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Abstract 
To overcome the weaknesses of in-sample model selection, this study adopted 
out-of-sample model selection approach for selecting models with improved 
forecasting accuracies and performances. Daily closing share prices were ob-
tained from Diamond Bank and Fidelity Bank as listed in the Nigerian Stock 
Exchange spanning from January 3, 2006 to December 30, 2016. Thus, a total 
of 2713 observations were explored and were divided into two portions. The 
first which ranged from January 3, 2006 to November 24, 2016, comprising 
2690 observations, was used for model formulation. The second portion 
which ranged from November 25, 2016 to December 30, 2016, consisting of 
23 observations, was used for out-of-sample forecasting performance evalua-
tion. Combined linear (ARIMA) and Nonlinear (GARCH-type) models were 
applied on the returns series with respect to normal and student-t distribu-
tions. The findings revealed that ARIMA (2,1,1)-EGARCH (1,1)-norm and 
ARIMA (1,1,0)-EGARCH (1,1)-norm models selected based on minimum 
predictive errors throughout-of-sample approach outperformed ARIMA 
(2,1,1)-GARCH (2,0)-std and ARIMA (1,1,0)-EGARCH (1,1)-std model cho-
sen through in-sample approach. Therefore, it could be deduced that 
out-of-sample model selection approach was suitable for selecting models 
with improved forecasting accuracies and performances.  
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1. Introduction 

Model selection is the act of choosing a model from a class of candidate models 
as a quest for a true model or best forecasting model or both (see also, [1], [2], 
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[3]). There are often several competing models that can be used for forecasting a 
particular time series. Consequently, selecting an appropriate forecasting model 
is considerably practical importance [4] [5]. Selecting the model that provides 
the best fit to historical data generally does not result in a forecasting method 
that produces the best forecasts of new data. Concentrating too much on the 
model that produces the best historical fit often leads to overfitting, or including 
too many parameters or terms. The best approach is to select the model that re-
sults in the smallest standard deviation or mean squared error of the 
one-step-ahead forecast errors when the model is applied to data set that was not 
used in fitting process [4]. There are two approaches to model selection in time 
series; the in-sample model selection and the out-of-sample model selection. The 
in-sample model selection is targeted at selecting a model for inference, which 
according to [1] is intended to identify the best model for the data and to pro-
vide a reliable characterization of the sources of uncertainty for scientific insight 
and interpretation. The in-sample model selection criteria include Akaike in-
formation criterion, AIC [6], Schwarz information criterion, SIC [7], and Han-
nan and Quinn information criteria, HQIC [8]. As captured in [9], AIC consi-
dered a discrepancy between the true model and a candidate, BIC approximated 
the posterior model probabilities in a Bayesian framework, and Hannan and 
Quinn proposed a related criterion which has a smaller penalty compared to BIC 
that yet permitted strong consistency property (for more details on information 
criteria, see [10] [11] [12] [13] [14]). However, the major drawbacks of 
in-sample model selection criteria are that, they are unstable and minimizing 
these criteria over a class of candidate models leads to a model selection proce-
dure that is conservative or over-consistent in parameter settings [2] [9], and the 
inability to inform directly about the quality of the model [3]. On the other 
hand, out-of-sample model selection procedure is applied to achieve the best 
predictive performance, essentially at describing the characterization of future 
observations without necessarily considering the choice of true model, rather, 
the attention is shifted to choose a model with the smallest predictive errors [1] 
[2] [15] [16]. The out-of-sample forecast is accomplished when the data used for 
constructing the model are different from that used in forecasting evaluation. 
That is, the data is divided into two portions. The first portion is for model con-
struction and the second is used for evaluating the forecasting performance with 
possibility of forecasting new future observations which can be checked against 
what is observed ([11] [16] [17]). Yet the choice of in-sample and out-of-sample 
model selection criteria is not without contention and such contention is well 
handled in [1] [15] [18] [19] [20]. 

With respect to heteroscedastic processes (or nonlinear time series), details 
regarding model selection are available in the studies of [21]-[27]. Meanwhile, in 
Nigeria, model selection in heteroscedastic processes are mainly based on 
in-sample criteria. For instance, the studies of [28]-[33] rely on the in-sample 
procedure to select the best fit model. Hence, this study seeks to improve on the 
work of [28] who applied the in-sample model selection criteria to choose best 
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fitted heteroscedastic models by adopting out-of-sample forecasting approach in 
selecting heteroscedastic models that would best describe the accuracy and pre-
cision of future observations. 

This work is further organized as follows: materials and methods are treated 
in Section 2, results and discussion covered in Section 3 and Section 4 takes care 
of conclusion. 

2. Materials and Methods 
2.1. Return 

The return series tR  can be obtained given that tP  is the price of a unit share 
at time t, and 1tP−  is the share price at time 1t − . 

( ) 1ln 1 ln ln lnt t t t tR P B P P P−= ∇ = − = −                (1) 

The tR  in Equation (1) is regarded as a transformed series of the share price, 

tP  meant to attain stationarity, that is, both mean and variance of the series are 
stable [29]. The letter B is the backshift operator. 

2.2. Information Criteria 

There are several information criteria available to determine the order, p, of an 
AR process and the order, q, of MA(q) process, all of them are likelihood based. 
The well-known Akaike information criterion (AIC), [6] is defined as 

( ) ( )2 2AIC ln likelihood number of parameters ,x
T T
−

= +         (2) 

where the likelihood function is evaluated at the maximum likelihood estimates 
and T the sample size. For a Gaussian AR(p) model, AIC reduces to  

( ) ( )2 2ˆAIC ln P
PP

T
σ= +                       (3) 

where 2ˆPσ  is the maximum likelihood estimate of 2ˆaσ , which is the variance of 

ta , and T is the sample size. The first term of the AIC in Equation (6) measures 
the goodness-of-fit of the AR(p) model to the data whereas the second term is 
called the penalty function of the criterion because it penalizes a chosen model 
by the number of parameters used. Different penalty functions result in different 
information criteria. 

The next commonly used criterion function is the Schwarz information crite-
rion (SIC), [7]. For a Gaussian AR(p) model, the criterion is  

( ) ( ) ( )2 ln
ˆSIC ln P

P T
P

T
σ

 
= +  

 
                  (4) 

Another commonly used criterion function is the Hannan Quinn information 
criterion (HQIC), [8]. For a Gaussian AR(p) model, the criterion is  

( ) ( ) ( ){ }2 ln ln
ˆHQIC ln P

T
P

T
σ= +                  (5) 

The penalty for each parameter used is 2 for AIC, ln(T) for SIC and ln{ln(T)} 
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for HQIC. These penalty functions help to ensure selection of parsimonious 
models and to avoid choosing models with too many parameters. 

The AIC criterion asymptotically overestimates the order with positive proba-
bility, whereas the BIC and HQIC criteria estimate the order consistently under 
fairly general conditions ([11] [17]). Moreover, an in-sample model selection 
criterion is consistent if it chooses a true model when the true model is among 
those considered with probability approaching unity as the sample size becomes 
large, and if the true model is not among those considered, it selects the best ap-
proximation with probability approaching unity as sample size becomes larger 
[3]. The AIC is always considered inconsistent in that it does not penalize the 
inclusion of additional parameters. As such, relying on these criterion leads to 
overfitting. Meanwhile, the SIC and HQIC criteria are consistent in that it takes 
into account large size adjustment penalty. In contrast, consistency is not suffi-
ciently informative. It turns out that the true model and any reasonable ap-
proximation to it are very complex. An asymptotically efficient model selection 
criterion chooses a sequence of models as the sample size get larger for which 
the one-step-ahead forecast error variances approach the one-step-ahead fore-
cast error variance for the true model at least as fast as any other criterion [3]. 
The AIC is asymptotically efficient while SIC and HQIC are not. However, one 
major drawback of in-sample criteria is their inability to evaluate a candidate 
model’s potential predictive performance. 

2.3. Model Evaluation Criteria 

It is tempting to evaluate performance on the basis of the fit of the forecasting or 
time series model to historical data [3]. The best way to evaluate a candidate 
model’s predictive performance is to apply the out-of-sample forecast technique. 
This will provide a direct estimate of the one-step-ahead forecast error variance 
that guarantees an efficient model selection criterion. The methods of forecast 
evaluation based on forecast error include Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE) and Mean Absolute Error (MAE). These criteria 
measure forecast accuracy. The forecast bias is measured by Mean Error (ME). 

The measures are computed as follows:  

2
1

1MSE n
ii e

n =
= ∑                         (6) 

2
1

1RMSE n
ii e

n =
= ∑                       (7) 

1

1MAE n
i ie

n =
= ∑                        (8) 

( )1

1ME i
n
i e

n =
= ∑                        (9) 

where ie  is the forecast error and n is the number of forecast error. Also, it 
should be noted that in this work, the forecasts of the returns are used as proxies 
for the volatilities as they are not directly observable [34]. 
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2.4. Autoregressive Integrated Moving Average (ARIMA) Model 

[10] considered the extension of ARMA model to deal with homogenous 
non-stationary time series in which tX , itself is non-stationary but its dth dif-
ference is a stationary ARMA model. Denoting the dth difference of tX  by  

( ) ( ) ( ) ,d
t tB B X Bϕ φ θ ε= ∇ =                  (10) 

where ( )Bϕ  is the nonstationary autoregressive operator such that d of the 
roots of ( ) 0Bϕ =  are unity and the remainder lie outside the unit circle. 
( )Bφ  is a stationary autoregressive operator. 

2.5. Heteroscedastic Models 

Autoregressive Conditional Heteroscedastic (ARCH) Model: The first 
model that provides a systematic framework for modeling heteroscedasticity is 
the ARCH model of [35]. Specifically, an ARCH (q) model assumes that, 

, ,t t t t t tR a a eµ σ= + =  
2 2 2

1 1t t q t qa aσ ω α α− −= + + + ,                  (11) 

where [ ]te  is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with mean zero, that is ( )E 0te =  and variance 1, that is 
( )2E 1te = , 0ω > , and 1, , 0qα α ≥  [36]. The coefficients iα , for 0i > , 

must satisfy some regularity conditions to ensure that the unconditional va-
riance of ta  is finite.  

Generalized Autoregressive Conditional Heteroscedastic (GARCH) Mod-
el: Although the ARCH model is simple, it often requires many parameters to 
adequately describe the volatility process of a share price return. Some alterna-
tive models must be sought. [37] proposed a useful extension known as the ge-
neralized ARCH (GARCH) model. For a return series, tR , let t t ta R µ= −  be 
the innovation at time t. Then, ta  follows a GARCH(q, p) model if  

t t ta eσ= , 

2 2 2

1 1
,

q q

t i t i j t j
i j

aσ ω α β σ− −
= =

= + +∑ ∑                  (12) 

where again te  is a sequence of i.i.d. random variance with mean, 0, and va-

riance, 1, 0, 0, 0i jω α β> ≥ ≥ , and ( )
( )max ,

1
 1

p q

i i
i

α β
=

+ <∑  (see [38]). 

Here, it is understood that 0iα = , for i p> , and 0iβ = , for i q> . The 
latter constraint on i iα β+  implies that the unconditional variance of ta  is fi-
nite, whereas its conditional variance 2

tσ , evolves over time. 
Exponential Generalized Autoregressive Conditional Heteroscedastic 

(EGARCH) Model: The EGARCH model represents a major shift from ARCH 
and GARCH models [39]. Rather than modeling the variance directly, EGARCH 
models the natural logarithm of the variance, and so no parameter restrictions 
are required to ensure that the conditional variance is positive. The EGARCH(q, 
p) is defined as,  
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, ,t t t t t tR a a eµ σ= + =  

2 2
1 1 12 2

ln ln ,q r pt i t k
t i k j t ji k j

t i t k

a a
σ ω α γ β σ

σ σ
− −

−= = =
− −

 
 = + + +
 
 

∑ ∑ ∑    (13) 

where again, te  is a sequence of i.i.d. random variance with mean, 0, and va-
riance, 1, and kγ  is the asymmetric coefficient. 

Glosten, Jagannathan and Runkle (GJR-GARCH) Model: The GJR-GARCH 
(q, p) model proposed by [40] is a variant, represented by  

,t t ta eσ=   
2 2 2 2

1 1 1 ,q p p
t i t i i t i t i j t ji i ja I aσ ω α γ β σ− − − −= = =
= + + +∑ ∑ ∑        (14) 

where 1tI −  is an indicator for negative  t ia − , that is, 

 
1

 

0 if 0,
1 if 0,

t i
t

t i

a
I

a
−

−
−

<
=  ≥

 

and ,i iα γ  and jβ  are nonnegative parameters satisfying conditions similar to 
those of GARCH models. Also the introduction of indicator parameter of leve-
rage effect, 1tI −  in the model accommodates the leverage effect, since it is sup-
posed that the effect of 2

t ia −  on the conditional variance 2
tσ  is different accor-

dingly to the sign of t ia − . 

2.6. Parametric Bootstrap 

The parametric bootstrap is used in computing nonlinear forecasts given the fact 
that the model used in forecasting has been rigorously checked and is judged to 
be adequate for the series under study [39]. Let T be the forecast origin and k be 
the forecast horizon (k > 0). That is, we are at time index T and interested in fo-
recasting T kR + . The parametric bootstrap considered compute realizations 

1, ,T T kR R+ +  sequentially by drawing a new innovation from the specific inno-
vational distribution of the model, and computing T iR +  using the model, data, 
and previous forecasts 1 1, ,T T iR R+ + − . This results in a realization for T kR + . 
The procedure is repeated M times to obtain M realizations of T kR +  denoted by 

( ){ }
1

Mj
T k j

R +
=

. The point forecast of T kR +  is then the sample average of ( )j
T kR + . 

Consequently, Forecasts of the ARCH model are obtained recursively. Let T 
be the starting date for forecasting, that is forecast origin. Let TF  be the infor-
mation set available at time T. Then, the 1-step ahead forecast for conditional 
variance, 2

1Tσ +  is  

( )2 2 2
1 1ˆ ˆ ˆˆ ˆ1 ,T T p T pa aσ ω α α + −= + + +                (15) 

where ˆTa  is the estimated residual. For the 2-step ahead forecast 2
2Tσ + , we 

need a forecast of 2
1Ta + . It is given by ( )2 1Tσ . We therefore obtain 

( ) ( )2 2 2 2
1 2 2ˆ ˆ ˆ ˆˆ ˆ2 1 .T T T p T pa aσ ω α σ α α + −= + + + +           (16) 

The k-step ahead forecast for 2
T kσ +  is  

( ) ( ) ( )2 2 2
1ˆ ˆ ˆ1 ,T T p Tk k k pσ ω α σ α σ= + − + + −           (17) 
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with ( )2 2ˆT T k ik i aσ + −− =  if 0k i− ≤ . 
Forecasts of the GARCH model are obtained recursively in a similar way as 

that of the ARCH model. Then, the 1-step ahead forecast for 2
1Tσ +  is  

( )2 2 2
1 1̂ˆ ˆ ˆ ˆ1T T Taσ ω α β σ= + + ,                      (18) 

since 2 2 2
T T Ta eσ= , the GARCH (1,1) model can be rewritten as  

( ) ( )2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1T T T T T Ta eσ ω α β σ ω α β σ α σ− − − − −= + + = + + + − , 

so that, at time 2T + , we have  

( ) ( )2 2 2 2
2 1 1 1 1 1 1 1T T T Teσ ω α β σ α σ+ + + += + + + − , 

with ( )2
1 1 0T TE e F+

 − =  , we deduce the following 2-step ahead forecast for 
2

2Tσ + : 

( ) ( ) ( )2 2
1 1̂ˆ ˆ2 1T Tσ ω α β σ= + + . 

Generally speaking, the k-step ahead forecast for 2
T kσ +  is  

( ) ( ) ( )2 2
1 1̂ˆ ˆ 1 , 1.T Tk k kσ ω α β σ= + + − >               (19) 

One of the beauties of GARCH is that volatility forecasts for any horizon can 
be constructed from the estimated model. The estimated GARCH model is used 
to get forecasts of instantaneous forward volatilities, that is, the forecast for 

2
T kσ +  made at time T and for every k step ahead. 
For EGARCH model, assuming that the model parameters are known and the 

observations are standard Gaussian, for EGARCH (1,1) model, we have  

( ) ( )2 2
1 1 1 1ln 1 ln ,T T Tgσ α ω α σ − −= − + +   

( ) ( )1 1 1 2 πT T Tg θ γ− − −= + −   .                (20) 

Taking exponentials, the model becomes 

( ) ( )122
1 1 1exp 1 exp ,T T Tgασ σ α ω− −= −        

( ) ( )1 1 1 2 πT T Tg θ γ− − −= + −   .                 (21) 

For the 1-step ahead forecast, 2
1Tσ +  we have 

( ) ( ) ( )122
11 exp 1 expT T Tgασ σ α ω= −       .             (22) 

The 2-step-ahead forecast of 2
2Tσ +  is given by 

( ) ( ) ( ) ( ){ }122
1ˆ2 1 exp 1 expT T T TE gασ σ α ω= −       , 

where TE  denotes a conditional expectation taken at the time origin T with  

( ){ } ( ) ( ) ( ) ( ) ( )
2 22 2exp exp 2 π e eTE g θ γ θ γγ θ γ γ θ+ − = − Φ + + Φ −     

 , 

where ( )xΦ  is the cumulative density function of the standard normal distri-
bution (see [39] for more details). Hence, 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
122

1

2 2

ˆ ˆ2 1 exp 1 2 π

exp 2 exp 2

T T
ασ σ α ω γ

θ γ θ γ θ γ γ θ

 = − − 

   × + Φ + + − Φ −   
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Generally, the k-step-ahead forecast can be obtained as  

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
122

1

2 2

ˆ ˆ 1 exp 1 2 π

exp 2 exp 2

T Tk kασ σ α ω γ

θ γ θ γ θ γ γ θ

 = − − − 

   × + Φ + + − Φ −   

   (23) 

(See also, [34], [38]). 

3. Results and Discussion 
3.1. Plot Analysis 

Figure 1 and Figure 2 are the share prices of Diamond and Fidelity Banks. Their 
movements appeared to fluctuate away from the common mean indicating the 
presence of stochastic nonstationarity.  

Figure 3 and Figure 4 are the returns series of the respective banks and are 
found to cluster around the common mean signifying stationarity. 
 

 
Figure 1. Share price series of diamond bank. 

 

 

Figure 2. Share price series of fidelity bank. 
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Figure 3. Return series of diamond bank. 
 

 

Figure 4. Return series of fidelity bank. 

3.2. In-Sample Model Selection 

Several models with respect to normal distribution (norm) and student-t distri-
bution (std) such as ARIMA (2,1,1)-GARCH (1,0)-std, ARIMA (2,1,1)-GARCH 
(2,0)-std, ARIMA (2,1,1)-GARCH (1,1)-norm, ARIMA (2,1,1)-EGARCH 
(1,1)-norm and ARIMA (2,1,1)-EGARCH (1,1)-std were considered tentatively 
for the return series of Diamond Bank. ARIMA (2,1,1)-GARCH (2,0)-std was 
selected based on minimum information criteria (see Table 1). The model was 
found to be adequate given that the p-values corresponding to weighted 
Ljung-Box Q statistics at lags 1, 8 and 14 on standardized residuals, weighted  
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Table 1. Estimation of Heteroscedastic models of return series of diamond bank. 

Model Parameter Estimate s.e t-ratio p-value 
Information Criteria 

AIC BIC HQIC 

ARIMA (2,1,1)- 
GARCH (1,0)-std 

µ  −9.93e−4 3.81e−4 −2.6037 0.0092 

−4.3202 −4.3049 −4.3147 

1ϕ  0.6479 0.1134 5.7155 0.0000 

2ϕ  0.0115 0.0246 0.4676 0.6401 

1θ  −0.7192 0.1107 −6.4961 0.0000 

ω  4.9e−4 2.6e−5 18.9763 0.0000 

1α  0.5380 0.0581 9.2597 0.0000 

ARIMA (2,1,1)- 
GARCH (2,0)-std 

µ  0.0000 0.0000 −0.0179 0.9857 

−5.0430 −5.0255 −5.0367 

1ϕ  −0.2748 0.1017 −2.7030 0.0069 

2ϕ  0.1899 0.0250 7.5938 0.0000 

1θ  0.2976 0.0988 3.0112 0.0026 

ω  0.0000 0.0000 0.0000 1.0000 

1α  0.5085 0.0215 23.6094 0.0000 

2α  0.4899 0.0216 22.6980 0.0000 

ARIMA (2,1,1)- 
GARCH (1,1)-norm 

µ  −1.89e−4 4.6e−5 −4.1466 0.00003 

−4.3997 −4.3843 −4.3941 

1ϕ  0.7177 0.1399 5.1280 0.0000 

2ϕ  0.0116 0.0248 0.4695 0.6387 

1θ  −0.7663 0.1386 −5.5302 0.0000 

ω  5.0e−6 0.0000 21.4307 0.0000 

1α  0.1499 0.0084 17.9265 0.0000 

1β  0.8491 0.0065 131.3783 0.0000 

ARIMA (2,1,1)- 
EGARCH (1,1)-norm 

µ  −1.325e−3 4.67e−4 −2.8394 0.0045 

−4.3056 −4.2881 −4.2993 

1ϕ  −0.6678 0.0235 −28.3624 0.0000 

2ϕ  −0.0247 0.0222 −1.1137 0.2654 

1θ  0.6243 0.0237 26.3269 0.0000 

ω  −1.8914 0.3467 −5.4553 0.0000 

1α  −0.0003 0.0199 −0.0137 0.9891 

1β  0.7326 0.0488 15.0204 0.0000 

1γ  0.3446 0.0484 7.12488 0.0000 

ARIMA (2,1,1)- 
EGARCH (1,1)-std 

µ  0.0000 7.0e−6 −0.0005 0.9995 

−4.4228 −4.4031 −4.4157 

1ϕ  −0.2876 0.0271 −10.6033 0.0000 

2ϕ  0.0023 0.0203 0.1135 0.9096 

1θ  0.2356 0.0275 8.5685 0.0000 

ω  −0.8316 0.0198 −41.9417 0.0000 

1α  −0.0537 0.0284 −1.8871 0.0000 

1β  0.8820 0.0011 773.2336 0.0000 

1γ  0.9400 0.0378 24.8684 0.0000 
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Ljung-Box Q statistics at lags 1, 5 and 9 on standardized squared residuals and 
weighted Lagrange Multiplier statistics at lags 3, 5 and 7 are all greater than 5% 
level of significance [see Table 2]. That is to say, the hypotheses of no autocor-
relation and no remaining ARCH effect are not rejected.  

Also, for Fidelity Bank, ARIMA (1,1,0)-GARCH (1,0)-norm, ARIMA 
(1,1,0)-GARCH (1,0)-std, ARIMA (1,1,0)-GARCH (1,1)-norm, ARIMA 
(1,1,0)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-std were con-
sidered tentatively (Table 3). Based on smallest information criteria, ARIMA 
(1,1,0)-EGARCH (1,1)-std was chosen as the appropriate model. The selected 
model is adequate since all the p-values corresponding to weighted Ljung-Box Q 
statistics at lags 1, 2 and 5 on standardized residuals, weighted Ljung-Box Q sta-
tistics at lags 1, 5 and 9 on standardized squared residuals and weighted La-
grange Multiplier statistics at lags 3, 5 and 7 are greater than 5% level of signi-
ficance [see Table 4]. That is to say, the null hypotheses of no autocorrelation 
and no ARCH effect are not rejected at 5% significance level. 

3.3. Out-Of-Sample Forecasting Model Selection 

Here, the out-of-sample forecast evaluation criteria; MAE, MSE and RMSE for 
each of the models are considered for the series of the banks. It was found that 
ARIMA (2,1,1)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-norm 
possessed the smallest out-of-sample forecast evaluation criteria (see Table 5 
and Table 6). Hence, the most appropriate for the return series of the respective 
banks.  

Based on our findings, the in-sample model selection procedure favoured 
ARIMA (2,1,1)-GARCH (2,0)-std and ARIMA (1,1,0)-EGARCH (1,1)-std model 
while the out-of-sample model selection sufficed the choice of ARIMA 
(2,1,1)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-norm models 
for the banks considered. Majorly, it is discovered that in each of the models se-
lected through in-sample criteria are ill-conditioned. For instance, the constant 
term of the variance equation, ω of ARIMA (2,1,1)-GARCH (2,0)-std is zero 
which actually violates the constraint condition that requires 0ω > . The impli-
cation is that, this model is not suitable for forecasting long-run variance as it 
would collapse at zero. Again, in EGARCH (1,1)-std, the stationarity condition 
which requires 1p

jj β <∑ , is violated. The implication is that, forecasting 
long-run variance using this model would not be realistic in that the variance  
 

Table 2. Diagnostic checking for heteroscedastic models of return series of diamond bank. 

Model 
Standardized Residuals Standardized Squared Residuals 

Lag Weighted LB p-value Lag Weighted LB p-value Lag Weighted ARCH-LM p-value 

ARIMA (2,1,1)-GARCH (2,0)-std 

1 0.0001 0.9903 1 0.0004 0.9835 3 0.0004 0.9835 

8 0.0007 1.0000 5 0.0012 1.0000 5 0.0010 1.0000 

14 0.0011 1.0000 9 0.0021 1.0000 7 0.0015 1.0000 
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Table 3. Estimation of heteroscedastic models of return series of fidelity bank. 

Model Parameter Estimate s.e t-ratio p-value 
Information Criteria 

AIC BIC HQIC 

ARIMA (1,1,0)-GARCH (1,0)-norm 

µ  0.0181 2.0e−6 7416.5857 0.0000 

9.5841 9.5929 9.5873 
1ϕ  −0.1188 4.1e−5 −2892.9449 0.0000 

ω  0.0000 0.0000 4.8845 0.0000 

1α  0.9755 0.0004 2331.4143 0.0000 

ARIMA (1,1,0)-GARCH (1,0)-std 

µ  −8.0e−4 0.0004 −1.9660 0.0493 

−4.4395 −4.4286 −4.4356 
1ϕ  −0.0671 0.0241 −2.7856 0.0053 

ω  4.0e−4 2.3e−5 18.2910 0.0000 

1α  0.6093 0.0739 8.2413 0.0000 

ARIMA (1,1,0)-GARCH (1,1)-norm 

µ  −5.0e−4 9.0e−5 −56.1884 0.0000 

−4.5492 −4.5382 −4.5452 

1ϕ  −0.0339 0.0225 −1.5108 0.1308 

ω  5.0e−6 0.0000 67.9874 0.0000 

1α  0.1528 0.0105 14.5331 0.0000 

1β  0.8462 0.0088 95.5935 0.0000 

ARIMA (1,1,0)-EGARCH (1,1)-norm 

µ  0.0000 2.0e−5 −0.0004 0.9997 

−4.5912 −4.5781 −4.5865 

1ϕ  −0.0363 0.0231 −1.5721 0.1159 

ω  −0.6564 0.0065 −101.1563 0.0000 

1α  0.0155 0.0164 0.9474 0.3434 

1β  0.9063 0.0007 1341.0781 0.0000 

1γ  0.4184 0.0107 38.9643 0.0000 

ARIMA (1,1,0)-EGARCH (1,1)-std 

µ  −4.0e−6 0.0000 −41.393 0.0000 

−5.1507 −5.1354 −5.1452 

1ϕ  −0.1572 0.0029 −56.078 0.0000 

ω  0.0141 0.0003 49.642 0.0000 

1α  1.1589 0.0001 12452.741 0.0000 

1β  1.0000 1.0e−5 84465.444 0.0000 

1γ  1.1730 0.0001 11481.44 0.0000 

 
Table 4. Diagnostic checking for Heteroscedastic models of return series of fidelity bank. 

Model 
Standardized Residuals Standardized Squared Residuals 

Lag Weighted LB p-value Lag Weighted LB p-value Lag Weighted ARCH-LM p-value 

ARIMA (1,1,0)-EGARCH (1,1)-std 

1 0.0007 0.979 1 0.0010 0.9746 3 0.0010 0.9747 

2 0.0011 1.0000 5 0.0030 1.0000 5 0.0024 0.9999 

5 0.0065 1.0000 9 0.0051 1.0000 7 0.0036 1.0000 

https://doi.org/10.4236/am.2019.105024


I. U. Moffat, E. A. Akpan 
 

 

DOI: 10.4236/am.2019.105024 345 Applied Mathematics 
 

Table 5. Out-of-sample forecast evaluation criteria for diamond bank. 

Evaluation 
Criteria 

ARIMA (2,1,1)- 
GARCH (1,0)-std Model 

ARIMA (2,1,1)- 
GARCH (2,0)-std Model 

ARIMA (2,1,1)- 
GARCH (1,1)-norm Model 

ARIMA (2,1,1)- 
EGARCH (1,1)- 

norm Model 

ARIMA (2,1,1)- 
EGARCH (1,1)- 

std Model 

MAE 0.019999 0.022278 0.020026 0.019986 0.020047 

MSE 0.000629 0.000772 0.000634 0.000628 0.000636 

RMSE 0.025084 0.027785 0.025179 0.025078 0.025218 

 
Table 6. Out-of-sample forecast evaluation criteria for fidelity bank. 

Evaluation 
Criteria 

ARIMA (1,1,0)- 
GARCH (1,0)-norm Model 

ARIMA (1,1,0)- 
GARCH (1,0)-std Model 

ARIMA (1,1,0)- 
GARCH (1,1)-norm Model 

ARIMA (1,1,0)- 
EGARCH (1,1)- 

norm Model 

ARIMA (1,1,0)- 
EGARCH (1,1)- 

std Model 

MAE 0.026079 0.021095 0.020999 0.020938 0.021193 

MSE 0.000994 0.000680 0.000675 0.000673 0.000695 

RMSE 0.001315 0.026084 0.025977 0.025960 0.026355 

 
would converge at infinity. Moreover, the highly significance of the parameters 
of the models indicated that the models are over-fitted. Meanwhile, the models 
selected through out-of-sample criteria are characterized by non-significant pa-
rameters yet possessed smallest predictive errors and problem associated with 
over-fitting is overcome. In particular, this study showed that the study of [28] 
can be improved by adopting out-of-sample forecasting procedure. Further-
more, the study is in agreement with the works of [1], [2], [22] by supporting the 
choice of models based on smallest predictive errors.  

4. Conclusion 

In all, our study showed that out-of-sample model selection approach outper-
formed the in-sample counterpart in describing the characterization of future 
observations without necessarily considering the choice of true model. The ma-
jor strength of this study is in utilizing the advantage of combining both ARIMA 
and GARCH-type models to achieve forecast accuracy. The weakness of this 
study is in adopting larger samples of training data against smaller sample sizes 
for forecast evaluation, which is suitable for achieving the best fitting models. 
However, this weakness could be overcome by adopting smaller sample sizes of 
data for model formulation and larger samples for forecast evaluation in future 
study. 
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