( ) ( ] ( )max 0, e X bP X t b ν ττ − ≤ =  .                 (43) 

Thus, the knowledge of the mean upcrossing rate function yields an estimate 
of the largest value distribution of X(t): the estimate is as more precise as the 
upcrossings can be considered Poissonian. 

As an example, Equation (41) has been numerically evaluated for the oscilla-
tor of Equation (32) in the second case, that is with 22 1.0K = , considering sev-
eral values of b: the results are in Figure 8, where the dashed line comes from 
Itô’s interpretation and the continuous line from Stratonovich’s one. The two 
curves are markedly different: in Itô’s interpretation for a given barrier b there 
are roughly twice upcrossings than in Stratonovich’s one, what means that the 
probability of reaching and passing a given response level is higher according to 
Itô. This fact is surely relevant in structural design. The explanation of this be-
haviour resides in the extra-term in the drift that arises in Stratonovich inter-
pretation: in the case under consideration it makes the dynamic system stiffer so 
that crossing a given level becomes rarer. 
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Figure 8. Plot of the mean upcrossing rate function ( )bν  against the 

barrier b for the oscillator of Equation (32) with 22 1.0K = : Itô’s solu-

tion continuous line (___), Stratonovich solution dashed line (- - - -). 

4. Conclusions 

In this paper, the problem of the interpretation of the stochastic differential equ-
ations is addressed from an applicative point of view. Theoretically, when eva-
luating a stochastic integral with respect to a Brownian motion, there are infinite 
interpretations, and hence infinite values for the integral depending on the choice 
of the integration point. However, Itô’s interpretation and Stratonovich’s one are 
the most common so that attention is restricted to these two interpretations, 
even if the kinetic interpretation too is relevant. It has been underlined [36] that 
the interpretation of a stochastic differential equation has a deep deterministic 
root, residing in the integration rule that one adopts: Itô’s choice corresponds to 
the forward integration rule, while Stratonovich suggests the trapezoidal rule. 

In order to highlight the differences in the responses that are obtained ac-
cording the two interpretations of a stochastic integral, some stochastic dynamic 
systems with parametric excitation are analyzed, for all of which the FPK equa-
tion has an analytical solution in the final equilibrium regime. In the first three 
cases, the system is scalar. In the case of Section 3.1, the restoring force derives 
from a potential function with a minimum only: there are small differences be-
tween the PDF’s of the two approaches, which however are present. 

In the cases that are examined in Sections 3.2 and 3.3, the potential function 
has two stable minima and an unstable maximum in zero. When the excitation is 
merely external, the equilibrium PDF is always bimodal. It remains bimodal in 
both interpretations in the case of Section 3.2 that is characterized by a milder 
parametric excitation ( )2 2 dc X Bσ+ , but the PDF’s look very differently. 

In Section 3.3, the excitation is definitely more nonlinear ( )2 2 dc X Bσ+ , 
and the behaviour changes dramatically as the PDF may be unimodal or bimodal: 
see Figure 3. In the two approaches, the phase transition happens for different 
values of the parameter σ. The differences between the PDF’s increase as σ in-
creases, which is reflected by very different values of the mean square 2X  
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(Table 1). 
The last case (Section 3.4) regards a second order oscillator, for which the 

problem of the mean upcrossing rate of a given level is also addressed. The res-
ponses are not comparable, and the oscillator is safer according to Stratonovich 
than according to Itô. 

The following conclusions can be drawn: 1) the two interpretations of a sto-
chastic integral lead to marked differences in the statistical features of the re-
sponse of a dynamic system. 2) Hence, caution is necessary in choosing an in-
terpretation instead of the other. 3) Likely, Stratonovich’s interpretation is pre-
ferable as it has deeper physical bases, the respect of the law of the conservation 
of the energy and the agreement with the experiments. 4) However, one can 
equally use Itô’s stochastic differential calculus by modifying the original SDE 
with the addition of the Wong-Zakai-Stratonovich corrective term in the drift: 
in such a way Stratonovich’s solution is recovered. 

In writer’s thought, the future work should follow two lines: 1) execution of 
experiments on dynamic systems with parametric excitation miming real cases; 2) 
theoretical studies regarding the effects of the different interpretations of a sto-
chastic integrals on other aspects of the stochastic dynamics such as stochastic 
stability, first passage time problem, and white but not Gaussian excitations.  
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