
Applied Mathematics, 2019, 10, 397-418 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2019.106029  Jun. 17, 2019 397 Applied Mathematics 

 

 
 
 

Global Transmission Dynamics of a 
Schistosomiasis Model and Its Optimal Control 

Mouhamadou Diaby1, Mariama Sène2, Abdou Sène3 

1Laboratoire d’Analyse Numérique et d’Informatique (LANI), UFR SAT, Université Gaston Berger de Saint-Louis, Saint-Louis, 
Sénégal 
2UFR AGRO, Université Gaston Berger de Saint-Louis, Saint-Louis, Sénégal 
3LANI, Pôle STN MAI (Mathématiques Appliquées et Informatique), Université Virtuelle du SENEGAL, Dakar-Fann, Sénégal 

 
 
 

Abstract 

Drug treatment, snail control, cercariae control, improved sanitation and 
health education are the effective strategies which are used to control the 
schistosomiasis. In this paper, we consider a deterministic model for schisto-
somiasis transmission dynamics in order to explore the role of the several 
control strategies. The global stability of a schistosomiasis infection model that 
involves mating structure including male schistosomes, female schistosomes, 
paired schistosomes and snails is studied by constructing appropriate Lyapu-
nov functions. We derive the basic reproduction number 0  for the deter-
ministic model, and establish that the global dynamics are completely deter-
mined by the values of 0 . We show that the disease can be eradicated when 

0 1≤ ; otherwise, the system is persistent. In the case where 0 1> , we 
prove the existence, uniqueness and global asymptotic stability of an endemic 
steady state. Sensitivity analysis and simulations are carried out in order to de-
termine the relative importance of different control strategies for disease 
transmission and prevalence. Next, optimal control theory is applied to inves-
tigate the control strategies for eliminating schistosomiasis using time depen-
dent controls. The characterization of the optimal control is carried out via the 
Pontryagins Maximum Principle. The simulation results demonstrate that the 
insecticide is important in the control of schistosomiasis. 
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1. Introduction 

Schistosomiasis (also known as bilharzia, bilharziasis or snail fever) is a vec-
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tor-borne disease caused by infection of the intestinal or urinary venous system 
by trematode worms of the genus Schistosoma. More than 220.8 million people 
required preventive treatment worldwide in 2017, out of which more than 102.3 
million people were reported to have been treated [1]. Schistosomiasis is preva-
lent in tropical and subtropical areas, especially in poor communities without 
access to safe drinking water and adequate sanitation. Of the 207 million people 
with schistosomiasis, 85% live in Africa [1]. Of the tropical diseases, only mala-
ria accounts for a greater global burden than schistosomiasis [2]. Therefore, it is 
vital to prevent and control the schistosomiasis transmission. 

Schistosoma requires the use of two hosts to complete its life cycle: the defini-
tive hosts and the intermediate snail hosts. In definitive hosts, schistosoma has 
two distinct sexes. Mature male and female worms pair and migrate either to the 
intestines or the bladder where eggs production occurs. One female worm may 
lay an average of 200 to 2000 eggs per day for up to twenty years. Most eggs leave 
the bloodstream and body through the intestines. Some of the eggs are not ex-
creted, however, and can lodge in the tissues. It is the presence of these eggs, ra-
ther than the worms themselves, that causes the disease. These eggs pass in urine 
or feces into fresh water into miracidia which infect the intermediate snail hosts. 
In snail hosts, parasites undergo further asexual reproduction, ultimately yield-
ing large numbers of the second free-living stage, the cercaria. Free-swimming 
cercariae leave the snail host and move through the aquatic or marine environ-
ment, often using a whip-like tail, though a tremendous diversity of tail mor-
phology is seen. Cercariae are infective to the second host and turn it into single 
schistosoma, and infection may occur passively (e.g., a fish consumes a cercaria) 
or actively (the cercaria penetrates the fish) and terminates the life cycle of the 
parasite. 

Many effective strategies are used in the real world, such as: based on preven-
tive treatment, snail control, cercariae control, improved sanitation and health 
education. The WHO strategy for schistosomiasis control focuses on reducing 
disease through periodic, targeted treatment with praziquantel. This involves 
regular treatment of all people in at-risk groups [1]. Over the past few decades, 
different mathematical models [3] [4] [5] [6] have been constructed to describe 
the transmission dynamics involving two-sex problems. In [3] [4] [5], a mathe-
matical model is developed for a schistosomiasis infection that involves 
pair-formation models and studied the existence, uniqueness and the stabilities 
of exponential solutions. We note that in [4] [5] authors formulate three forms 
of pair-formation functions (also known as mating functions) that are the har-
monic mean function, the geometric mean function and the minimum function. 
In [7], Xu et al. have proposed a multi-strain schistosome model with mating 
structure. Their goal was to study the effect of drug treatment on the mainten-
ance of schistosome genetic diversity. However, in their model they only con-
sider the adult parasite populations. Castillo-Chavez et al. [3] have considered a 
time delay model but also do not include the snails dynamics. But it is important 
to take into account the snail dynamics as it is shown in the life cycle of schisto-
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soma. In fact, the parasite offspring is produced directly by infected snails but 
not by paired parasites as is related in [6]. Recently, Qi et al. [6] have formulated 
a deterministic mathematical model to study the transmission dynamics of 
schistosomiasis with a linear mating function incorporating these snail dynamics. 
This paper gave the expression of a threshold number (and not the basic repro-
duction number) with a local stability analysis of the disease free equilibrium. 
The sensitivity analysis of this threshold number is also discussed. 

However, no work has been done to investigate the global stability of the equi-
libria which is more in interest. Here, we take this deterministic schistosomiasis 
model with mating structure [6] and we propose a complete mathematical anal-
ysis. A stability analysis is provided to study the epidemiological consequences 
of control strategies. We compute the basic reproduction number and we show 
that when it is less or equal to one then the disease free equilibrium (DFE) is the 
unique equilibrium of the system and it is globally asymptotically stable, while 
when the basic reproduction number is greater than one then there is a unique 
endemic equilibrium which is globally asymptotically stable in the whole space 
minus the stable manifold of the DFE. A sensitivity analysis of the endemic equi-
librium is performed giving a more interest interpretation of the control strate-
gies. Optimal control is a branch of mathematics developed to find optimal ways 
to control a dynamic system [8] [9]. There are few papers that apply optimal 
control to schistosomiasis models. Here we propose and analyze one such op-
timal control problem, where the control function represents the fraction of 
snails individuals ( sX  and iX ) that will be submitted to treatment. The objec-
tive is to find the optimal treatment strategy through insecticide campaigns that 
minimizes the number of snails individuals as well as the cost of interventions. 
This paper is organized as follows. Model formulation is carried out and the ba-
sic properties are shown in the next section. In Section 3, we determine the basic 
reproductive number 0  of the model and also establish local and global sta-
bility of the disease-free equilibrium. In the end of this section we show that the 
disease is uniformly persistent when 0 1> . Section 4 is devoted to prove the 
global asymptotic stability of the endemic equilibrium. In Section 5, a sensitivity 
analysis of the basic reproductive number and of the endemic equilibrium are 
explored. The goal is to identify the most sensitive parameter allowing decreas-
ing the disease prevalence. In Section 6 we propose and analyze an optimal con-
trol problem. A general conclusion is given in the last section. 

2. Mathematical Model  

The model that we consider has been presented in [6]. It describes the time evo-
lution of a population divided in three parasites sub-populations and two inter-
mediate snail host sub-populations. The state variables of the model are:  
• ( )mX t  the male schistosoma population size. 
• ( )fX t  the female schistosoma population size. 
• ( )pX t  the pair schistosoma population size. 
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• ( )sX t  the susceptible (uninfected) snail host population size. 
• ( )iX t  the infected snail host population size.  

The time evolution of the different populations is governed by the following 
system of equations:  
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                 (1) 

The different parameters are:  
• mk  and fk  are the recruitment rates of male schistosoma and female schis-

tosoma respectively. 
• mµ , fµ , pµ , and sµ  denote the natural death rate for male, female, pair 

and snail hosts respectively. sα  is the disease-induced death rate of snail 
hosts. 

• ρ  represents the effective mating rate.  
• Λ  is the recruitment rate of snail hosts. 
• β  is the transmission rate from pairs parasite to susceptible snails. 
• m , f , p  and s  are the elimination rates of male shistosoma, female 

schistosoma, paired schistosoma and snails respectively. These elimination 
rates represent the control strategies.  

As it has been done in [6], we shall denote  

m m mµ µ+ =  , f f fµ µ+ =  , 

p p pµ µ+ =  , s s sµ µ+ =  . 

2.1. Basic Properties  

In this section, we give some basic results concerning solutions of system (1) that 
will be subsequently used in the proofs of the stability results.  

Proposition 1 The set { }0, 0, 0, 0m f p s iX X X X XΓ = ≥ ≥ ≥ ≥ ≥  is a posi-
tively invariant set for system (1).  

Proof. The vector field given by the right-hand side of system (1) points in-
ward on the boundary of Γ . For example, if 0sX = , then, 0sX = Λ > . In an 
analogous manner, the same can be shown for the other system components.  

Proposition 2 All solutions of system (1) are forward bounded.  
Proof. Let us define X m f pN X X X= + +  and Y s iN X X= + . Using system 

(1), we have d
d

Y
s Y s i s Y

N N X N
t

µ α µ= Λ − − ≤ Λ −  . This implies that the set 
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 is positively invariant and attracts all the solutions of (1). 

We also have:  
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, where { }min , ,m f pγ µ µ µ=    , is posi-

tively invariant set and attracts all the solutions of (1).  
Therefore all feasible solutions of system (1) enter the region  
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and the set Ω  is a compact positively invariant set for system (1). It is then suf-
ficient to consider solutions in Ω . 

3. The Basic Reproduction Number and the Disease-Free  
Equilibrium  

The disease-free equilibrium of system (1) is  

( )0 00,0,0, ,0 0,0,0, ,0s
s

X
µ

 Λ
= =  

 

 . Using the notations of [10] for the model 

system (1), the matrices F and V for the new infection terms and the remaining 
transfer terms are, respectively, given by  
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The basic reproduction number 0  is equal to the spectral radius of the ma-
trix 1FV − , a simple computation gives:  

( )( ) ( )( )

0

0 .f f s

s p f s s p f s s

k k Xβρ βρ

µ µ µ ρ µ α µ µ ρ µ α

Λ
= =

+ + + +      

  

One can remark that there is a mistake in the formula for 0  provided in 
[6]. 

The basic reproductive number for system (1) measures the average number 
of new infections generated by a single infected individual in a completely sus-
ceptible population. 

As it is well known (see, for instance, [10]), the local asymptotic stability of 
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the disease-free equilibrium is completely determined by the value of 0  
compared to unity, i.e., The disease-free equilibrium 0  of the system (1) is lo-
cally asymptotically stable if 0 1<  and unstable if 0 1> . 

Hence 0  determines whether the disease will be prevalent in the given 
population or will go extinct. 

Next, we discuss the global stability of infection-free equilibrium by using 
suitable Lyapunov function and LaSalle invariance principle for system (1). In 
recent years, the method of Lyapunov functions has been a popular technique to 
study global properties of population models. However, it is often difficult to 
construct suitable Lyapunov functions.  

Theorem 3 The disease-free equilibrium 0  of system (1) is globally asymp-
totically stable (GAS) on the nonnegative orthant 5

+  whenever 0 1≤ .  
Proof. We shall use the following notations: ( ), , , ,m f p s ix X X X X X= , and 

0
s

s

X
µ
Λ

=


. To show the global stability of infection-free equilibrium of system 

(1), we use the following candidate Lyapunov function: 

( )
( )( )

0

0

ds

s

Xs s fs s s
f p iX

f f

X X
V x X X X X

k k X
τ

τ
τ

µ α µ ρµ α
ρ

+ ++ −
= + + +∫

    (2) 

This function satisfies: ( ) 0V x ≥  for all x∈Ω , and ( ) 0V x =  if and only 
if ( )0,0,0, ,0m sx X X= . 

Taking the time derivative of the function V (defined by 2), along the solu-
tions of system (1), we obtain  
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Using 0 0s sXµΛ − = , we get  
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We will show that the largest invariant set   contained in { }0VΩ =  is 
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reduced to the disease-free equilibrium 0 . 
Let ( ), , , ,m f p s ix X X X X X= ∈  and  
( ) ( ) ( ) ( ) ( ) ( )( ), , , ,m f p s ix t X t X t X t X t X t=  the solution of (1) issued from this 

point. By invariance of  , we have ( ) 0
s sX t X≡  which implies 

( ) ( ) ( ) ( ) ( )0 00s s s p s s s p sX t X t X t X t X X t Xµ β µ β= = Λ − − = Λ − −  and hence 

( ) 0pX t =  for all t. But, ( ) 0pX t ≡  implies that ( ) 0pX t =  for all t which 
implies, using system (1), that ( ) 0fX t =  for all t. In the same way, it can be 
proved that ( ) 0iX t =  for all t. Reporting in the first equation of system (1), 
one obtains that, in  ,  

( ) ( )m m mX t X t tµ= − ∀

  

Thus the solution of (1) issued from ( ), , , ,m f p s ix X X X X X= ∈  is given 
by ( ) ( )0e ,0,0, ,0m t

m sx t X Xµ−=   which clearly leaves Ω  and hence   for 
0t <  if 0mX ≠ . Therefore { }0=   and hence 0  is a globally asymptoti-

cally stable equilibrium state for system (1) on the compact set Ω  thanks to 
LaSalle invariance principle [11], (one can also see [12], Theorem 3.7.11, page 
346). Since the set Ω  is an attractive set, the DFE is actually GAS on the non-
negative orthant 5

+ .  
Biologically speaking, Theorem 3 implies that schistosomiasis may be elimi-

nated from the community if 0 1≤ . One can remark that 0  does not de-
pend on m m mµ µ= +  . Hence it is not helpful to try to control the male schis-
tosoma population and then one can take 0m = . Therefore the only way to 
eliminate schistosomiasis is to increase the killing rates of female schistosoma 
( f ), paired schistosoma ( p ) and snails ( s ) in order to have 0 1≤ . 

In the rest of this section, we show that the disease persists when 0 1> . The 
disease is endemic if the infected fraction of the population persists above a cer-
tain positive level. The endemicity of a disease can be well captured and analyzed 
through the notion of uniform persistence. System (1) is said to be uniformly 
persistent in Ω  if there exists constant 0c > , independent of initial conditions 
in Ω



 (the interior of Ω ), such that all solutions  
( ) ( ) ( ) ( ) ( )( ), , , ,m f p s iX t X t X t X t X t  of system (1) satysfy  

( ) ( ) ( )liminf , liminf , liminf ,m f pt t t
X t c X t c X t c

→∞ →∞ →∞
≥ ≥ ≥  

( ) ( )liminf , liminf ,s it t
X t c X t c

→∞ →∞
> ≥  

provided ( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0m f p s iX X X X X ∈Ω


, (see [13] [14]).  
Theorem 4 System (1) is uniformly persistent in Ω  if and only if 0 1> .  
Proof. When 0 1≤ , the infection-free equilibrium 0  is globally asymp-

totically stable which precludes any sort of persistence and hence 0 1>  is a 
necessary condition for persistence. In order to show that 0 1>  is a sufficient 
condition for uniform persistence, it suffices to verify conditions (1) and (2) of 
Theorem 4.1 in [15] (one can also see [16], Theorem 3.5). 

We use the notations of [15] with = ΩX  and = ∂ΩY . Let M be the larg-
est invariant compact set in Y . We have already seen that { }0M =  , and so M 
is isolated. To show that ( )s M  (the stable set of M) is contained in 
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= ∂ΩY , we use the following function:  
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Since 0 1> , we have 0>  for 0pX >  and 
0

0

0

s
s s

X
X X< ≤


. Therefore 

0>  in a neighborhood N of 0  relative to \Ω ∂Ω . This implies that any 
solution starting in N must leave N at finite time and hence the stable set of M, 

( )s M  is contained in ∂Ω .  

4. Endemic Equilibrium and Its Stability  

Endemic equilibrium points are steady-state solutions where the disease persists 
in the population (all state variables are positive). 

In this case system (1) has an endemic equilibrium point given by  
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This equilibrium has a biological sense only when 0 1> .  
Theorem 5 If 0 1> , the unique endemic equilibrium h  is globally 

asymptotically stable.  
Proof. In order to investigate the global stability of the endemic equilibrium, 

we consider the following function defined on  

{ }1 : 0, 0, 0 and 0f p s sx X X X XΩ = ∈Ω > > > > :  
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This function satisfies: ( ) 0W x ≥  for all 1x∈Ω , and ( ) 0W x =  if and only 
if ( ) ( )* * * *, , , , , ,f p s i f p s iX X X X X X X X= . The time derivative of W with respect 
to the solutions of system (1) is  

( )
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Thus,  
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Using the equilibrium relations (  )  
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It follows that  
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This implies that  
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And since ( ) * *
s s i s sX Xµ α µ+ = Λ −  , it follows that  
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From the AM-GM inequality (which says that the algebraic mean is not 
smaller than the geometric mean), we have  
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Then, 0W ≤  on 1Ω  for 0 1> . Hence, W is a Lyapunov function on 1Ω . 
Moreover, 0W =  if and only if *

f fX X= , *
p pX X= , *

s sX X= , and 
*

i iX X= . 
To obtain the largest invariant set   within the region { }1 : 0x W∈Ω = , 

note that the trajectory of ( )mX t  with an initial condition in   must be a 
solution of:  

* *d
d

m
m i m m f

X
k X X X

t
µ ρ= − −  

Consequently, we have that  
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* * * *
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Since ( )mX t  must not leave the domain   for all t, it follows that  

( )
* *

m i f
m

m

k X X
X t t

ρ
µ
−

= ∀


 

Hence, the largest invariant set   contained in { }1 : 0x W∈Ω =  is reduced 
to { }h , and therefore by LaSalle’s principle [11], h  is globally asymptotically 
stable over 1Ω .  

5. Sensitivity Analysis and Numerical Simulations  

Sensitivity analysis and simulations are important to determine how best we can 
reduce the effect of schistosomiasis, by studying the relative importance of dif-
ferent factors responsible for its transmission and prevalence. Generally speak-
ing, initial disease transmission is directly related to the basic reproduction 
number, and the disease prevalence is directly related to the endemic equili-
brium state h , and more specifically to the magnitude of *

iX , *
mX , *

fX , *
pX . 

We perform the analysis by deriving the sensitivity indices of the basic repro-
duction number to the parameters using both local and global methods. 

5.1. Local Sensitivity Analysis of 0   

We calculate the sensitivity indices of the reproductive number, 0 , and the 
endemic equilibrium point, h , to the parameters in the model. we can derive 
an analytical expression for its sensitivity to each parameter using the norma-
lized forward sensitivity index as described by Chitnis et al. [17]. 

The normalized forward sensitivity index of a variable to a parameter is a ratio 
of the relative change in the variable to the relative change in the parameter. 
When a variable is a differentiable function of the parameter, the sensitivity in-
dex may be alternatively defined using partial derivatives. 

Definition 1 The normalised forward sensitivity index of a variable p that 
depends differentiable on a parameter q is defined as:  

p
q

p q
q p
∂

ϒ = ×
∂
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Sensitivity analysis is commonly used to determine the robustness of model 
predictions to parameter values (since there are usually errors in data collection 
and presumed parameter values). Here we use it to discover parameters that 
have a high impact on 0 , and h , and should be targeted by intervention 
strategies. 

The sensitivity analysis of 0  has already been done in [6]. We just correct 
here the expressions of the flexibilities of sµ  , fµ  , and pµ   on the basic re-
production number 0  (the mistakes in [6] are due to the error in the expres-
sion of 0 ). The right expressions are:  

0 0
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2
s

s s s

s s s
µ

µ µ α
µ µ α
∂ +

ϒ = × = −
∂ +

  
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0

1
p

p

p
µ

µ
µ
∂

ϒ = × = −
∂








 

However the conclusions are not affected: the authors remarked that 
0 0 01
f p sµ µ µϒ < = ϒ < ϒ
  

   , and so the most sensitive parameter most sensitive pa-
rameter is sµ   the death rate of snails, followed by pµ   the death rate of pair 
schistosoma. The least sensitive parameter is fµ   the death rate of female single 
schistosoma. Therefore the most efficient way to reduce the value of 0  is to 
reduce the snail host population. 

Sensitivity analysis of h  
Since in general it is not easy to reduce the value of 0  to be less than one 

and hence to eradicate the disease, one of the control strategy goal could be to 
reduce the disease prevalence. To this end, we perform a sensitivity analysis of 
the endemic equilibrium state. Sensitivity analysis of the endemic equilibrium 
has usually been used to determine the relative importance of different parame-
ters responsible for equilibrium disease prevalence. Equilibrium disease preva-
lence is related to the magnitude of ( )* * * *, , ,m f p iX X X X , and specifically to the 
magnitude of *

iX . 
The sensitivity indices of *

iX , to the parameters, sµ  , fµ   and pµ   are 
given by 
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It follows that  
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f s
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This implies that  
* * *
i i i
f p s

X X X
µ µ µϒ < ϒ < ϒ
  

 

We note that the most sensitive parameter for *
iX  is sµ   the death rate of 

host snails followed by pµ   the death rate of pair parasites and fµ   the death 
rate of female parasites. 

5.2. Global Sensitivity Analysis of 0  

In this subsection we propose the global sensitivity analysis of the model para-
meter to determine how much the parameters affect the output of the model. 
Global sensitivity analysis is a collection of more robust procedures, modifying 
groups of parameters simultaneously, with a specific goal to recognize the im-
pacts of interactions between various parameters. LHS is at present the most 
productive and refined statistical techniques [18] and Blower presented it of the 
field of disease modelling in 1994. We use the technique of Latin Hypercube 
Sampling, which belong to the monte Carlo class of sampling methods [19]. LHS 
allows for an efficient analysis of parameter variations across simultaneous un-
certainty ranges in each parameter. For each parameter, a probability density 
function is defined and stratified into N equiproportional serial intervals [20]. 
Here, for each input parameter we have assumed a uniform distribution across 
the ranges listed in Table 1 due to the absence of data on the distribution func-
tion. We then calculated 0  as the model output using 1000n =  sets of sam-
pled parameters. We used the partial rank correlation coefficient (PRCC) to as-
sess the significance of each parameter with respect to 0 . Figure 1 illustrates 
the results for the range of parameters in Table 1. The sign of the correlation 
coefficient indicates the direction of the relationship and the value of the corre-
lation indicates the strength of the relationship between input parameters and 
model output. The global sensitive analysis confirm the local conclusions by 
showing the influence of the death rate to the model output 0 . The death rate 

sµ   have negative PRCC values, all above 0.5 indicating high significance to 

0  with indirect proportional relationship, that is, an increase in sµ   increas-
es 0 . This suggests that this parameter need to be estimated with precision 
ignored to accurately capture the transmission dynamics of schistosomiasis. The 
model output is also sensitive to pµ   and fµ   with PRCC negative indicating a 
decrease in 0 . 
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Figure 1. Sensitivity indexes of 0  in terms of the model parameters disposed in order 
of increasing magnitude. 
 
Table 1. Numerical values of the parameters of model system. 

Parameter Description Sample value Range 

Λ  recruitment rate of snail hosts 150 per year 100 - 200 

mk  recruitment rate of single male 145 per year - 

fk  recruitment rate of single female 100 per year - 

mµ  elimination rate of single male 0.1 per year 0.01 - 0.2 

pµ  elimination rate of single pair 0.02 per year 0.001 - 0.05 

fµ  elimination rate of single female 0.2 per year 0.1 - 0.5 

sµ  elimination rate of snail hosts 0.1 per year 0.01 - 0.2 

sα  disease-induced death rate of snail hosts 0.5 per year 0.1 - 0.9 

β  transmission rate from  
pairs to susceptible snails 

1.8 × 10−4 per year 10 × 10−4 - 25 × 10−4 

ρ  the effective mating rate 0.467 per year 0.467 per year 0.1 - 0.5 

6. Optimal Control  

In this section, we aim to place the system (1) thereof in an optimal control set-
ting, in order to be able to calculate the optimal intervention strategies. The op-
timal control represents the most effective way of controlling the disease that can 
be adopted by authorities in response to its outbreak. We now modify our model 
(1) with time-dependent treatment effort ( )u t  as control for the system. The 
variable ( )u t  represents the amounts of insecticide that is continuously applied 
during a considered period, as a measure to fight the disease:  

( )u t ≡  level of insecticide campaigns at time t 
Our model with snails treatment can be described with the following differen-

tial equations: 

( )

( )

d
,

d
d

,
d

m
m i m m m f

f
f i f f f f

X
k X X X

t
X

k X X X
t

µ ρ

µ ρ

 = − + −

 = − + −




                 (4) 
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The control variable ( )u t  is a bounded, Lebesgue integrable function that is 
considered in relative terms, varying from 0 to 1. The goal is to maximize the 
following objective function  

( ) ( ) ( ) ( )2

0

1min d
2

T
s s i i uu

J u c X t c X t c u t t = + + 
 ∫  

subject to the system differential Equations (4), where sc , ic  and uc  are the 
positive balancing constants. We seek to find an optimal control *u  such that  

( ) ( ){ }* min
u

J u J u=  

where the control set is defined as  
[ ] [ ]{ }: 0, 0,1 , is Lebesgue measurableu T u= → . Here, the running costs of 

susceptible snails are given by ( )s sc X t , while term ( )i ic X t  determines the 

costs of infected snails. Notice that ( )21
2 uc u t  is the cost of eliminating a frac-

tion ( ) ( )( )Y s iN X t X t= +  of the snails population. The choice of the cost 

function as linear in the number of susceptible and infected and quadratic in the 
control is as generally done [21] [22] [23]. 

6.1. The Optimality System  

This system satisfies standard conditions for the existence of an optimal control 
and thus by using Pontryagins Maximum Principle as stated in [24] [25], we de-
rive the necessary conditions for our optimal control and corresponding states. 
The Hamiltonian H for the control problem is as follows:  
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The adjoint variables ( )1,2,3,4,5i iλ =  are the solution of the following system: 
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( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

1
1

2
2 1 3

3
3 4 5

4
4 5

5
2 4 5

d
,

d
d

,
d

d
,

d
d

,
d

d
.

d

m

f

p s s

s p p

i f s s s s

t
t

t t t
t

t t X t t X t
t

c t X t t X t
t

c k t t u t t u t
t

λ
µ λ

λ
λ µ ρ ρλ ρλ

λ
µ λ βλ βλ

λ
βλ βλ

λ
λ λ α µ λ α µ

 =

 = − − − + −

 = − −



= − − −

 = − − − − − − − − − −

  (5) 
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with the boundary conditions ( ) 0i Tλ = . 
By using Pontryagins Maximum Principle and the existence result for the op-

timal control from Fleming and Rishel [8], we obtain 
Theorem 6 There exists an optimal strategy *u ∈  such that  

( ) ( ){ }* min ,
u

J u J u
∈

=


 

given by 

* 4 5min 1,max 0, i i

u

X X
u

c
λ λ  + =   

   
 

where ( )1,2,3,4,5i iλ =  are the solutions of (5).  
Proof. Here the control and the state variables are nonnegative values. The 

necessary convexity of the objective functional in u is satisfied for this minimis-
ing problem. The control variable set u∈  is also convex and closed by defi-
nition. In addition, the integrand of ( )J u  with respect to control variables *u  
is convex and it is easy to verify the Lipschitz property of the state system with 
respect to the state variables. Together with a priori boundedness of the state 
solutions, the existence of an optimal control has been given by in [8] (see co-
rollary 4.1). 

System (5) is obtained by differentiating the Hamiltonian function. Further-
more, by equating to zero the derivatives of the Hamiltonian with respect to the 
control, we obtain 

( ) ( ) ( ) ( )4 5 0u i i
H c t t X t X t
t

λ λ∂
= − − =

∂
 

( ) ( ) ( ) ( )4 5* i i

u

t X t X t
u t

c
λ λ+

⇒ =  

Using the property of the control space, we obtain  

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

4 5

4 5 4 5*

4 5

0, if 0

, if 0,1

1, if 1.

i i

u

i i i i

u u

i i

u

l t X t l X t
c

t X t X t l t X t l X t
u t

c c
l t X t l X t

c

λ λ

+
≤


 + += ∈

 +
 ≥


 

Those can be rewritten in compact notation  

* 4 5min 1,max 0, i i

u

X X
u

c
λ λ  + =   

   
 

6.2. Numerical Examples  

The numerical simulations are completed utilizing Matlab and making use of 
parameter values in [6] to verify the effectiveness of our new model by compar-
ing the disease progression before and after introducing the optimal control va-
riables ( )u t . For that, first we solve system (4) with a guess for the controls over 
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the time interval [ ]0,T  using a forward fourth-order Runge-Kutta scheme and 
the transversality conditions ( ) 0, 1, ,5i T iλ = = 

. Then, system (5) is solved by 
a backward fourth-order Runge-Kutta scheme using the current iteration solu-
tion of (4). 

The control is updated by using a convex combination of the previous control. 
The iteration is stopped when the values of the unknowns at the previous itera-
tion are very close to the ones at the present iteration. For more details see, e.g., 
[25]. 

We represent the solution curves of the five state variables both in the pres-
ence and absence of the control. When viewing the graphs, remember that each 
of the individuals with control is marked by dashed blue lines. The individuals 
without control are marked by red lines. It is observed that the application of 
optimal control reduces a quite larger number of schistosoma (male, female, pair) 
and snails in the absence of the control. This is occurring as the application of 
pesticide control reduces the snails population significantly as seen in Figure 2 
and Figure 3. Again from the Figures 4-6 it is easy to see that the schistosoma 
population also much affected due to the use of the insecticide control. 

We have considered the schistosomiasis infection in an endemic population 
(when 0 ). In Figures 4-6, we observe that the fraction of schistosoma (male, 
female, pair) is lower when control is considered. More precisely, at the end of 
15 years, the total number of male, female and pair schistosoma is 105, 50.1 10×   

 

 

Figure 2. The evolution of susceptible snails with and without control. The state is solved 
forward time with initial conditions ( ) ( )0 50000;30000;25000;4500;2500IC =  while the 

adjoint system is solved backward in time (in years) with terminal condition 
( )0;0;0;0;0;0TC =  where 5T =  and ( ) ( ), , 1,1,0.5s i uc c c = . 
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Figure 3. The evolution of infected snails with and without control. The state is solved for-
ward time with initial conditions ( ) ( )0 50000;30000;25000;4500;2500IC =  while the adjoint 

system is solved backward in time in (in years) with terminal condition ( )0;0;0;0;0;0TC =  

where 15T =  and ( ) ( ), , 1,1,0.5s i uc c c = . 

 

 

Figure 4. The evolution of male schistosoma with and without control. The state is solved 
forward time with initial conditions ( ) ( )0 50000;30000;25000;4500;2500IC =  while the ad-

joint system is solved backward in time (in years) with terminal condition ( )0;0;0;0;0;0TC =  

where 25T =  and ( ) ( ), , 1,1,0.5s i uc c c = . 
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Figure 5. The evolution of female schistosoma with and without control. The state is 
solved forward time with initial conditions ( ) ( )0 50000;30000;25000;4500;2500IC =  

while the adjoint system is solved backward in time (in years) with terminal condition 
( )0;0;0;0;0;0TC =  where 25T =  and ( ) ( ), , 1,1,0.5s i uc c c = . 

 

 
Figure 6. The evolution of pair schistosoma with and without control. The state is solved 
forward time with initial conditions IC(0) = (50000; 30000; 25000; 4500; 2500) while the 
adjoint system is solved backward in time (in years) with terminal condition TC = (0; 0; 0; 
0; 0; 0) where T = 25 and (cs, ci, cu) = (1, 1, 0.5). 
 
and 52 10×  respectively when control is considered, and 53.5 10× , 50.5 10×  
and 58 10×  respectively without control. The schistosoma can survive for very 
long periods in a dry state, often for more than a few years, that’s why in the 
stage without control evolution of the number of schistosoma (male, female, pair) 
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take higher levels, once controlled, the number of schistosoma doesn’t develop 
as shown in Figures 4-6. 

In Figure 2, we remark that the number of susceptible snails is more impor-
tant than in the case without control, this is due to the aim of our approach 
which focuses on the reduction of the number of susceptible and infected snails 
population, so in the case without control the number of susceptible snails de-
crease is less and goes to its stable state, because it also applied a control on 
schistosoma by the elimination rates ( m , f , p ). 

In Figure 3, it’s the evolution of infected snails which is presented, the major 
case of our approach, and the graph below shows the effectiveness of the study 
done in this work. As given above, the numerical simulations suggested 10 years 
as minimal duration for treatment. We see that if there are control the infected 
snails population begins to sharply decrease from the very beginning day of 
treatment and gradually decreases as time goes on.  

Acknowledgements 

This research was carried out with financial support of CEA-MITIC for postdoc 
project in Université Gaston Berger de SAINT-LOUIS. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 

[1] Schistosomiasis. http://www.who.int/mediacentre/factsheets/fs115/en/  

[2] Savioli, L., Stansfield, S., Bundy, D.A., Mitchell, A., Bhatia, R., Engels, D., Montre-
sor, A., Neira, M. and Shein, A.M. (2002) Schistosomiasis and Soil-Transmitted 
Helminth Infections: Forging Control Efforts. Transactions of the Royal Society of 
Tropical Medicine and Hygiene, 96, 577-579. 
https://doi.org/10.1016/S0035-9203(02)90316-0 

[3] Castillo-Chavez, C., Feng, Z. and Xu, D. (2008) A Schistosomiasis Model with Mat-
ing Structure and Time Delay. Mathematical Biosciences, 211, 333-341. 
https://doi.org/10.1016/j.mbs.2007.11.001 

[4] Hadeler, K., Waldstätter, R. and Wörz-Busekros, A. (1988) Models for Pair Forma-
tion in Bisexual Populations. Journal of Mathematical Biology, 26, 635-649. 
https://doi.org/10.1007/BF00276145 

[5] Schmitz, S.-F.H. and Castillo-Chavez, C. (2000) A Note on Pair-Formation Func-
tions. Mathematical and Computer Modelling, 31, 83-91. 
https://doi.org/10.1016/S0895-7177(00)00025-X 

[6] Qi, L. and Cui, J.-A. (2013) A Schistosomiasis Model with Mating Structure. Ab-
stract and Applied Analysis, 2013, Article ID: 741386. 
https://doi.org/10.1155/2013/741386 

[7] Xu, D., Curtis, J., Feng, Z. and Minchella, D.J. (2005) On the Role of Schistosome 
mating Structure in the Maintenance of Drug Resistant Strains. Bulletin of Mathe-
matical Biology, 67, 1207-1226. https://doi.org/10.1016/j.bulm.2005.01.007 

https://doi.org/10.4236/am.2019.106029
http://www.who.int/mediacentre/factsheets/fs115/en/
https://doi.org/10.1016/S0035-9203(02)90316-0
https://doi.org/10.1016/j.mbs.2007.11.001
https://doi.org/10.1007/BF00276145
https://doi.org/10.1016/S0895-7177(00)00025-X
https://doi.org/10.1155/2013/741386
https://doi.org/10.1016/j.bulm.2005.01.007


M. Diaby et al. 
 

 

DOI: 10.4236/am.2019.106029 417 Applied Mathematics 

 

[8] Fleming, W.H. and Rishel, R.W. (2012) Deterministic and Stochastic Optimal Con-
trol. Springer Science & Business Media, Berlin, Heidelberg. 

[9] Gamkrelidze, R., Pontrjagin, L.S. and Boltjanskij, V.G. (1964) The Mathematical 
Theory of Optimal Processes. Macmillan Company, New York. 

[10] Van den Driessche, P. and Watmough, J. (2002) Reproduction Numbers and 
Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Trans-
mission. Mathematical Biosciences, 180, 29-48. 
https://doi.org/10.1016/S0025-5564(02)00108-6 

[11] LaSalle, J. (1976) The Stability of Dynamical Systems, Regional Conference Series in 
Applied Mathematics. Society for Industrial and Applied Mathematics, Philadel-
phia, PA. 

[12] Bhatia, N.P. and Szegö, G.P. (1967) Dynamical Systems: Stability Theory and Ap-
plications. In: Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, New 
York. https://doi.org/10.1007/BFb0080630 

[13] Thieme, H.R. (1992) Epidemic and Demographic Interaction in the Spread of Po-
tentially Fatal Diseases in Growing Populations. Mathematical Biosciences, 111, 
99-130. https://doi.org/10.1016/0025-5564(92)90081-7 

[14] Butler, G., Freedman, H. and Waltman, P. (1986) Uniformly Persistent Systems. 
Proceedings of the American Mathematical Society, 96, 425-430. 
https://doi.org/10.2307/2046588 

[15] Hofbauer, J. and So, J.W.-H. (1989) Uniform Persistence and Repellors for Maps. 
Proceedings of the American Mathematical Society, 107, 1137-1142. 
https://doi.org/10.2307/2047679 

[16] Lin, X. and So, J.W.-H. (1993) Global Stability of the Endemic Equilibrium and 
Uniform Persistence in Epidemic Models with Subpopulations. The ANZIAM 
Journal, 34, 282-295. https://doi.org/10.1017/S0334270000008900 

[17] Chitnis, N., Hyman, J.M. and Cushing, J.M. (2008) Determining Important Para-
meters in the Spread of Malaria through the Sensitivity Analysis of a Mathematical 
Model. Bulletin of Mathematical Biology, 70, 1272-1296. 
https://doi.org/10.1007/s11538-008-9299-0 

[18] Blower, S.M. and Dowlatabadi, H. (1994) Sensitivity and Uncertainty Analysis of 
Complex Models of Disease Transmission: An HIV Model, as an Example. Interna-
tional Statistical Review/Revue Internationale de Statistique, 66, 229-243. 
https://doi.org/10.2307/1403510 

[19] Marino, S., Hogue, I.B., Ray, C.J. and Kirschner, D.E. (2008) A Methodology for 
Performing Global Uncertainty and Sensitivity Analysis in Systems Biology. Journal 
of Theoretical Biology, 254, 178-196. https://doi.org/10.1016/j.jtbi.2008.04.011 

[20] Wu, J., Dhingra, R., Gambhir, M. and Remais, J.V. (2013) Sensitivity Analysis of 
Infectious Disease Models: Methods, Advances and Their Application. Journal of 
the Royal Society Interface, 10, Article ID: 20121018.  
https://doi.org/10.1098/rsif.2012.1018 

[21] Lee, S., Chowell, G. and Castillo-Chávez, C. (2010) Optimal Control for Pandemic 
Influenza: The Role of Limited Antiviral Treatment and Isolation. Journal of Theo-
retical Biology, 265, 136-150. https://doi.org/10.1016/j.jtbi.2010.04.003 

[22] Okosun, K.O., Ouifki, R. and Marcus, N. (2011) Optimal Control Analysis of a Ma-
laria Disease Transmission Model that Includes Treatment and Vaccination with 
Waning Immunity. Biosystems, 106, 136-145. 
https://doi.org/10.1016/j.biosystems.2011.07.006 

https://doi.org/10.4236/am.2019.106029
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1007/BFb0080630
https://doi.org/10.1016/0025-5564(92)90081-7
https://doi.org/10.2307/2046588
https://doi.org/10.2307/2047679
https://doi.org/10.1017/S0334270000008900
https://doi.org/10.1007/s11538-008-9299-0
https://doi.org/10.2307/1403510
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1098/rsif.2012.1018
https://doi.org/10.1016/j.jtbi.2010.04.003
https://doi.org/10.1016/j.biosystems.2011.07.006


M. Diaby et al. 
 

 

DOI: 10.4236/am.2019.106029 418 Applied Mathematics 

 

[23] Tchuenche, J., Khamis, S., Agusto, F. and Mpeshe, S. (2011) Optimal Control and 
Sensitivity Analysis of an Influenza Model with Treatment and Vaccination. Acta 
biotheoretica, 59, 1-28. https://doi.org/10.1007/s10441-010-9095-8 

[24] Pontryagin, L.S., Boltyanskii, V., Gamkrelidze, R. and Mishchenko, E.F. (1962) the 
Mathematical Theory of Optimal Processes. Interscience, New York. 

[25] Lenhart, S. and Workman, J.T. (2007) Optimal Control Applied to Biological Mod-
els. CRC Press, Boca Raton, FL. 

 

https://doi.org/10.4236/am.2019.106029
https://doi.org/10.1007/s10441-010-9095-8

	Global Transmission Dynamics of a Schistosomiasis Model and Its Optimal Control
	Abstract
	Keywords
	1. Introduction
	2. Mathematical Model 
	2.1. Basic Properties 

	3. The Basic Reproduction Number and the Disease-Free Equilibrium 
	4. Endemic Equilibrium and Its Stability 
	5. Sensitivity Analysis and Numerical Simulations 
	5.1. Local Sensitivity Analysis of  
	5.2. Global Sensitivity Analysis of 

	6. Optimal Control 
	6.1. The Optimality System 
	6.2. Numerical Examples 

	Acknowledgements
	Conflicts of Interest
	References

