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Abstract 
This paper intends to develop suitable methods to provide likely scenarios in 
order to support decision making for slow dynamic processes such as the un-
derlying of agribusiness. A new method to analyze the short- and long-term 
time series forecast and to model the behavior of the underlying process using 
nonlinear artificial neural networks (ANN) is presented. The algorithm can 
effectively forecast the time-series data by stochastic analysis (Monte Carlo) 
of its future behavior using fractional Gaussian noise (fGn). The algorithm 
was used to forecast country risk time series for several countries, both for 
short term that is 30 days ahead and long term 350 days ahead scenarios. 
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1. Introduction 

The agribusiness activities are the engine where the vegetal production lies with 
its decision-making built-in [1]. In Argentina, the activity’s profit is subjected to 
a good production plan which in turn is subjected to financial variables [2]. One 
of them is the Emerging Market Bond Index (EMBI) known as country risk. 
This variable indexes the economic health of the country and is a strong signal 
when is compared against that of Chile, Brazil and Mexico countries whose 
products compete with those of Argentinian. When the producer must perform 
the production plan, there arises the need for counting with information about the 
EMBI values with some future horizon. In this paper, a method to forecast time 
series from EMBI with short and long term horizons is proposed.  
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The article is structured as follows: after this Introduction, Section 2 describes 
an overview of the problem statement. Section 3 shows the proposed approach 
of the training and the selection method based on fractional Brownian motion 
using classical non-linear autoregressive model based on neural networks. Sec-
tion 4 shows the sets of monthly EMBI series from Latin America countries, with 
emphasis on the statistical evaluation of the short-range case (800 training data 
samples) and the long-range (2700 training data). Section 5 presents some dis-
cussions and concluding remarks. 

2. Problem Formulation 

When agricultural venture is focused on profit from production purposes, sever-
al dynamic rates arises. One of them, the very short-term dynamic embraces 
process such as irrigations and nutrients, chemical applications in which it must 
take that decision [3]. Another dynamic arises when the producer plans the crop 
to sow and the rainfall forecast is required to perform such a task at an optimal 
date decision [4] [5] [6] [7]. However, the slow dynamic process related with the 
final product offer and demand is the variable with special interest in the agro-
nomic venture which is subject to future economic scenario [8]. 

Is in this scenario where earn importance some economic variables, specifi-
cally the EMBI [9] whose role serves to measure the economic health of a coun-
try. So, in order to take optimal decision in the choice of crop and date, the availa-
bility of some economic future information about some player is required. There-
fore, future scenarios from economic health in Argentina, Chile and Brazil in 
short and long term gives information to improve such decision making [10]. 

3. Proposed Approach 

In this paper, a classical non-linear autoregressive model based on neural net-
works whose parameters are batch tuned [11] and its performance is evaluated 
by stochastic analysis is proposed [12].  

After training is completed, predictions are generated by using Monte Carlo 
with Gaussian noise (Gn) and fGn [13]. The expectation from each prediction 
ensemble is computed for obtaining a deterministic time series both for Gn and 
fGn. The stochastic analysis of these time series is performed for determining the 
forecast with the appropriate stochastic roughness characteristic and so it is 
chosen for the forecast. This section details the training and the selection me-
thod based on fGn.  

3.1. The Basic Problem 

The classical prediction problem can be formulated as follows. Given past values 
uniformly time-spaced of a process, namely ( ) ( ) ( )1 , 2 , ,x n x n x n N− − −  where 
N is the time series length, the present value x(n) must be predicted. 

Here, a prediction device is designed by considering the given sequence {xn} at 
time n corresponding to a time series it can be obtained the best prediction {xe} 
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for the following future 30/350 values sequence. Hence, it is proposed a predic-
tor filter with an input vector x, which is obtained by applying the delay operator 
D, to the sequence {xn}. Then, the filter output will generate xe as the next value, 
that will be best estimate of the present value xn. So, the prediction error at time 
k can be evaluated as 

( ) ( ) ( )n ee k x k x k= −                       (1) 

which is used for the learning rule to adjust the NN weights. 
The predictor is implemented by an autoregressive neural network-based non-

linear adaptive filter. The NNs are used as a nonlinear model building to represent 
the underlying physical process dynamic behavior that generates the data. In this 
work, time lagged feed-forward networks are used. 

The present value of the time series is used as the desired response for the 
adaptive filter, and the past values of the signal are supplied as adaptive filter in-
put. Then, the adaptive filter output will be the one-step prediction signal. In Fig-
ure 1 the block diagram of the nonlinear prediction scheme based on a NN filter is 
shown. Therefore, our aim is to obtain the best prediction (in roughness sense) of 
the present values from a random (pseudo-random) time series. 

3.2. NN-Based AR Model 

Several experiences had been obtained from previous works detailed in [12]. Here, 
an NN-based AR filter model is tuned. The NN used is a time lagged feed-forward 
networks class. The NN topology consists of lx inputs, one hidden layer of Ho 
neurons that are the processing nodes in the hidden layer, and one output neu-
ron as shown [12]. The learning rule used in the learning process is based on the 
Levenberg-Marquardt method [14]. 

In order to predict the sequence {xe} one-step ahead, the first delay is taken 
from the tapped-line xn and used as input. Therefore, the output prediction can 
be denoted by 

( )

1

2
1 2

1

, ,

x

n

n
e p

n l

x
x

x n F

x

−

−

− −

  
  
  =   
      



ξ ξ                     (2) 

 

 
Figure 1. Block diagram of the neural network-based nonlinear predictor. 
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where, ( )1 2, ,pF ⋅ ξ ξ  is the nonlinear predictor filter with lx inputs and xe(n) is 
the output prediction at time n. In addition, 1ξ  and 2ξ  contain the tuning pa-
rameter composed by 

1 2
1 1 1 1

oH =  ξ ξ ξ ξ                       (3) 

whose elements are arrays defined as 
1

1
xli +∈ℜξ                              (4) 

and 
1

2
oH +∈ℜξ                               (5) 

where Ho is the number of processing nodes. Thus, the predictor filter contains 
tuning parameters 1ξ  and 2ξ  that must be computed and from now on will 
not be explicit to avoid notation abuse. 

3.3. Monte Carlo Implementation Including Fractional Brownian  
Motion 

In this work the Hurst’s parameter is used as statistical criteria for time series 
forecast by selecting the assessment in the algorithm. This H gives an idea of 
signal roughness, and determines its stochastic dependence, here is implemented 
according to [15]. The definition of the Hurst’s parameter appears in the Brow-
nian motion from generalizing the integral to a fractional one. The Fractional 
Brownian motion (fBm) is defined in the pioneering work by Mandelbrot [16] 
[17] through its stochastic representation 

( ) ( ) ( ) ( ) ( ) ( )
1 1 10
2 2 2

0

1 d d
1
2

tH H H
HB t t s s B s t s B s

H

− − −

−∞

  = − − − + −      Γ + 
 

∫ ∫  (6) 

where, Γ(·) represents the Gamma function 

( ) 1
0

e dxx xαα
∞ − −Γ = ∫                          (7) 

and 0 1H< <  is called the Hurst parameter. The integrator B is a stochastic 
process, ordinary Brownian motion. The determination of H results in a sto-
chastic process with more roughness (H < 1/2) or more smoothness (H > 1/2) 
which is fixed given the real processes evidences. Note, that B is recovered by 
taking H = 1/2 in (6). Here, it is assumed that B is defined on some probability 
space (Ω, F, P), where Ω, F and P are the sample space, the sigma algebra (event 
space) and the probability measure respectively. Thus, an fBm is a time conti-
nuous Gaussian process depending on the so-called Hurst parameter 0 1H< < . 
The ordinary Brownian motion is generalized to H = 0.5, and whose derivative is 
the white noise. The fBm is self-similar in distribution and the variance of the 
increments is defined by 

( ) ( )( ) 2H
H HVar B t B s t sν− = ⋅ −                 (8) 

where v is 1 and s = 0. 
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This special form of the variance of the increments suggests various ways to 
estimate the parameter H. In fact, there are different methods for computing the 
parameter H associated to Brownian motion [17]. In this work, the algorithm 
uses a wavelet-based method for estimating H from a trace path of the fBm with 
parameter H [18]. To generate data, as example, three ensemble from fBm with 
different values of H are shown in Figure 2, where can be noted the difference in 
the variances for each H. The figure shows synthetized traces using the method 
described in [13], where the black dots corresponds to five traces for each H, the 
magenta lines shows the theoretical variances using (8) and the blue lines shows 
the variance estimated by 

( ) [ ]( )2
,

1
t t tVar f f E f

N ω
ω

= −∑                     (9) 

where N is the size of f(t, ω) for each time t. and ω indicates each trace. 
Finally, in this paper the method implemented in [15] was used. 

3.4. Algorithm Description 

Our thesis asserts that if some process evolves along time with any H, it will do 
in the future with the same H namely keeping its smoothness or roughness. To 
do so, a classic non-linear model based on neural networks batch-tuned is pro-
posed. In the tuning process, data are randomly split for generalizing and train-
ing, with a 15% and 85% ratio, respectively. Furthermore, since the last data are 
the most important given the series nature, the last or the last two are left for  
 

 
Figure 2. Five sample paths from fractional Brownian motion for three values of H (com-
puted over 50-trace ensemble), theoretical variances explicit in Equation (8) and numerical 
variance computed by Equation (9) are also depicted. 
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evidence test. Thus, the relevant data quantity to be considered from the series is 
them determined for performing the desired forecast. By this way the parameters 
for Equation (3) are obtained. 

After tune the filter defined in Equation (2), the predictions are generated us-
ing normal Gaussian and fractional Gaussian noise. In order to generate the en-
semble with R traces for forecasting the time series, it is modified the Equation 
(2) by 

( ) ( )

1

2

1

, , ,

x

n q

n q
e p H

n q l

x
x

x n q F B q

x

ω ω θ ω

− +

− +

− + −

  
  
  + = + ⋅∆  
      



            (10) 

where 1,2, , Hq F=   sets the future time, FH the forecast horizon, 1,2, , Rω =   
denotes each trace, R is the ensemble size and θ is a parameter for denormalizing 
BH. For selecting a fixed value for θ, one must take into account the length of the 
forecast horizon FH, which in this work are 30 and 350 days and also the series 

dynamic range, using
( ) ( )

( )

2

max min1
max

H

H

x x
F x

θ
  − =      

                   

(11) 

and specifically when H = 0.5 the Gaussian case is obtained. The coefficient θ 
was introduced for normalizing the ensemble along the forecast time. The en-
semble described by Equation (10) is analyzed by classical statistical methods for 
obtaining the mean and the variance functions. 

Once the tuning process is completed, for the short term forecast case a se-
quences pair is defined. One sequence is 

{ }, 1, 2,3, ,nx n N=                         (12) 

and the other is composed by the former concatenated with the forecasted which 
is the ensemble expectation from Equation (10), that is 

{ } [ ]{ }{ }, ,  1, 2,3, ,n e Hx E x e F=                  (13) 

Both sequences are analyzed by the method detailed in [18] and such esti-
mated H must match between (12) and (13). Thus, ensemble mean of each pre-
diction is taken and that one with the suitable stochastic roughness H is chosen 
as the forecast. Table 1 details the method for tuning and selecting based on 
fBm. 

4. Implementation with EMBI Time Series 

The method has been implemented by considering that there are more than 
2700 data values from several countries. 

Here it is proposed to build a model for forecasting the time evolution of the 
next 30 data following the current time—which is going to be considered as short 
range, and the next 350 values that corresponds to the long range. For both cases  
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Table 1. Algorithm that performs the short/long term time series forecast. 

1. Set the neural network (NN) topology by assigning lx, Ho Equation (4) Equation (5). 

2. 
Chose the data for truth test that are just one or two of the last time series data that will not be 
used by training or validating processes. 

3. Train the NN with 85% of the data and check the overfitting with the remaining 15%. 

4. Stop the training if the generalization error increases. 

5. If the truth test data is not suitably forecasted, go to 1. 

6. Set H = 0.5, set θ via Equation (11). 

7. Run Monte Carlo including H described by Equation (10). 

8. 
Select the mean value that gives the best match of H according to the long or the short range 
scenario. 

9. The obtained mean series generated and its variance are the algorithm results. 

10. 
Given the case that the results were not credible, go to 6 and modify the noise characteristic by 
changing H, 0 < H < 1. 

 
the methodology uses a batch training with a validation set of 15% of the ran-
dom data set. In the short-range case, 800 training values were used and for the 
long-range, 2700. 

The last group of one to three data was left as a test of disruptive validation or 
truth test, mainly for studying the overfitting. The prediction was made by Monte 
Carlo simulation where the noise used were stationary, seasonal and pseudoran-
dom, although with a roughness characteristic determined by the Hurst para-
meter, generated by using [15]. 

The roughness is evaluated by the Hurst’s parameter H, which is computed 
using a wavelet-based method [18]. After the tuning process is completed, two 
sequences pairs are defined. One pair is 

{ }, 1, 2,3, ,n Sx n N=                         (14) 

with 

{ } { }{ }, ,  1, 2,3, ,n e Sx x e F=                      (15) 

for the short term forecast given 800SN = , 30SF = . The other pair is 

{ },  2350,2351, ,n Lx n N=                      (16) 

with 

{ } { }{ }, ,  1, 2,3, ,n e Lx x e F=                     (17) 

for the long term forecast given 2700LN = , 350SF = . The selection of NL was 
determined given the available data samples, and the parameter FS was deter-
mined given that one year ahead is long term for development countries. Each 
pair of sequences must show the same H parameter estimated by [18]. 

4.1. Monthly EMBI Forecast 

The algorithm detailed in Table 1 was used to forecast short term time series of 
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30 step ahead. The time series belong to EMBI from Argentina, Chile, Brazil and 
Mexico. The results are summarized in Table 2, and the evolution over time is 
shown in Figures 3-6. The images shown a shaded area that indicates the ensem-
ble range, 100% of the traces, obtained by Monte Carlo. Inside the shaded area is  
 
Table 2. Roughness results with the implementation of the 30-day algorithm (March 
2019). 

Series Argentina Chile Brazil Mexico 

{xn} 0.66917 0.503 0.63827 0.65115 

{xn, xe} fGn 0.66941 0.49902 0.63864 0.65077 

 Figure 3(a) Figure 4(a) Figure 5(a) Figure 6(a) 

{xn,xe} Gn 0.66895 0.50227 0.6376 0.65128 

 Figure 3(b) Figure 4(b) Figure 5(b) Figure 6(b) 

 

 
Figure 3. Argentinean EMBI forecast and its stochastic roughness up to Jan 2019. The cyan 
line is the data samples, the yellow area depicts the 100% of the Monte Carlo traces, the orange 
area indicates the 66% of the traces, and the red line is the mean value of the stochastic process. 
(a) H = 0.66941; (b) H = 0.66895. 

 

 
Figure 4. Chilean EMBI forecast and its stochastic roughness up to Jan 2019. (a) H = 0.49902; 
(b) H = 0.50227. 
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Figure 5. Brazilian EMBI forecast and its stochastic roughness up to Jan 2019. (a) H = 0.63864; (b) H = 
0.6376. 

 

 
Figure 6. Mexican EMBI forecast and its stochastic roughness up to Jan 2019. (a) H = 0.65077; (b) H = 
0.65128. 

 
another shaded area that indicates the 66% of the traces. The statistic indicator is 
H, which is detailed under each ensemble. The aim of show values of H, cases (a) 
and (b) of each series, is to highlight the behavior of the forecast. The case of the 
ensemble generation with H = 0.5 is shown in the lower rows of the table, given 
that the estimation of H gives figures near 0.5. In Table 2 are summarized the 
results, where the values in bold fonts indicates the forecast recommended by 
the criteria stated in this work. 

4.2. Annual EMBI Forecast 

The algorithm of Table 1 is used for forecasting long term periods, in this case 
350 steps ahead. The simulation conditions are those of Equation (16) and Equa-
tion (17). Here, the Monte Carlo was set with fractional Gaussian noise and 
normal Gaussian noise, detailed in different rows of Table 3. The figures in bold  
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Table 3. Roughness results with the implementation of the algorithm for 350 days hori-
zon forecast (Dec 2019).

Series Argentina Chile Brazil Mexico 

{xn} 0.70392 0.40106 0.647 0.54395 

{xn,xe} fGn 0.78425 0.6938 0.6444 0.29233 

 Figure 7(a) Figure 8(a) Figure 9(a) Figure 10(a) 

{xn,xe} Gn 0.58782 0.47213 0.44172 0.83236 

 Figure 7(b) Figure 8(b) Figure 9(b) Figure 10(b) 

 

 
Figure 7. Argentinean EMBI forecast and its stochastic roughness up to Dec 2019. The cyan line is the data samples, the 
yellow area depicts the 100% of the Monte Carlo traces, the orange area indicates the 66% of the traces, and the red line is 
the mean value of the stochastic process. (a) H = 0.78425; (b) H = 0.58782. 

 

 
Figure 8. Chilean EMBI forecast and its stochastic roughness up to Dec 2019. (a) H = 0.6938; (b) H = 0.47213. 
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Figure 9. Brazilian EMBI forecast and its stochastic roughness up to Dec 2019. (a) H = 0.6444; (b) H = 0.44172. 

 

 
Figure 10. Mexican EMBI forecast and its stochastic roughness. (a) H = 0.29233; (b) H = 0.83236. 

 
show the preferred forecast of this method. The shaded areas embrace the traces 
from the ensemble, where the darkest indicates the 66% of confidence and the 
continuous thick line is the mean value. 

4.3. Discussion 

From our results, the obtained EMBI behavior is stable with increasing trend in 
the Argentina’s case, which is very volatile. The EMBI behavior shows a decreasing 
trend in the Mexico’s case. The variation ranges estimated for Argentina is very 
broad although by tuning the H parameter it can be narrowed. At the regional 
level, the variations of Chile and Brazil forecasted EMBI are moderate and the 
one of Mexico are very small. 

The trend indicates a fall in the quarter and then continues declining respect 
of the range the historical. Volatility affects the amplitude of the range with pre-
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dicted values with probable values of descent around 495 basis points (bp) in less 
than 90 days. 

The scenario of variations is high, but with a decreasing trend with wide mar-
gins conditioned by the high fluctuation of its historical index behavior. The av-
erage monthly value is around 700 bp and with an annual downward trend. This 
is an acceptable forecast given that 2019 is a year with scheduled presidential 
elections in Argentina. 

For Chile’s case, the study starts around 165 bp with an upward, soft and con-
stant trend that continues up to the end of March with 160 points, which indi-
cates some internal or external factor that slightly presses the upside. For its part, 
according to this model Brazil will start the year around 272 bp and it would 
have an ascending behavior no higher than 290 until March 20 when it starts to 
return to 260, with small variation and regular movements without brusque 
highs and lows. Finally, in the case of Mexico, the prediction that it would begin 
in the range 350 - 360 bp, with a smooth descending trend towards the end of 
January 330 - 300 bp, and the rest of the quarter remains in 325 - 350 is also ac-
ceptable. 

It can be concluded that the likely economic scenarios for agribusiness pro-
ducers is competitive but very similar to that of prior years, so taking care this 
highlights the final product will be well positioned. 

5. Conclusions 

In this work, a methodology based on neural networks filter to model the un-
derlying process behavior that causes the EMBI measurements evolution of the 
short and long term was detailed. The methodology consists of generating an ar-
tificial intelligence based predictor filter with a stochastic analysis of its future 
behavior using fractional Gaussian noise. Results of this analysis were shown to 
determine which series is the most coincident according to the Hurst parameter.  

The generated information is not the exact value, but gives an idea about which 
will be the index trend based on its historical values intended for slow dynamic 
processes. The incorporation of this variable into decision making by estimating 
the predicted values impacts on the business plan or the investment portfolio. In 
the latter case, the EMBI provides a daily measure of the investor’s perception 
regarding country risk. Thus, given the alarm sense that brings the EMBI rise, it is 
relevant to generate the projection of this series for the region and some countries 
that comprise it. Based on data predictions, it is possible to optimize the expo-
sure in instruments, both bonds as shares, at country level and help to reduce the 
exposure in moments that anticipate an EMBI increase. 

By this way, the proposed predictor model identifies relationships between 
different factors that allow assessing associated risks or likelihood based on a set 
of conditions. It guides the decision maker during the operations of the organi-
zation, identifying the probability of occurrence of events and the consequent 
value of the index in the short and medium term. It generates clarity on the sce-
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nario of the required return rate in dollars of the countries under analysis and 
allows the portfolio manager to reaffirm investment and exposure objectives 
considering the individuality of the risk of each country and the whole, or re-
formulate the investment. 
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